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Abstract
Soft robotics has emerged as a transformative field, leveraging bio-inspired novel actuation mechanisms to enable 
more adaptable, compliant, and sophisticated robotic systems. However, the portability of soft pneumatic 
actuators is typically constrained by the tethering to bulky power sources. This review offers a thorough analysis of 
autonomous power alternatives facilitated by chemical reactions for gas generation and absorption, a concept 
analogous to biological energy conversion processes. These bio-inspired strategies propel soft pneumatic actuators 
towards new horizons of autonomy and portability, essential for real-world applications. This comprehensive 
review explores the critical intersection of gas evolution reactions (GERs) and gas consumption reactions (GCRs) 
as a power source for pneumatic actuation in soft robotics. We here emphasize the importance and impact of bio-
inspired design, control, efficiency, safety, and sustainability within soft robotics to not only mimic biological 
motions but to enhance them. This review explores the fundamentals of both pneumatic and chemically powered 
actuation, highlighting the need for careful consideration of reaction kinetics. Additionally, this work highlights key 
aspects of smart materials that draw from biological structures and response mechanisms, along with state-of-the-
art techniques for precise pressure modulation. Finally, we chart prospective development pathways and provide a 
future outlook for bio-inspired soft robotics, emphasizing the transformative impact of integrating chemical 
actuation methods. This exploration underlines the quest for further autonomy in soft robotic systems and points 
towards the future opportunities in this exciting and fast-developing field.

Keywords: Soft robotics, chemistry, pneumatic actuation, design, chemical power source, oscillating systems, 
chemical reactions, chemically driven pneumatic actuation
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INTRODUCTION
The evolution of robotics over the past decades has transformed the field and yielded more interactive and 
collaborative systems[1-3]. From agriculture and commodities to science, medicine, and manufacturing 
industries, robotic advancements have become embedded as critical components in diverse sectors of 
human development[4,5]. Historical events such as global pandemics and wars have underscored the 
significance of contingency robotic systems. Contingency systems capable of operating in hazardous 
environments or performing repetitive and collaborative tasks will allow humans to shift their focus to 
capital and knowledge-intensive industries[6,7].

The field of soft robotics draws inspiration from nature to create systems that replicate the adaptability, 
fluidity, and function of biological entities, with performance approaching that of the mimicked natural 
systems[8]. Beyond mimicking biological structures, soft robotics also aims to develop biocompatible systems 
to interact synergically with biological structures. As soft robotics and robotics evolve, we witness more 
autonomous, adaptable, modular, safer, and controllable systems that positively influence and benefit 
society[9]. It is paramount for industry and researchers to take safety and sustainability into consideration 
when designing or conceptualizing new systems[10]. By developing systems that can mimic, interact, and 
preserve biological systems, a complete soft robotics “triad” can be achieved[11] [Figure 1A].

Developing systems capable of interacting with soft biological tissues (e.g., in nature to collect biological 
samples, or interacting with humans, as outlined below) is a major goal in soft robotics. Pneumatic soft 
actuators are a popular choice for developing bio-inspired systems by arranging multiple positive and 
negative pressure-actuated systems to mimic limbs. Hu et al. introduced positive and negative pressure-
driven pneumatic actuators arranged in the shape of a glove system for hand rehabilitation [Figure 1B][12]. 
Recently, non-invasive pneumatic and hydraulic systems for sample collection and exploration in shallow 
waters have been proposed and tested[13-15]. Sinatra et al. developed a soft robotic system with ultra-gentle 
manipulation for interacting with softer species such as jellyfish [Figure 1C][16]. Other systems with the 
ability for gentle manipulation can also interact with other natural specimens such as fruits and vegetables 
using pneumatic grippers. Wang et al. proposed a novel soft robotic gripper comprised of positive pressure-
driven robotic fingers and a negative pressure-driven suction cup for apple harvesting [Figure 1D][17].

However, the realm of soft robotics is not limited to non-human interactions. A key research focus lies in 
developing implantable soft robots designed to address and prevent muscular failure-related issues. These 
medical conditions, including urinary incontinence (UI)[18], muscular dystrophy (MD)[19], sarcopenia, and 
other muscle-related complications[20], arise due to disease, aging, or trauma. There is widespread interest in 
preventing and restoring muscular malfunctioning of damaged muscle tissue and other medical conditions 
related to the mobility and control of smooth or rough muscles[21-24]. Rehabilitation gloves[25], apparel that 
improves mobility[26], and other important topics related to well-being and opportunities to increase life 
quality are of significant interest to soft roboticists[27,28]. By exploring innovative soft robotic solutions, 
researchers aim to improve treatment and rehabilitation options for patients suffering from these 
debilitating conditions.

While several mechanisms drive soft robots, pneumatic soft actuators are among the most popular and 
researched soft actuators; their simple mechanism and compliance make them great candidates for 
achieving high mechanical forces (up to ~140 N)[29] and specific control. Their reliance on changes in 
pressures - particularly gases - to induce deformation underpins their popularity[30]. Among the different 
pressure sources commonly used to power soft actuators (see Section “Power sources”), gas evolution 
reactions (GERs) and gas consumption reactions (GCRs) have a promising role as innovative power sources 
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Figure 1. Soft robotics triad: factors and examples regarding (A) the safe interaction, effective mimicking, and environmental 
preservation for soft robotics; (B) Pneumatic gloves for movement restoration and muscular rehabilitation. Reproduced with 
permission[12]. Copyright 2020, IEEE; and (C) Soft grippers for gentle biological sampling under water. Reproduced with permission[16]. 
Copyright 2019, AAAS; and (D) Soft system for apple harvesting. Reproduced with permission[17]. Copyright 2023, Elsevier. AAAS: 
American Association for the Advancement of Science.

for oscillating and cyclic pneumatic systems[31]. As we believe this chemical-based approach has the potential 
to revolutionize the mechanism of soft pneumatic actuation, this review explores and describes the potential 
of implementing GERs and GCRs for chemo-driven pneumatic actuation. To aid in designing future 
chemo-driven pneumatic actuation systems, we also carefully consider and address some of the safety and 
power requirements of these novel power sources.

PNEUMATIC ACTUATION
Soft pneumatic actuators predominantly exhibit actuation strain and stress comparable to natural 
muscles[32]. Moreover, a considerable number of materials employed in their fabrication possess Young’s 
modulus values within the same range (105-107 Pa) as skeletal muscles[33-36]. Owing to the gas pressure 
driving the actuation, soft pneumatic actuators can accomplish distinct types of movements through 
designed tunability [Figure 2]. By integrating and configuring elastic and inelastic regions within the design, 
pneumatic actuation can achieve linear[37], bending[38], and twisting[39] motions when a pressure difference 
(∆P) is created between the internal pressure of the soft system and the atmospheric pressure (see Table 1 
for examples).

Pneumatic soft actuation has been studied for a range of applications, from human assistance to hostile 
terrain exploration[47-49]. Hashem et al. reported an arrangement of soft pneumatic actuators as a concept for 
mimicking the smooth muscle contractions found, for example, in the digestive system[50]. The arrangement 
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Table 1. Summary of common muscular actions and the average force and power generated in contrast with pump-driven and 
chemically driven soft pneumatic actuators

Typical average force (N)
Action

Male Female
Ref.

Natural muscular actions

Force to stand (one leg) 800a

Overhead seated pull 400* 222*

Overhead standing pull 400* 244*

Straight push seated 227* 96*

Straight push standing 251* 140*

[40]

Contracting quadriceps (no age range) 460 ± 159 [41]

Hand grip left (20-29) 454 ± 94 254 ± 52

Hand grip right (20-29) 486 ± 87 285 ± 64

[42]

Anal sphincter 7 [43]

Power (W)

Plantar flexors extension 630 ± 13

Knee extensors 606 ± 30

Hip extensors 2,037 ±181

[44]

Soft robotics

Force (N)

High-force soft pneumatic actuator 70 [45]

Chemo-driven pneumatic actuator 15 [31]

aBased on the average weight of a person in Europe as 80 kg[46]; *no error given as taken over a range of angles for the subjects and averaged.

of bellows-type pneumatic actuators surrounding the soft tissue emulates the peristaltic contraction 
movements through their linear motions when pressurized. Chen et al. described the development and 
arrangement of soft grippers[51] that mimic the bending and twisting motions of a human wrist, providing 
precision and fine control for tasks such as delicate goods handling.

Geometry is a fundamental part not only of the motion achieved by soft pneumatic systems but also of their 
control and deployment. Origami, kirigami, and kerf patterns have served as inspiration for achieving 
controlled and tunable actuation[52,53]. Jin et al. reported soft pneumatic actuators with programmable shapes 
using various kirigami patterns through computational optimization strategies[54]. Furthermore, Melancon 
et al. developed large-scale multi-stable inflatable structures that lock in place after deployment by 
integrating bistable origami shapes into the associated pneumatic actuators[55]. They also developed modular 
origami structures with different stabilities to achieve controlled and tunable motions[56]. The significant 
advances in the design and control of soft pneumatic systems, as reported by Jin et al.[54] and Melancon 
et al.[56], undeniably showcase the vast potential of these systems [Figure 3]. The ability to achieve motion, 
control, and deployment in these systems, particularly those designed for portability, hinges critically on the 
power source. A major challenge for these and related systems is, therefore, the on-demand availability of 
portable pneumatic power sources. As these soft pneumatic systems become more compact and efficient, 
the need for compatible, lightweight, and efficient power sources becomes increasingly apparent to allow 
wide application of this approach.

Power sources
Despite the numerous advantages of soft pneumatic systems derived from their fluid-driven nature in terms 
of tunability, applications and design, these systems tend to rely on heavy, rigid, and non-portable power 
sources[57-59]. Commonly used conventional power sources include air compressors and pumps. These 
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Figure 2. Schematic of the deformation motions obtained by soft pneumatic actuation. (A) Linear actuation using folded membrane and 
strain-limiting geometries[37]; (B) bending actuation is achieved by the combination of a folded membrane and an inelastic region[38]; (C) 
twisting actuation is obtained by the combination of strain-limiting geometries and origami folding[39].

devices utilize energy from electrical power or fuel combustion to generate the initial mechanical force 
necessary for air compression. This compressed air is then used as the driving fluid for pneumatic systems 
or cylinders.

A further commonly used power source is pressurized cylinders. This source does not rely on external 
energy once it is fully pressurized, and the pressure and flow of the gas are driven by the inner pressure of 
the cylinder and controlled by a pressure regulator. The use of the previously described power sources limits 
the portability and autonomy of pneumatic soft systems, making them completely tethered systems. 
Electronic design advances and new manufacturing processes allow the manufacture of battery-powered 
onboard pumps as the first approach toward more compact and portable soft systems[60,61]. The mechanical 
efficiency of soft pneumatic systems is dramatically reduced when the power sources are considered[62]. The 
weights of soft pneumatic systems range from 0.01 to 1 kg, while gas cylinders and air compressors can 
weigh as high as 50 kg[63-65]. When using air pumps, cylinders or micro-compressors, the final volume and 
weight of the set-up, considering the microcontrollers, batteries, tubing, and related components, 
significantly influences the produced power and energy densities of each system.

Breitman et al. have spearheaded efforts focused on the miniaturization and portability of pneumatic soft 
actuators[66]. Through an in-depth analysis of the internal fluid mechanics of different actuator geometries, 
the relevance of viscosity and compressibility in miniaturized pneumatic channels was reported. Their work 
on actuator miniaturization contributes significantly to studying complex fluid mechanics, thereby 
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Figure 3. Geometry used as a resource for achieving tunable motions and controlled deployment. (A) and (B) portraying the use of 
origami patterns to move and deploy modular structures in a controlled way. Reproduced with permission[56]. Copyright 2022, Wiley 
Materials. Reproduced with permission[55]. Copyright 2021, Springer Nature; (C) shows pneumatic actuators with integrated kirigami 
patterns used to restrict specific regions of the actuator and achieve controlled actuation. Reproduced with permission[54]. Copyright 
2020, Wiley Materials.

influencing the optimized miniaturization of associated power sources. Microcompressors powered by 
batteries are a popular choice owing to various available options, each tailored to the energy and control 
requirements of the specific system[60,67,68]. They work well for low-pressure systems; if larger pressures are 
required, a reconfiguration of multiple micro-compressors can be used, introducing more mass and volume 
to the total of the system. Another promising power source for pneumatic actuation is using soft electro-
pneumatic pumps (EPPs) proposed by Diteesawat et al.[69]. Using the dielectrophoretic liquid zipping (DLZ) 
principle, a small bead of dielectric liquid between the closest point(s) of two electrodes amplifies the 
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electrostatic forces. By arranging two distinct electrodes to ‘zip’ together when an electric charge is applied, 
high contraction is achieved, resulting in an EPP. The EPP, weighing only 5.3 grams, can deliver pressures 
up to 2.34 kPa and volumetric flow rates of 161 mL/min.

While these advances are significant, the high energy density of certain chemical reactions offers an 
untapped opportunity for onboard powering of pneumatic systems; this promising novel approach is 
explored in this review.

CHEMICALLY POWERED PNEUMATIC ACTUATION
Applying chemical reactions, specifically GERs and GCRs, has the potential to revolutionize powering 
pneumatic actuators by improving portability and energy density. Wehner et al. made a significant 
contribution to this approach by using the platinum nanoparticle (PtNP)-catalyzed chemical decomposition 
of hydrogen peroxide (H2O2) into O2 and H2O[70]. PtNPs were integrated using additive manufacturing 
techniques into the first entirely soft autonomous robot. A similar system exploring the decomposition of 
H2O2 into H2O and O2 as a power source was reported by Kim et al. using manganese dioxide (MnO2) as the 
catalyst, further underscoring the potential of chemical reactions as viable power sources[71].

While H2O2-based reactions offer one set of possibilities, it is critical to also consider using negative 
pressures to drive soft pneumatic actuation. Fortunately, as shown in Figure 4, chemical reactions are not 
confined to generating positive pressures; they can also be harnessed for negative pressure applications. 
Given this dual capability, a comprehensive understanding of the chemical energy sources and pressures 
generated is essential to advance this emerging field.

As recently demonstrated[31], neutralization reactions are an untapped source to power pneumatic actuators. 
Owing to the small amount of starting material required, these GERs and GCRs stand out as perfect 
candidates for wearable and potentially even implantable, pneumatic soft actuators.

Prior to detailing the reactions that could be implemented in chemically driven pneumatic actuation, it is 
important to understand the factors influencing the efficiency of both GERs and GCRs such as the kinetics 
and thermodynamics behind the reactions, from both a safety and an actuation optimization point of view.

THEORETICAL CONSIDERATIONS
The molar volume of gas
The molar volume of a gas is dependent on the temperature and pressure of the system. In the case of an 
isothermal reaction, the system temperature will be constant; therefore, the initial conditions of the system 
can be set as room temperature and pressure (RTP) conditions. As an example, the utilized values can be 
defined as:

Temperature (T) = 293K; 
Pressure (P) = 1 atm; 
Molar volume of a gas (VM) = 24 L·mol-1

Ideal gas law
According to the ideal gas law, the pressure of the system will be given, among other parameters, by its 
volume and the number of moles of gas it contains.
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Figure 4. GERs and GCRs as power sources. (A) GERs: a gas is produced by the chemical reaction of one or more reactants, increasing 
pressure when the reaction takes place in a sealed system. When a soft pneumatic actuator is attached to the system, the increase in 
pressure results in the actuation; (B) GCRs: a gas is used as a reactant for reaction with other chemical species, resulting in the decrease 
of pressure when the reaction takes place in a sealed system. When a soft pneumatic actuator is attached to the system, the decrease in 
pressure results in actuation. GERs: Gas evolution reactions; GCRs: gas consumption reactions.

Boyle’s, Gay-Lussac/Charles’s, and Avogadro’s laws collectively inform the behavior of gases under various 
conditions of pressure, volume, and temperature[72-74]. The evolution and consumption of gases can be 
monitored by the change in pressure of a sealed system. By having a constant temperature and volume, the 
pressure change will be directly influenced by the change in the amount of moles (n) of gas resulting from 
the GER and GCR occurring inside the system.

The general gas equation in empirical form is expressed as:

where P = pressure, VS = volume of the system, n = number of moles of gas, R = universal gas constant, 
T = temperature.

By monitoring the system pressure during and after the GER and GCR total completion, the final number 
of moles of gas in the system can be calculated by:
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counteract that disturbance. In the context of GERs and GCRs, this principle is of paramount importance in 
predicting how changes in pressure, volume, temperature, or concentration will affect the equilibrium 
position of the system.

If the concentration, pressure or volume of a substance is increased, the equilibrium will shift towards the 
side that consumes that substance. Conversely, if the concentration, pressure or volume is decreased, the 
equilibrium will shift towards the side that produces that substance. Temperature changes can drastically 
affect the position of equilibrium, especially in endothermic and exothermic reactions. For endothermic 
reactions, an increase in temperature will shift the equilibrium towards the products, favoring the forward 
reaction. Conversely, decreasing the temperature will shift the equilibrium towards the reactants, favoring 
the reverse reaction.

For reactions involving the evolution or consumption of gases, changes in volume or pressure can lead to 
profound shifts in equilibrium:

GER: reactions that produce gas will increase the total number of gaseous moles. An increase in pressure or 
decrease in volume will shift the equilibrium to the side with fewer gas molecules, often favoring the 
reactants.

GCR: reactions that consume gases will decrease the total number of gaseous moles. An increase in pressure 
or decrease in volume can shift the equilibrium to the side consuming the gas, often favoring the products.

While Le Chatelier’s principle provides insight into the thermodynamic aspects of a reaction with 
temperature changes, it is essential to remember that temperature also affects reaction rates (kinetics). A 
reaction may be thermodynamically favored at a particular temperature but kinetically inactive. For a 
simple yet elegant example, see the work on phase changes in alcohols to achieve actuation by Lee et al.[75].

Reaction kinetics
Reaction kinetics is the study of the rates of chemical reactions and the factors that influence these rates. 
The rate of a reaction describes how quickly the concentration of reactants decreases or the concentration of 
products increases over time[76].

For a general chemical reaction:

where A and B are reactants, C and i are products, and a, b, c, and d are their stoichiometric coefficients.

The rate r of the reaction can be expressed as:

where t is time.

Le Chatelier’s states that when a system at equilibrium is subjected to a change, it will shift its position to
Le Chatelier’s principle
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Experimentally, the rate law shows the relationship between the rate of a reaction and the concentrations of 
the reactants and takes the form:

where m and n are called reaction orders and are obtained experimentally and defined using graphical 
methods, distinct from the stoichiometric coefficients.

Integrated rate laws and their implications
For various reaction orders, rate laws, when integrated over time, correlate the reactant concentration to 
time:

where k is the rate constant, t is time, and [A] and [A]0 are reactant concentration and concentration at 
t = 0.

Concept of half-life: half-life (t1/2) denotes the time necessary for the concentration of the reactant to halve 
its initial value. For first-order reactions, it is expressed as:

It is noteworthy that the half-life remains unaffected by the starting concentration.

The Arrhenius equation and activation energy: Activation energy (Ea) signifies the minimum energy 
required to start a chemical reaction[77]. The Arrhenius equation relates the rate constant, temperature, and 
the activation energy:

where A is the pre-exponential factor representing a specific reaction-dependent constant.

In practice, temperature variations will influence the kinetics of the underlying chemical reactions and, 
consequently, the actuation behavior of these soft actuators. However, it is worth noting that the practical 
impact of temperature sensitivity can vary depending on factors such as the choice of reactants and the 
efficiency of the selected chemical reactions. For instance, as recently demonstrated by our group[31], highly 
efficient reactions with low reactant consumption may exhibit minimal sensitivity to temperature changes 
(ΔT = ~2 °C).
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Energetic considerations
As described by Adami et al. for GERs and GCRs, the energy storage can be described in terms of fuel, even 
if not a conventional combustible fuel[78]. To accurately describe a pressure generation method, it is essential 
to consider the quantity of gas that can be generated.

The net flow factor, denoted as fn,v, is obtained based on the fuel’s initial volume Vfuel prior to expansion and 
the resulting volume of gas Vgas after the expansion, as determined by:

The gross flow factor fg,v is obtained by considering the total volume of the system Vsys (instead of the volume 
of the fuel):

To consider the varying densities of the reactants (fuel) and the fuel system, the flow capacity is also 
included. The net flow capacity fn,m is calculated (similar to the determination of the net flow factor), 
employing the mass of the fuel mfuel. The gross flow capacity fg,m is calculated accordingly from the mass of 
the system msys:

The energy density of the reactants ωn,V can then be defined as the energy E per volume of fuel, and the 
energy stored per fuel mass or net specific energy ωn,m can be defined similarly.

According to Adami et al., the pressure-volume work W1,2, of an isothermal process with the ideal gas 
considerations is calculated by[78]:

As the energy leaves the GER or GCR system, the pressure-work value is considered negative. For GCRs, 
the pressure-volume work performed at an initial gas volume V1 is considered to be the effective energy of 
reactants or fuel. The effective energy density is then calculated by:
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Similarly, effective specific energy for a system with solid reactants is calculated by:

Application of these equations will be shown in later sections of this review.

POSITIVE PRESSURE
Positive gauged pressure (∆P > 0) is the most common and accessible type of pressure when pneumatic 
actuation is required. In this context, a few GERs have been investigated as potential energy sources for 
pneumatic actuation in soft robotics. Combustion reactions involving methane and butane have been 
studied for their high theoretical energy densities of 1.11 × 10-2 and 1.08 × 10-2 MJ/kg, respectively[78,79]. 
However, the highly explosive nature of combustion reactions requires using materials that can withstand 
the resulting localized elevated temperatures. These reactions generate elevated temperatures, which can 
range from 340 to 2,800 °C[80,81]. Systems that employ combustion as a power source typically incorporate 
discrete mixing chambers and sparking sources to facilitate the reaction.

The decomposition of H2O2 is another popular studied chemical reaction for pneumatic actuation. Pure 
H2O2 has a specific energy of 2.9 MJ/kg, which reduces to 1.45 MJ/kg for a 50% w/v H2O2 solution[78,82,83]. The 
O2 evolution rate can be modulated by varying the addition rate of H2O2 to the catalyst.

Acid-carbonate reactions have been recently explored as an efficient power source for pneumatic soft 
actuators. Okui et al. evaluated the neutralization reaction of sodium bicarbonate (NaHCO3) and citric acid 
as an inexpensive, nontoxic and ubiquitous alternative to power pneumatic soft actuators[84]. The 
exothermic chemical reaction has a reported conversion efficiency of over 97%, meaning it can produce 
over 23.3 L of CO2 per mol of starting material. Similarly, the GERs of CO2 from acid-carbonate reactions 
were explored using potassium carbonate (K2CO3), sodium carbonate (Na2CO3) or calcium carbonate 
(CaCO3), and adding hydrochloric acid (HCl)[31]. The CO2 evolution rates were controlled by adjusting the 
quantity of acid added to the carbonate-containing reservoir. Control over the reaction speed, and 
consequently pressure rise of GERs, provides an additional level of flexibility in the design and operation of 
chemically driven pneumatic actuation systems.

Other GERs, such as the hydrogen (H2) displacement from HCl by Zn and O2 evolution by water splitting, 
have also been briefly explored as means to power soft pneumatic actuators by harnessing direct gas release 
from the reactants[31] or implementing mechano-electrochemical methods using electrodes[85,86] [Table 2].

GERS
Gas, as one of the four states of matter, is characterized by the random and constant movement of 
molecules. The transition from solid to liquid and ultimately to gas occurs as temperature and pressure 
varies. The selection of appropriate reactants, which can efficiently transition to the gaseous phase and 
produce the desired volume of gas, is essential for the optimal performance of actuators.
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One of the most important characteristics of soft robotics is their suitability for interacting with and 
mimicking biological systems. Therefore, chemical reactions that utilize or produce noxious gases such as 
carbon monoxide (CO), hydrogen sulfide (H2S), ammonia (NH3), or chlorine (Cl2) will be briefly discussed 
but will not be considered as potential sources for soft pneumatic actuation. Fortunately, in contrast to the 
harmful gases previously discussed, various gases such as N2, CO2, or O2 are not harmful to biological 
systems or even play important roles in biological processes such as respiration, photosynthesis, pH 
regulation and ion-mobility processes crucial for cell metabolism[90]. Therefore, there is an extensive list of 
safe and appropriate chemical reactions with potential applications in soft robotics, specifically pneumatic 
soft actuators, as discussed below.

Acid-carbonate reactions
Acid-carbonate reactions are a type of acid-base reaction where the acid reacts with the carbonate to form a 
salt, H2O, and CO2 gas. These reactions occur through:

Most acid-carbonate reactions are exothermic reactions and will release heat, depending on the specific 
reactants and reaction conditions. Metal carbonates are of alkaline nature and some of the most abundant 
molecules on Earth, making them accessible to harvest and use within the soft robotics field[91]. In addition, 
CaCO3 has medical applications in treating and preventing osteoporosis and is also used as an antacid for 
indigestion[92]. Therefore, acid-carbonate reactions are a suitable and safe type of GER to be used within bio-
inspired soft systems [Table 3].

The acid-carbonate reactions would ideally run until the reactants have been consumed or limited by their 
stoichiometry. However, the effectiveness of these reactions depends on several factors that should be 
considered. Among these factors, the most practical and influencing are the acid concentration, the acid 
concentration at the surface of the carbonate, the reactant concentration at the center of the carbonate, and 
the effective diffusivity of the acid within the carbonate. These factors can be partially controlled by the 
spatial distribution of the reactants in the reaction chamber which should simultaneously be designed to 
favor the acidcarbonate chemical reaction. The chamber design should benefit the transport of the reaction 
products (CO2, H2O, and salt) from the solidliquid interface to the bulk fluid in an ideally controlled mass 
transfer step[94,95].

Table 2. GERs previously used in soft robotics

Type Reaction Gas evolved Ref.

Water splitting 2H2O (l) ↔ 2H2 (g) + O2 (g) O2 [85]

Catalyzed decomposition of H2O2 2H2O2 (aq) → O2 (g) + 2H2O (l) O2 [31,70,71,82,83,87]

Methane combustion CH4 (l) + 2O2 (g) → CO2 (g) + 2H2O (l) CO2 [88,89]

Butane combustion 2C4H10 (l) + 13O2 (g) → 8CO2 (g) + 10H2O (l) CO2 [79]

Acid-carbonate C6H8O7 (l) + 3NaHCO3 (s) → Na3C6H5O7 (aq) + 3H2O (l) + 3CO2 (g) CO2 [84]

Acid-carbonate K2CO3 (s) + 2HCl (aq) → 2KCl (aq) + CO2 (g) + H2O (l) CO2 [31]

Acid-carbonate Na2CO3 (s) + 2HCl (aq) → 2NaCl (aq) + CO2 (g) + H2O (l) CO2 [31]

Acid-carbonate CaCO3 (s) + 2HCl (aq) → CaCl (aq) + CO2 (g) + H2O (l) CO2 [31]

Displacement Zn (s) + 2HCl (aq) → ZnCl2 (aq) + H2 (g) H2 [31]

Reversible adsorption (2/x)M + H2     (2/x)MHx H2 [86]

GERs: Gas evolution reactions.
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Table 3. Acid-carbonate-based reactions for gas evolution[93]

Acid-carbonate reactions

CaCO3 (s) + 2HCl (aq) → CaCl2 (aq) + H2O (l) + CO2 (g)

MgCO3 (s) + 2HCl (aq) → MgCl2 (aq) + H2O (l) + CO2 (g)

Na2CO3 (s) + 2HCl (aq) → 2NaCl (aq) + H2O (l) + CO2 (g)

K2CO3 (s) + 2HCl (aq) → 2KCl (aq) + H2O (l) + CO2 (g)

(NH4)2CO3 (s) + 2HCl (aq) → 2NH4Cl (aq) + H2O (l) + CO2 (g)

BaCO3 (s) + 2HCl (aq) → BaCl2 (aq) + H2O (l) + CO2 (g)

ZnCO3 (s) + 2HCl (aq) → ZnCl2 (aq) + H2O (l) + CO2 (g)

CuCO3 (s) + 2HCl (aq) → CuCl2 (aq) + H2O (l) + CO2 (g)

FeCO3 (s) + 2HCl (aq) → FeCl2 (aq) + H2O (l) + CO2 (g)

PbCO3 (s) + 2HCl (aq) → PbCl2 (aq) + H2O (l) + CO2 (g)

Ag2CO3 (s) + 2HCl (aq) → 2AgCl (s) + H2O (l) + CO2 (g)

SrCO3 (s) + 2HCl (aq) → SrCl2 (aq) + H2O (l) + CO2 (g)

Cr2(CO3)3 (s) + 6HCl (aq) → 2CrCl3 (aq) + 3H2O (l) + 3CO2 (g)

Al2(CO3)3 (s) + 6HCl (aq) → 2AlCl3 (aq) + 3H2O (l) + 3CO2 (g)

Li2CO3 (s) + 2HCl (aq) → 2LiCl (aq) + H2O (l) + CO2 (g)

Other GERs
Fermentation reactions are biological processes in which microorganisms break down organic compounds 
to produce gases, such as CO2 and CH4, and other products such as alcohols, acids, and organic acids. These 
reactions have been widely studied and used to produce fuels, such as methane and hydrogen[96], and in 
other industrial applications, such as manufacturing chemicals, biofuels, and food and beverage products. 
Fermentation reactions can be classified into several types, such as alcoholic fermentation, lactic acid 
fermentation, and acetic acid fermentation, each with distinct microorganisms and conditions to produce 
different by-products[97,98]. Studies by Dagle et al. have shown that fermentation reactions can be a cost-
effective and sustainable alternative to fossil fuels and other traditional energy sources[99] [Table 4].

Displacement reactions involve replacing one element in a compound with another. These reactions are 
commonly used to generate gases such as H2 and O2. One common application of displacement reactions is 
in producing H2 gas, which serves as a fuel source in various industries, such as transportation and power 
generation. For example, the reaction between Zn and HCl generates H2 gas and can be used in H2 fuel cells 
to produce electricity[100]. In addition to the reaction between Zn and HCl, another example of displacement 
reactions is in producing O2 gas, which is applied in various industrial and medical settings. For example, 
the reaction between KMnO4 and H2SO4 generates O2 gas and is leveraged in O2 generators in hospitals and 
submarines[101]. Furthermore, displacement reactions are also implemented in generating Cl2 gas, which is 
deployed in water treatment and disinfection. For example, the reaction between HCl and MnO2 generates 
Cl2 gas and is employed in water disinfection systems[102] [Table 5].

Catalyzed decomposition of hydrogen peroxide
H2O2 is a strong oxidizing agent and is especially dangerous at high concentrations. It is crucial to handling 
it with care and use appropriate safety measures when working with it[104]. Despite these risks, H2O2 has a 
wide range of applications due to its ability to decompose into H2O and O2 gas[105,106]. The catalyzed 
decomposition of H2O2 is commonly used in the generation of O2 gas and steam and has been widely 
employed in various fields such as rocket propulsion, water treatment, and medical sterilization.
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Table 4. Fermentation GERs

Fermentation reactions Bacteria

C6H12O6 (l) → 3CH4 (g) + 3CO2 (g) Methanogens

C6H12O6 (l) → CH3(CHOH)COOH (l) + CH3(CH2)OH (l) + CO2 (g) Lactobacillus

C6H12O6 (l) → 2CH3(CH2)OH (l) + 2H2O (l) + 2CO2 (g) Saccharomyces

C12H22O11 (l) + H2O (aq) → C2H5OH (l) + 4CO2 (g) Escherichia coli

C9H18O9 (l) → 2[CH3(CH2)COOH] (l) + CH3COOH (l) + H2O (aq) + CO2 (g) Clostridium

C12H24O12 (l) → CH3(CH2)2COOH (l) + 2(CH3COOH) (l) + 4CO2 (g) + 6H2 (g) Clostridium

GERs: Gas evolution reactions.

Table 5. Displacement reactions for gas evolution[103]

Displacement reactions

Zn (s) + 2HCl (aq) → ZnCl2 (aq) + H2 (g)

2HCl (aq) + MnO2 (s) → MnCl2 (aq) + Cl2 (g) + H2O (l)

Fe (s) + 2H2SO4 (aq) → FeSO4 (aq) + 2H2O (l) + SO2 (g)

2Al (s) + 6H2O (l) → 2Al(OH)3 (s) + 3H2 (g)

Ni (s) + 2HCl (aq) → NiCl2 (aq) + 2H2 (g)

Cu (s) + 4HNO3 (aq) → Cu(NO3)2 (aq) + 2NO2 (g) + 2H2O (l)

2KMnO4 (s) + 3H2SO4 (aq) + 5H2O (l) → K2SO4 (aq) + 2MnSO4 (aq) + 8O2 (g) + 6H2O (l)

The decomposition of H2O2 in nature is typically catalyzed by enzymes such as catalase or peroxidase. These 
enzymes catalyze the breakdown of H2O2 into H2O and O2 gas through:

The reaction, when not catalyzed by enzymes, is highly exothermic and releases substantial amounts of 
energy, making it useful in generating heat and power. Among the most common catalysts used for this 
reaction are MnO2, silver (Ag), platinum (Pt), palladium (Pd), and iron (Fe).

MnO2 is inexpensive, stable, and easy to obtain, making it a popular choice in various H2O2-related fields. 
Ag is an effective catalyst for the H2O2 decomposition and is used in medical and industrial settings owing 
to its high catalytic activity. Pt is another highly active catalyst for the decomposition of H2O2 and is 
frequently employed in industrial contexts. Pd acts as a replacement for platinum in industrial usage. Fe, as 
a cheap and widely available catalyst, sees frequent use in industrial applications and water treatment.

The decomposition of H2O2 is also employed in the field of soft robotics for the actuation of pneumatic 
systems. This reaction serves as a means for inflating and deflating soft actuators, thus enabling motion in 
soft robotic devices. The reaction is safe, as it produces no toxic or harmful by-products. However, the 
storage of H2O2, especially in concentrated form, poses risks to consider; lower concentrations are safer but 
result in decreased reactivity, potentially affecting the gas evolution performance.

Combustion
As mentioned in Section “POSITIVE PRESSURE”, combustion reactions have already been explored in soft 
robotics as a power source for pressure-driven soft actuators. Their working principle, instead of relying on 
the quantity of gas produced by the reaction, is explained by the localized and momentary elevated 
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temperatures and, therefore, pressures reached during the combustion process. These reactions require O2 
to occur, and, as previously mentioned, the amount of gas (O2) consumed is higher than the quantity of gas 
(CO2) produced due to the formation of H2O as a side product [Table 6]. Combustion reactions rely on heat 
rather than gas production to generate pressure, which is the reason that, regardless of their use and 
application in pneumatic soft actuators, these reactions are not considered GERs.

Thermal decomposition
Contrary to combustion reactions, thermal decomposition reactions deliver a gas surplus by the end of the 
reaction. Take, for example, the use of baking powder in cooking. When subjected to elevated temperatures, 
NaHCO3 in the baking powder undergoes decomposition, releasing CO2, which contributes to the cake 
rising. Notably, the decomposition of NaHCO3 commences at around 80 °C, a temperature already 
considered high for biological systems.

Other more industrially focused instances of thermal decomposition reactions, such as the generation of N2 
from sodium azide or the production of O2 from mercury oxide, are known[107]. However, these reactions 
occur at even higher temperatures of 275 and 500 °C, respectively.

One important aspect to highlight is the endothermic nature of thermal decomposition reactions. This 
necessitates considering supplemental energy sources to sustain the reaction. Furthermore, the requirement 
for a contained environment, especially at elevated temperatures, poses challenges in controlling these 
reactions. The need for precise temperature control and containment makes practically applying thermal 
decomposition reactions in certain settings particularly difficult [Table 7].

Vaporization
For lower temperature ranges, the evaporation of solvents such as methanol or ethanol has already been 
utilized in soft pneumatic actuators. Miriyev et al. proposed encapsulating these solvents in gas pockets 
using a polydimethylsiloxane (PDMS)-based silicon elastomer[109]. The inner volume of each pocket or 
chamber increases due to the pressurization caused by the expansion of gases in the system when the 
solvent reaches its boiling point. Although these systems produce effective actuation, no chemical 
interaction occurs with the solvent and a secondary reactant. These vaporization processes are a physical 
phenomenon driven by external stimuli (temperature increases) resulting in a liquid-to-gas phase change, 
and thus not a chemical GER [Figure 5].

Lee et al. have recently reported the development of vaporization-based actuators using thermoelectric 
materials to achieve fast actuation responses via quick heating/cooling cycles[75]. Even though a chemical 
reaction is not involved in vaporization, it can be categorized as a gas evolution process of interest for soft 
robotics. Chemical reactions can offer a higher volume:reactant ratio compared with simple evaporation. 
This means that a smaller quantity of reactants can generate a larger volume of gas, resulting in increased 
actuation capabilities. Additionally, chemical reactions can be controlled and triggered with precision, 
allowing for on-demand actuation and modulation of force without needing external power sources. The 
advantages of one method over the other can vary depending on factors such as the desired actuation force, 
response time, environmental considerations, and available resources.

NEGATIVE PRESSURE
Within the pneumatic actuation field, only a few systems have exploited using negative pressures to achieve 
actuation compared to positive-pressure-driven actuators[39,64,111-113]. Similarly to pneumatic actuators, many 
negative-pressure-driven soft actuators rely on mechanical vacuum pumps to operate successfully[114]. 
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Table 6. Combustion gas evolution[103]

Combustion reactions

Combustion of methane

CH4 (g) + 2O2 (g) → CO2 (g) + 2H2O

Combustion of ethane

2C2H6 (g) + 7O2 (g) → 4CO2 (g) + 6H2O

Combustion of butane

2C4H10 (g) +13O2 (g) → 8CO2 (g) + 10H2O

Combustion of propane

C3H8 (g) + 5O2 (g) → 3CO2 (g) + 4H2O

Table 7. Thermal decomposition reactions for gas evolution[108]

Thermal decomposition reactions

Decomposition of sodium bicarbonate

2NaHCO3 (s) → Na2CO3 (s) + H2O (g) + CO2 (g)

Decomposition of sodium azide

2NaN3 (s) → 2Na (s) + 3N2 (g)

Decomposition of mercury oxide

2HgO (s) → 2Hg (l) + O2 (g)

Figure 5. Vaporization diagram. Showing the migration of molecules from an aqueous phase to a gas phase placed over a heat source 
and the enthalpy of vaporization formula[110].

Although several interesting designs allow full actuation, the vacuum pump requires a large (and heavy) 
power source and, similar to positive pressure systems, a series of connectors, microcontrollers, and 
batteries[115]. Since negative-pressure-driven actuation is limited by the strength of the materials used for the 
fabrication of the actuators, these systems offer a safer operating mechanism than those driven by positive, 
usually high, pressures via an inherent fail-safe mechanism[116]. For the use of GCRs, the safety 
considerations need to be assessed according to the nature of the used reactants.

A notable example of this approach is the combustion of hydrocarbons, where localized elevated 
temperatures are achieved. As a result, the use of appropriate personal protection equipment (including 
high-temperature gloves) is advised. It is worth mentioning that when the temperature is controlled, 
combustion reactions result in a gas molecules deficit, hence its consideration as both GER and GCR. The 
mechanism for the combustion of methane (first reaction, Table 8) requires two molecules of O2 as a 
precursor for every CO2 molecule created, meaning it uses three equivalents of gas in the system (one CH4 
and two O2) for every equivalent of gas produced [Table 8]. As described by Heisser et al., a momentary 
vacuum or negative pressure is generated by the rapid cooling of the system when powering soft pneumatic 
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Table 8. GCRs previously used in soft robotics

Type Reaction Gas consumed Ref.

Methane combustion CH4 (g)+ 2O2 (g) → CO2 (g) + 2H2O (l) O2 [88,89]

Oxidation 4 Fe (s) + 3O2 (g) + 6H2O (l) → 4Fe(OH)3 (s) O2 [31]

Metal hydroxide KOH (s) + CO2 (g) → KHCO3 (aq) CO2 [31]

GCRs: Gas consumption reactions.

actuators using combustion reactions[89]. The acid-base reaction of potassium hydroxide (KOH) with CO2, 
forming KHCO3 and H2O, was the first neutralization reaction successfully employed to produce negative 
pressures for driving pneumatic soft systems[31] [Figure 6]. To the authors’ knowledge, the use of GCRs for 
negative pressure-driven soft pneumatic actuators has only been reported in the aforementioned study. 
According to the reported results, the use of GCRs and their coupling with GERs for the oscillating 
actuation of soft pneumatic systems represent a significant opportunity for the soft robotics community to 
produce precise and compliant systems. These reactions are just a few within a broader category of similar 
chemical processes that will be further discussed in Section “GCRs”.

GCRS
Hydroxides and CO2 reactions
Acid-base (or neutralization) reactions are a fundamental class of chemical reactions that involve 
combining an acid and a base to form a salt and H2O. According to the work of Brønsted and Lowry, acids 
are defined as proton donors and bases as proton acceptors. The reactions of CO2 with various hydroxides 
are typical examples of acid-base neutralization reactions, which have been extensively studied[117]. These 
reactions not only play a significant role in distinct industrial processes but also significantly influence the 
natural environment, such as in the carbonate-bicarbonate system in oceans and lakes. They are also known 
as double displacement reactions or metathesis reactions. In the case of the acid-base neutralization 
reactions involving CO2, the acid and base react to form a salt and H2O, with the salt often in solid form. An 
example is the reaction between CO2 and calcium hydroxide [Ca(OH)2], which forms CaCO3 as a precipitate 
and H2O; this reaction plays a significant role in the formation and dissolution of CaCO3 in natural systems 
such as coral reefs and shells[118,119] [Table 9].

The production of carbonates, such as CaCO3, is an example of a precipitation reaction, i.e., to form an 
insoluble solid product. The overall balanced equation for a typical reaction producing carbonate is 
expressed as:

Oxidation reactions
Oxidation reactions use O2 as a reactant and are classified into two categories depending on whether they 
occur at room temperature or require specific conditions. The reactions that occur at room temperature 
involve, for example, the rusting of Fe, the reaction of Cu and mercury (Hg) with O2, the reaction of tin (Sn) 
with O2, the reaction of lead (Pb) with O2, and the reaction of ethanol (C2H5OH) with O2. For soft robotics, 
oxidation reactions are of interest due to the loss of gas (O2), which can be harnessed to generate negative 
pressures and, therefore, movement or change in shape. The speed of these reactions and the temperatures 
at which they occur are crucial as they directly influence the performance and functionality of soft robotic 
systems[120]. On the other hand, the reactions that require elevated temperatures or specific conditions to 
occur include the reaction of aluminum (Al), iron sulfide (FeS2), MnO2, carbon (C), sulfur dioxide (SO2) 
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Table 9. Hydroxide-based GCRs

CO2 absorption reactions

2NaOH (aq) + CO2 (g) → Na2CO3 (aq) + H2O (l)

Ca(OH)2 (aq) + CO2 (g) → CaCO3 (s) + H2O (l)

Mg(OH)2 (aq) + CO2 (g) → MgCO3 (s) + H2O (l)

Sr(OH)2 (aq) + CO2 (g) → SrCO3 (s) + H2O (l)

Ba(OH)2 (aq) + CO2 (g) → BaCO3 (s) + H2O (l)

2Al(OH)3 (aq) + 3 CO2 (g) → Al2(CO3)3 (s) + 3 H2O (l)

Fe(OH)2 (aq) + CO2 (g) → FeCO3 (s) + H2O (l)

Cu(OH)2 (aq) + CO2 (g) → CuCO3 (s) + H2O (l)

Ni(OH)2 (aq) + CO2 (g) → NiCO3 (s) + H2O (l)

Zn(OH)2 (aq) + CO2 (g) → ZnCO3 (s) + H2O (l)

Pb(OH)2 (aq) + CO2 (g) → PbCO3 (s) + H2O (l)

GCRs: Gas consumption reactions.

with O2, and the reaction of Fe with O2, HNO3 and H2SO4 (see Section “Oxidation reactions that do not occur 
at room temperature”).

Oxidation reactions that occur at room temperature
The reaction between solid Fe, gaseous O2, and H2O results in the formation of solid iron (III) oxide 
hydroxide [Fe(OH)3] at room temperature[121,122]. These reactions can occur at any temperature above 0 °C 
[Table 10].

Oxidation reactions that do not occur at room temperature
As mentioned at the beginning of Section “GCRs”, other oxidation reactions occur at high temperatures or 
specific pressure conditions to be energetically feasible; the listed reactions [Table 10] have been reported to 
occur at temperature ranges from 400 to 1,150 °C[123-125]. However, these high-temperature reactions are not 
typically relevant to the field of bio-inspired soft robotics. This is primarily because the materials used in 
these fields, such as elastomers and hydrogels, are designed to operate under ambient conditions and can 
degrade or lose their functionality under high temperatures[126,127]. Therefore, understanding and controlling 
reactions at such elevated temperatures is not a primary concern in these research areas.

Hydrogenation
Hydrogenation reactions are a type of chemical reaction in which hydrogen is added to double-bond 
containing (i.e., unsaturated) compounds, such as alkenes and alkynes, to convert them into saturated 
compounds. However, hydrogenation can be applied to other types of compounds as well under a range of 
conditions, including nitriles, aromatic compounds, CO2, ketones, nitro compounds, carboxylic acids, and 
esters [Table 11].

These reactions have been widely used in the chemical and food industries to modify the properties of 
various compounds[128]. Hydrogenation reactions can occur at RTP, but the reaction rate is typically low. To 
increase the reaction rate, catalysts are usually added, such as nickel (Ni), Pd or Pt[129,130]. Moreover, the 
reaction conditions, such as temperature, pressure, and H2 to unsaturated compound ratio, can also affect 
the reaction rate and selectivity.

COUPLING POSITIVE AND NEGATIVE PRESSURES
The use of chemical reactions to actuate pneumatic soft actuators is an area that has seen limited research, 
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Table 10. Oxidation-based gas consumption

Oxidation reactions

Room temperature

4 Fe (s) + 3O2 (g) + 6H2O (l) → 4Fe(OH)3 (s)

2Cu (s) + O2 (g) → 2CuO (s)

2Hg (l) + O2 (g) → 2HgO (s)

2Sn (s) + O2 (g) → 2SnO2 (s)

2Pb (s) + O2 (g) → 2PbO (s)

4Al (s) + 3O2 (g) → 2Al2O3 (s)

High temperatures

2Fe (s) + 3O2 (g) → 2FeO (s)

2FeS2 (s) + 7O2 (g) → 2FeO (s) + 4SO2 (g)

2MnO2 (s) + O2 (g) → 2MnO3 (s)

2C (s) + O2 (g) → 2CO (g)

2SO2 (g) + O2 (g) → 2SO3 (g)

Table 11. Hydrogenation GCRs

Hydrogenation reactions

Unsaturated fatty acids

C17H33COOH (l) + H2 (g) → C17H35COOH (l)

Ketones

R2C−O + H2 (g) → R2CH−OH

Nitro compounds

RNO2 + 3H2 (g) → RNH2 + 2H2O (l)

Carboxylic acids

C17H35COOH (l) + H2 (g) → C17H35CHO (l) + H2O (l)

Esters

RCOOR’ + H2 (g) → RCH2OH +R′OH

Haber-Bosch

N2 (g) + 3H2 (g) → 2NH3 (g)

GCRs: Gas consumption reactions.

even more so for integrating both positive and negative pressure sources within soft systems. Fatahillah 
et al. demonstrated that soft grippers simultaneously combining positive and negative pressure-driven 
actuation can exert larger forces at lower bending angles than actuators driven by positive pressure only[115]. 
These actuators consist of two independent channels, enabling them to combine contraction and extension 
forces through positive and negative pressures, respectively. Such soft grippers have shown the capability to 
securely hold objects weighing up to 4 kg with a negative pressure of only 200 mbar and a positive pressure 
of 600 mbar. This review has identified specific chemical reactions, as detailed in Section 3, which can meet 
the power and pressure requirements. Integrating these chemical reactions into an actuation system offers a 
promising avenue for fulfilling system requirements for soft grippers.

Interestingly, if GERs and GCRs are operated in separate reaction systems, they can be simultaneously 
incorporated into systems similar to that reported by Fatahillah et al. [Figure 7A][115]. Additionally, 
arranging these reactions serially within the same pneumatic system and pairing of a GCR and GER that 
reciprocally utilize the same gas as a product and reactant will facilitate oscillating motion via positive-
negative pressure coupling[31].
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Figure 6. GCRs as a power source for negative pressure-driven actuation. (A) The reaction rate of the GCR of KOH with CO2; (B) 
showing the effect of the GCR on the soft actuator when �P < 0. Reproduced with permission[31], Copyright 2023, Mary Ann Liebert Inc. 
GCRs: Gas consumption reactions.

Towards continuous actuation: coupling GER and GCRs
Chemical and safety considerations
As chemical reactions produce new products, the potential energy available in the resulting materials and 
systems can present safety challenges. This energy can be rapidly released as heat or pressure, determined by 
the kinetics and thermodynamics of the reaction[131], underlining the need for detailed knowledge prior to 
application. The main experimental dangers arise from mischarging reactants, insufficient studies of the 
thermo-chemistry, inadequate pressure or temperature control, unsuitable agitation, under-rated or 
inadequate reaction chambers and containers, and human factors[132]. Once the risks have been identified 
and assessed, the system involving the assessed chemical reaction must incorporate design measures to 
prevent those dangers.
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Figure 7. Coupling of GER and GCR as power sources. (A) Parallel configuration: Both GER and GCR are activated or opened 
simultaneously, resulting in actuation from the rest state with the GERs and GCRs valve closed state, as described in ref[115]; (B) Serial 
configuration: the GER and GCR work independently and are alternated to achieve actuation in different directions. In this configuration, 
one power source is activated or open while the other remains inactive or closed, and the roles are reversed to change the direction of 
actuation. GER: Gas evolution reaction; GCR: gas consumption reaction.

There are a number of challenges when considering using chemical reactions for continuous actuation. The 
most significant factor is the precursor-product link between the GERs and GCRs. Further essential aspects 
to consider include response times (the time it takes for the actuator to react and perform the intended 
action) and compatibility (the materials used to fabricate the actuator must be compatible with the solvents 
or species used or generated in the reactions). Even if there is a precursor–product link between chemical 
reactions, by-products can interfere, compete, and dangerously interact with any involved species. For 
example, the reaction of chlorine and ammonia produces nitrogen chloride and hydrogen chloride. This 
reaction can produce various other by-products, including phosgene, a highly toxic gas. Phosgene can react 
with the desired products, nitrogen chloride and hydrogen chloride, to produce other toxic gases. This can 
lead to serious health problems or even death. Therefore, it is paramount to conduct a complete risk 
assessment of the intended reactions. Depending on the chemicals involved, they would exhibit different 
mechanisms of toxicity in humans. For instance, reactions where metal ions are produced can include side 
products such as highly reactive radicals, which are harmful and toxic to human cells[133]. The chemical 
reactions highlighted in this review for energy generation in soft actuators were meticulously chosen for 
their safety and non-toxic nature, except where specifically indicated otherwise. Among these reactions are 
water splitting, acid-carbonate reactions, combustion, thermal decomposition, displacement, vaporization, 
and fermentation, all used for producing GERs. In contrast, GCRs employ methods such as hydroxide-
based reactions, oxygenation, and hydrogenation. For most of these reactions, both the reactants and 
products are considered safe and non-toxic. For example, the water splitting reaction, while primarily a 
safety concern due to its explosive potential, produces non-toxic gases. However, appropriate safety 
measures must be strictly adhered to when utilizing this reaction.

One of the greatest concerns when designing a suitable container for a GER is thermal runaway. In the 
worst case, an exothermic reaction is uncontrollably accelerated by the increase in temperature produced by 
the ongoing reaction. The accelerated reaction and increase in temperature can create secondary 
decomposition reactions with higher energy and are significantly more hazardous than the original reaction. 
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Having a good understanding of the kinetics, the rate of the reactions, the potential for side reactions, and 
the stability of the products attained is essential for a successful and safe coupling of GERs and GCRs. Most 
importantly, the safety considerations to mitigate the potential hazards of GERs, including pressure build-
up, fire and explosion, and toxic gas release, must be carefully discussed and assessed before designing and 
carrying out safe GERs and GCRs[134-136].

Once risk assessments are completed, and any safety concerns and potential hazardous outcomes of a GER 
and GCR coupling have been addressed, additional variables such as temperature, volume, pressure and 
stability of the reactants and products should be considered. As these variables are connected by the ideal 
gas law, the size and construction of the materials in contact with the reagents and products are 
fundamental factors that require a careful design process. By carefully selecting the volume of the container 
and the amount of reactant used, it is possible to create conditions where the GERs and GCRs can proceed 
efficiently without being significantly influenced by temperature changes. A good example of this size 
consideration can be found in our previous work[31] where a GER and GCR were successfully combined. The 
latter was set by carefully studying the selected chemical reaction and tailoring the reaction chamber to it, 
which allowed the use of low amounts of reactants to develop a safe and appropriate coupling of GERs and 
GCRs without noticeable temperature variation.

Design and control
Working with matter in its separate phases simultaneously is common in the chemistry field. The 
combination of and reaction between solids, liquids and gases are determined by surface interactions at two 
or more phases. Since applying chemical reactions in soft pneumatic systems relies on the interaction of 
gases with other reactants, a good understanding of such interactions is needed[11]. The primary concern to 
create coupled GERs-GCRs is to enable gas interaction (formed from the GER) with GCR reactants. To this 
end, the focus is set on detailing actuator designs that could allow this type of interaction in various ways. 
Since most of the produced pneumatic soft systems focus on the actuator design, the design of the power 
sources is neglected (apart from miniaturization). When having two separate but compatible power sources, 
e.g., GER and GCR, their design and correct coupling is crucial to obtaining the maximum and most 
effective actuation response. As shown in Figure 7, the configuration, isolation, and integration of both GER 
and GCR in a unified system offer initial variations and options to satisfy varied actuation mechanisms.

A parallel and isolated configuration [Figure 7] is desired when the actuation and functioning of a system 
rely upon the simultaneous application of positive and negative pressures. As detailed by Fatahllilah et al., 
positive-negative pressure (PNP) actuators contain two separate pneumatic actuators; when actuated 
simultaneously, via pressure increase or decrease, they achieve a larger bending force at lower bending 
angles[115]. Most of the soft pneumatic systems reported in literature work with individual pressure stimuli 
(positive or negative) comprising single or interconnected fluid chambers. For this type of individual 
pressure actuation, a serial and interconnected configuration of GER and GCR is desired. Both PNP and 
individual pressure actuation systems, with the appropriate configuration, would need a cascade 
arrangement of chemical reactions to allow an oscillating and cyclic performance akin to those found in 
electronically or electromechanically controlled systems.

Typically, actuators driven by chemical reactions exhibit varying response times and actuation forces, 
primarily influenced by the cycles of gas evolution and consumption reactions[31,84,88,137]. Compared to 
conventional pneumatic systems, these chemical reaction-driven actuators may demonstrate slower 
response times and reduced force generation. For example, standard pneumatic systems, comprising a 
compressed air source, connection lines, flow-controlling valves, and regulated air receivers, can reduce rise 
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times to the millisecond range[138] and offer tunable force output depending on the intended application[139]. 
In contrast, the response time of chemically powered pneumatic actuators is typically within the seconds to 
minutes range[31,70], and the force generated directly depends on the amount of gas produced and the 
internal volume of the soft actuators. It is important to note that while chemical reaction-driven actuators 
might not match the rapid response or high-force generation of conventional systems, they offer unique 
advantages in terms of design flexibility, miniaturization, and suitability for specific environments or 
applications.

In investigations where the coupling of GER and GCR has been evaluated for soft actuators[31], the reaction 
chambers comprise over 95% of the total system volume (including the actuator). The volume of reactants, 
for both GER and GCR coupling, required only about 5% of the total volume of the system. As mentioned 
earlier, surface interactions are crucial for the effective completion of the GER and GCR involved, with 
interfacial areas of the systems and gas solubility playing a crucial role on the reaction kinetics for this type 
of reaction[140-142]. Challenges, including small gas-liquid interface areas and poor gas miscibility, can be 
addressed by reducing the volume allocated for the power source and carefully designing reaction chambers 
with larger surface area for optimal chemical interactions. Furthermore, scaling these systems to larger 
robots introduces additional challenges, such as maintaining effective reaction kinetics at increased scales. 
Such challenges will necessitate innovative design and material selection approaches for larger-scale soft 
actuators.

To achieve independence from electrical systems, the soft and compliant properties of materials used in soft 
system fabrication have been leveraged to create integrated and non-electric fluidic circuits with logic-
operating principles similar to those found in electronic circuits[143,144]. Analogous to electronic circuits, a 
fluidic “switch” can be considered a basic form of control, allowing, or blocking the signal propagation. 
Microfluidic boards composed of check-valves and switch-valves, which are autoregulated by geometric 
design, can function as charging capacitors as pressure builds up and bends the soft deformable layer 
between microchannels[145] [Figure 8A and B]. In this manner, system pressure dynamically autoregulates 
the soft controller, allowing for frequent oscillations under specific conditions. Constraints in channel and 
component sizes are the main limitations for optimal performance in these systems. Soft valves have been 
developed by exploiting the instability of elastomeric membranes, enabling them to switch, in a binary 
fashion, between pressures.

By selectively adjusting the printing or manufacturing density of materials, it becomes possible to create 
reaction chambers within the actuator, provided the reactants are safe for interaction[146]. In addition to 
reaction chambers, a flexible power chamber, such as an expanding bladder made from non-extensible 
materials, can also be employed. However, it is important to ensure that the volume change under pressure 
does not influence the robot actions[147]. Developing suitable containment systems is crucial for enhancing 
efficiency and reducing the number of reactants needed per reaction. Furthermore, miniaturization and 
portability of power sources are essential for creating optimal, efficient, and fully autonomous soft systems.

The pursuit of autonomous soft systems promotes developing systems capable of executing routines with 
minimal human intervention. Depending on the desired routine, power input in soft pneumatic systems is 
typically regulated by the passive operation of electrical switches, regulators, or valves that periodically 
supply the actuators.

Wehner et al. demonstrated control methods with GERs[70]. Oscillating pneumatic actuation has been 
achieved by transporting H2O2 through microfluidic control boards into catalytic chambers, generating O2 
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Figure 8. Fluidic-based soft control systems (A) A check-valve and switch-valve in both the open and closed state based on differential 
pressure and their corresponding component state symbol along with the analog diode and p-channel JFET transistor components. 
Reproduced with permission[145]. Copyright 2010, Springer Nature; (B) Showing the different components for actuation, control and 
sensing to create autonomous crawling systems combining bistable valves, soft logic gates and soft pneumatic actuators[143,144]. 
Reproduced with permission[143]. Copyright 2021, AAAS. JFET: Junction field-effect transistor; AAAS: American Association for the 
Advancement of Science.
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principle based on fluid pressure seems compatible and suitable for achieving oscillating and cycling 
actuation via the coupling of GER and GCR [Figure 9A]. The working principle of bistable flexible 
membranes in rubber “poppers” allows these valves to harvest power only while transitioning between open 
and closed configurations [Figure 9B and C]. Carefully selecting and tuning the mechanical properties of 
membranes ensure that the switch remains in its selected position without any applied force and will not 
switch its configuration until the necessary force to “snap” the membrane back is achieved.

CONCLUSIONS AND OUTLOOK
Efficiency and control
One of the most attractive features of chemo-driven pneumatic actuation is that it can be used to create 
autonomous actuators, with the long-term goal of finding self-sustaining (oscillating) coupled chemical 
reactions to negate the requirements for an external power source[70]. This makes chemo-driven pneumatic 
actuation well-suited for applications where power is limited or unavailable. However, achieving fully 
oscillating pneumatic systems presents a significant challenge due to thermodynamic constraints[150]. For 
instance, certain fully oscillating chemical reactions, such as the Belousov-Zhabotinsky (BZ) reaction, are 
known but are very slow and complex[151]. Additionally, advantages and disadvantages of chemical-based 
pneumatic actuation are generally related to the type of GER and GCR used, such as the actuation speed 
and the achievable amplitude motion. It is noteworthy that other factors related to the materials selection 
for fabricating the embedded reaction chambers and pneumatic actuators must be considered to avoid 
issues related to material fatigue or degradation.

As this review focuses on using various chemical reactions for actuation in soft robotic systems, it is 
important to highlight that the “ideal” chemical reaction highly depends on the specific application. In 
medical applications, biocompatibility and precision are paramount, necessitating safe and controllable 
reactions[152]. For underwater robotics, reactions efficient in low-oxygen environments are preferred[153]. In 
industrial settings, factors such as speed, scalability, and cost take precedence[154]. This diversity in 
requirements underscores the need for tailored approaches in selecting chemical reactions for soft robotics, 
a theme that has recurred throughout our discussions on GERs and GCRs.

Looking ahead, there is an unexplored opportunity in exploiting bio-based reactions such as enzyme-based 
reactions for chemo-driven pneumatic actuation[155]. The use of bio-catalysts could potentially offer more 
sustainable and environmentally friendly alternatives while maintaining high efficiency at low temperatures 
and pressures.

Furthermore, chemo-driven pneumatic actuation can also benefit from external agents or specific 
conditions to boost its efficiency and control. In this context, materials science has made significant strides 
by developing diverse materials that can include embedded or encapsulated catalysts for powering reactions 
that drive actuation[156-158]. These materials not only serve as catalysts to augment GERs and GCRs, thereby 
reducing the energy requirements for reactions to proceed, but also offer gas selectivity and affinity for 
superior control over production and consumption ratios.

However, as mentioned, one of the primary challenges when coupling GERs and GCRs lies in exerting 
control over gas capture and storage[10]. To address this issue, a range of smart materials showing promising 
potential for integration into chemo-driven pneumatic soft actuators has been introduced[159]. One 
promising strategy for controlling gas capture and storage involves employing porous materials[160-163]. 
Characterized by an intricate network of interconnected pores, these materials can be tailored to selectively 
trap and release gases. This intrinsic and hierarchical porosity positions them as highly effective candidates 

and pressurizing the system. Although not yet proven with GER-GCR coupling systems, the working

for gas storage and separation.
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Figure 9. Fluidic-based control technologies in soft systems. (A) The “Octobot” featuring a series of microfluidic channels to manage the 
pneumatic actuation of the octopus-like tentacles. Reproduced with permission[70]. Copyright 2016, Springer Nature; (B) A jumping 
actuator inspired by rubber popper toys, combining gas pressurization and the snapping mechanism of a bistable membrane for 
actuation. Reproduced with permission[148]. Copyright 2020, Science Robotics; (C) Bistable valve utilizing the snapping mechanism of a 
bistable membrane to regulate fluid flow. Reproduced with permission[149]. Copyright 2018, Science Robotics.

While porous materials and liquids are indeed smart materials solutions based on innovative chemistry, 
their ability to convert into gas or remove gas brings them into the realm of chemical approaches. For 
instance, hierarchical pressure-driven systems could potentially be developed if a material absorbs and 
desorbs gases within a pressurized system[164,165]. Giri et al. have successfully explored the concept of porous 
liquids[166], where gas molecules are trapped within the molecular cages of a liquid, introducing volumetric 
vacancies to the liquid. This approach could be extended to designing hierarchically porous systems that 
utilize both porous materials and porous liquids to enhance gas capture, storage and on-demand release[167].

A simple approach to obtain the efficiency of the presented chemical reactions is by yielding the products 
obtained. This strategy will depend not only on the reactants but also on the physical characteristics or 
architectures of the reaction chambers, the distribution of the reactants, and the mass transfer of the 
products to further favor the reaction process (see Section “THEORETICAL CONSIDERATIONS”). In a 
more general fashion, the efficiency could be expressed as the ratio of the output energy to the supplied (or 
input) energy. This concept would lead to calculations of the energy demands (energy yields) of the 
reactions conducted under the different conditions and architectures of the reactor or reaction 
chamber[134,168].
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Developing more efficient and controllable chemo-driven pneumatic soft actuation systems and materials 
could revolutionize soft robotics and have a wide range of practical applications in fields such as biomedical 
engineering and advanced manufacturing.

Design and manufacturing
By exploring and integrating various geometries and material densities, the rapidly growing field of soft 
pneumatic actuation has unlocked a broad spectrum of achievable motions (i.e., linear, bending, and 
twisting)[169]. Nevertheless, it is paramount to start considering integrating power sources within the design 
of chemo-driven pneumatic actuators. Bio-inspiration is already widely accepted and exploited for soft 
robotics and has been a primary source of inspiration for motion and material design[35,170]. For example, 
chambers for storing chemicals can be found in many biological systems[171,172]. It is envisaged that a 
significant step toward achieving the autonomy of chemo-driven pneumatic systems can be made by 
assigning a dedicated compartment for storing reactants and gases.

Safety
As mentioned in Section “Towards continuous actuation: coupling GER and GCRs”, the safety of new 
systems that generate pressure or vacuums needs to be carefully understood to inform the design of future 
systems. Many of the systems suggested can be controlled via feed ratios, and the products and reactants are 
selected to be biocompatible in many cases. Although future work will pave the way for introducing 
physical barriers (such as flow gates) to prevent uncontrolled chemical reactions, consideration has to be 
given to the chemical degradation of the materials used over time, embedded reaction chambers and their 
degradation and the ability of the system to vent in a safe fashion when potentially overpressurized.

Sustainability
The concerns regarding sustainability come under two areas. Firstly, it is crucial for future systems to focus 
on regenerating starting materials for both GERs and GCRs. Achieving sustainability may involve creating 
closed loops by coupling these reactions, although the number of effective cycles will be inherently limited. 
An innovative approach is to generate starting materials from biological sources, such as harnessing gas 
production from gut bacteria or leveraging natural pH variations within biological systems, to maintain the 
viability of these meticulously designed systems. Secondly, when considering the response of the actuator to 
these reactions, it is essential to address both the degradation of the systems and the potential loss of 
functionality. To ensure compatibility with biological systems, comprehensive testing over repeated cycles is 
necessary, particularly focusing on resolving issues related to the reservoirs and power sources of actuators. 
To address the concern of gas loss through material fatigue (and degradation) with prolonged use, recent 
advances in self-healing materials offer a promising solution. For instance, a study by Terryn et al. 
demonstrates the development of self-healing elastomers, thereby mitigating the risk of gas leakage and 
prolonging the functional lifespan of actuators[173]. Incorporating such self-healing systems within the 
makeup of actuators could significantly enhance the sustainability and durability of soft pneumatic 
actuators, especially in long-term application settings.

In conclusion, we believe that significant opportunities exist, in carefully chosen application areas, to 
expand the use of chemo-pneumatic soft actuation. Although this field is in its early stages of development, 
noteworthy pathways already exist related to a) the application of bio-inspired design and b) the rules for 
safe and long-term sustainable solutions to soft actuation. The hope is that this overview of the field, the 
detailed discussion of all aspects of efficiency and control, design, safety, and sustainability, as shown in the 
roadmap presented in Figure 10, will lead to innovation in the research, development and application of 
chemo-driven pneumatic actuators.
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Figure 10. Roadmap towards chemo-driven pneumatic actuation. Crucial areas of consideration for the development of reliable, 
sustainable, and compliant chemo-driven pneumatic soft actuators. Dashed arrows represent the feedback loops present on each of the 
crucial areas to allow for the optimization of chemo-driven actuators.
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