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Abstract
ZSM-11 zeolite is a promising catalyst for methanol to olefins (MTO); however, its low catalytic stability limits its 
realistic application. Herein, various ZSM-11 zeolites with different particle sizes were synthesized. The particle size 
of ZSM-11 has a significant influence on the formation and evolution of reaction intermediates, thereby determining 
its catalytic performance in MTO. Notably, S-ZSM-11, with a smaller particle size (approximately 400 nm), showed 
remarkable propene selectivity and catalytic lifetime as high as 42.6% and 243 h, respectively. These values were 
significantly higher than those observed with larger particle sizes (> 1 µm). The results obtained from gas 
chromatograph (GC)-MS, 13C MAS NMR, and various isotope-labeling experiments indicated that reduction of 
crystal size, accompanied by the generation of more intracrystalline mesopores, inhibits the aromatic 
intermediates formation and decreases the aromatic-based cycle contribution. In contrast, the alkene-based cycle 
is relatively enhanced, resulting in higher yields of propene and C3+ alkenes. Moreover, ethene is mainly produced 
via the paring route due to the limitation of alkyl side-chain growth of methylbenzenes.Highlights: various ZSM-11 
zeolites with different particle sizes were synthesized by the hydrothermal method. S-ZSM-11, with a particle size 
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of approximately 400 nm, shows superior catalytic performance in methanol to olefins. The propene selectivity 
and catalytic lifetime reach as high as 42.6% and 243 h, respectively. Decrease of crystal size inhibits the 
formation of aromatic species and decreases the aromatic-based cycle contribution. Ethene is mainly produced via 
the paring route.

Keywords: Methanol conversion, light olefins, ZSM-11, particle size, isotope-labeling experiment, reaction route

INTRODUCTION
Conversion of methanol to light olefins (MTO) is an important nonpetroleum route to produce light 
olefins, as methanol can be easily produced from abundant carbon resources, such as coal, natural gas, and 
biomass[1,2,3]. The MTO process has been studied for nearly five decades, and it has been widely 
acknowledged that the formation of light olefins is simultaneously controlled by the hydrocarbon pool 
(HCP) mechanism, including the alkene-based cycle and arene-based cycle[4-8]. The alkene-based cycle 
mainly produces propene and long-chain olefins (C3+ alkenes) through successive methylations and 
cracking or elimination reaction, whereas ethene and part of propene are mainly obtained by the arene (or 
aromatic)-based cycle with polymethylbenzenes (polyMBs) as the dominant HCP species[4,9]. This indicates 
that enhancing the contribution of an alkene-based cycle can significantly promote the formation of 
propene. An efficient method to achieve this is by decreasing the acidic content and strength of zeolite and 
regulating the distribution of acid sites. These measures can weaken the hydrogen transfer and 
aromatization reactions, thereby inhibiting the generation of aromatic intermediates and lowering the 
contribution of the aromatic-based cycle[10,11]. According to the detailed formation pathway, the aromatic-
based cycle can be divided into a side-chain route and a paring route, in which the paring route involves the 
benzene ring contraction/expansion that incorporates the carbon atoms of the aromatic ring into olefin 
products, while only the alkyl side-chain of aromatics is directly linked to the formed olefins in the side-
chain route[12-18].

Acidic zeolite, with its unique pore structure, tunable acidic properties, and high thermal/hydrothermal 
stability, is considered to be the most important catalyst in MTO. Although SAPO-34 and ZSM-5 zeolites 
have been widely used in industry[19-22], they still have the problems of poor catalytic stability or low target 
product selectivity, indicating that the development of high-performance MTO catalysts is not outdated. 
Recently, ZSM-11 (MEL) zeolite has attracted much attention in MTO due to its specific channel structure. 
This zeolite has two straight channels with a pore size of 5.3 × 5.4 Å that interacted, forming two 
intersectional cavities (9 Å and 11.7 Å). The crystalline features and the size of the pore channel of ZSM-11 
are similar to those of ZSM-5, which possesses one straight channel (5.3 Å × 5.6 Å) and one sinusoidal 
channel (5.1 Å × 5.5 Å)[23]. However, some recent investigations indicate that ZSM-11 zeolite [especially the 
sample with a high Si/Al ratio (> 100)] exhibits significantly lower catalytic stability than ZSM-5[24-26], which 
limits its realistic application in MTO. Consequently, improving the performance of ZSM-11 zeolite in 
MTO, especially the catalytic lifetime, has become the focus of research.

In our previous works, we found that the catalytic activity and product selectivity of ZSM-11 in MTO can be 
regulated by tuning acid site distribution in the framework through introducing proper content of boron 
(B)[24,27], alkali metal ions[28], or halogen anions[29] in the synthesis gel. Nevertheless, the long-term stability of 
the ZSM-11 sample with a high Si/Al ratio is still not satisfactory. Another more effective way to increase 
lifetime is to reduce particle size or introduce more mesoporous. Shen et al. demonstrated that more coke 
species are generated in MTO over zeolite with larger crystal sizes[23]. This is because a longer diffusion path 
provides sufficient residence time for aromatic species to react with Brønsted acid sites (BAS), leading to 
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serious carbon deposition. Similar phenomenons were also observed over Beta[30], SAPO-34[31], SSZ-13[32], 
ZSM-22[33], and ZSM-58[34] zeolites. These results indicate that regulation of the particle size will be a simple 
but effective method to improve the catalytic stability of ZSM-11; however, relevant studies are rarely 
reported. Moreover, the effect of particle size on the formation and structural evolution of active 
intermediates and the catalytic pathway remains unclear, which also limits the development of high-
performance ZSM-11 zeolite catalysts.

In this work, various ZSM-11 zeolites with different particle sizes but highly comparable crystallinity, 
chemical composition, and acidic properties were synthesized. The catalytic performance and reaction route 
of these samples in MTO were thoroughly investigated by GC-MS, 13C MAS NMR, transient 12C/13C 
methanol switching experiment, and a co-feeding experiment involving 13C-methanol with 12C-propene, 
12C-n-butene, or 12C-benzene.

EXPERIMENTAL
ZSM-11 zeolites preparation
ZSM-11 zeolites with different particle sizes were synthesized by the hydrothermal method by changing the 
water content during synthesis. Silica sol (JN-40), sodium aluminate (NaAlO2), and sodium hydroxide 
(NaOH) were used as a silicon source, aluminum source, and alkaline source, respectively. 
Tetrabutylammonium hydroxide (TBAOH) was performed as the organic template. During synthesis, 39.52 
g or 19.36 g of H2O, 7.27 g of TBAOH, 0.05 g of NaAlO2, 0.31 g of NaOH, and 9.68 g of JN-40 were added 
sequentially, and the mixture was then stirred for 24 h at 30 ºC. The molar composition of resulted gel 
mixture was 9 TBAOH: 0.3214 Al2O3: 90 SiO2: n H2O: 12.897 NaOH (n = 3600 and 2160, respectively). The 
synthesis gel was sealed into a Teflon-lined stainless steel autoclave and synthesized at 85 °C for 48 h, then 
at 120 °C for 48 h, and finally at 165 °C for 20 h under rotation of 15 rpm. The prepared samples were 
labeled as L-ZSM-11 (n = 3600) and M-ZSM-11 (n = 2160), respectively.

To further reduce the crystal size, nanosized ZSM-11 zeolite was prepared through a recrystallization 
method. First, the parent ZSM-11 zeolite was synthesized with the molar composition of 9 TBAOH: 0.225 
Al2O3: 90 SiO2: 1065 H2O: 12.897 NaOH, following the same crystallization procedure as described above. 
Afterward, 1 g of calcined parent zeolite was suspended in 10 mL TBAOH solution (0.7 M) and then heated 
at 165 °C for 72 h under static conditions. The obtained sample was defined as S-ZSM-11.

The as-synthesized Na-type ZSM-11 was transformed into the H-type ZSM-11 through ion exchange with 
NH4NO3 solution. The resulting sample was then dried at 120 ºC overnight and calcinated at 560 ºC for 10 
h.

Catalyst characterization
The framework topological structure of zeolites was identified by X-ray diffraction (XRD) measured on a 
Rigaku MiniFlex II desktop X-ray diffractometer at 30 kV, 15 mA using Cu Kα radiation. The average 
particle size and morphology of zeolites were characterized by field emission scanning electron microscopy 
(FE-SEM) images (JEOL JSM-7001F, Japan). The transmission electron microscopy (TEM) images of 
samples were measured on a field emission transmission electron microscope using JEM 2100-F, JEOL, 
Japan.

The textural properties were evaluated by N2 sorption on a Micrometritics TriStar II 3020 analyzer. Before 
testing at-196 °C, the catalysts were first degassed at 300 °C under high vacuum for 10 h. The surface area 
and micropore volume were obtained using the Brunauer-Emmett-Teller (BET) and the t-Plot method, 
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respectively. The isotherms of o-xylene vapor adsorption were collected on a BELSORP-max high-precision 
adsorption analyzer at room temperature. The sample pretreatment program was the same as that of N2 
sorption.

Inductively coupled plasma optical emission spectrometry (ICP-OES, icap6300) was performed to 
determine the Si/Al ratio of zeolites. NH3 temperature-programmed desorption (NH3-TPD) was conducted 
on a Micrometritics AutoChem II 2920 analyzer. A U-type quartz tube was loaded with 100 mg of catalyst 
and pretreated at 550 °C under He flow (30 mL/min) for 2 h. After that, the sample was cooled to 120 °C 
and allowed to saturated adsorption for NH3. After thorough flushing with He, the NH3-TPD profile was 
recorded by increasing the temperature from 120 to 550 °C at a rate of 10 °C min-1. The thermal 
conductivity detector (TCD) was employed to monitor the desorbed NH3.

The pyridine adsorption infrared spectra (Py-IR, Bruker Tensor 27) were used to evaluate the Brønsted and 
Lewis acid content of zeolites. First, the zeolite thin wafer was pretreated for 2 h at 400 °C under 10-2 Pa. 
Then, it was cooled to 35 °C to allow saturated adsorption of pyridine vapor for 30 min. Subsequently, 
physical-adsorbed pyridine was removed at 150 °C. The concentrations of BAS and Lewis acid sites (LAS) 
(C, µmol g-1) were calculated using the following equation by integrating the area of peaks at 1540 and 1450 
cm-1, respectively[35]:

C = (A/ε) × (S/m) × 1000

where A is the area of peak at 1540 or 1450 cm-1, S is the wafer surface area (1.33 cm2), ε is the molar 
extinction coefficient (1.13 and 1.28 cm µmol-1 for BAS and LAS, respectively), and m is the mass of sample 
(mg). The amounts of BAS on the external surface of ZSM-11 were determined from the FT-IR spectra of 
2,6-ditert-butylpyridine (dTBPy) adsorption at 150 °C[36,37]. The detailed experimental procedure is similar to 
that of Py-IR.

The thermogravimetric analysis (TGA) carried out on a Rigaku Thermo Plus Evo TG 8120 
thermogravimetric analyzer was used to evaluate the content of deposited coke species. In this analysis, 10 
mg of the spent catalyst was heated under air flow from 30 to 800 °C at a rate of 5 °C min-1.

The 27Al and 13C solid-state magic angle spinning (MAS) NMR spectra were performed on a 600 MHz 
Bruker Avance spectrometer (magnetic field of 14.1 T). The chemical shift for 27Al MAS NMR and 13C MAS 
NMR spectra were referenced to 1 M Al(NO3)3 solution and hexa-methylbenzene(MB), respectively[38]. The 
deconvolution of 27Al MAS NMR ranging from 45 to 65 ppm was conducted using the Gauss-Lorentz 
equation[24,28].

Catalytic evaluation
The methanol conversion experiment was conducted at 450 °C and 1 atm in a fixed-bed reactor made of 
stainless steel, as depicted in Supplementary Figure 1. Prior to the experiment, 500 mg of catalyst (20-40 
mesh) was first pretreated under N2 flow at 550 °C for 4 h. Methanol was then pumped into the reactor 
using an infusion pump, with N2 (40 mL min-1) serving as the diluting gas. The methanol weight-hourly 
space velocity (WHSV) was set at 3.8 h-1. The Agilent 7890A GC equipped with one TCD and two flame 
ionization detectors (FID) detectors was used for online analysis of the gaseous products. Another two 
Agilent 7890A GCs (involving one FID and one TCD) were used for offline analysis of liquid and oil 
products. The conversion of methanol (x) and the selectivity of various products (si) were calculated by the 
equations:

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5830-SupplementaryMaterials.pdf
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X = (nmethanol,in-nmethanol,out)/nmethanol,in × 100%

si = niki/∑niki×100%

where ni and ki are the molar number and carbon atom number of product i in the effluents, respectively. 
Dimethyl ether (DME) is regarded as unconverted methanol during the reaction.

Isotopic labeling experiments
Transient 12C/13C methanol switching experiment
The transient 12C/13C methanol switch experiments were conducted in a pulse reactor, as described in 
Ref[39]. The 12C-methanol was first introduced into the reactor under Ar (22 mL min-1) flow using a methanol 
saturator (kept at 0 °C). After a reaction time of 30 min, the 12C-methanol feed was stopped, and three 13C 
methanol pulses were successively introduced into the reactor.

Co-feeding of 13C-methanol and 12C-propene or 12C-butene
The n-propanol and n-butanol were used as the precursor of propene and butene, as they could be 
instantaneously dehydrated to propene and butene on acidic zeolite[6,40]. The 13C-methanol and 12C-n-
propanol were simultaneously fed into the reactor by flowing Ar through the methanol and propanol 
saturators, which were kept at 0 °C and 28 °C, respectively. This results in the partial pressures of methanol 
and n-propanol being 3.9 and 3.3 kPa, respectively. The flow of Ar carrier gas was 24 mL/min for methanol 
and 5.3 mL/min for n-propanol to make the methanol:n-propanol molar ratios of 5.4.

For the co-feeding of 13C-methanol and 12C-n-butanol, the methanol and 12C-n-butanol saturators were kept 
at 0 °C and 28 °C, respectively. This results in the partial pressures of methanol and n-butanol being 3.9 and 
1.1 kPa, respectively. The flow of Ar carrier gas was 24 mL/min for methanol and 16.4 mL/min for n-
butanol to make the methanol:n-butanol molar ratios of 5.4.

Co-feeding of 13C-methanol and 12C-benzene
The procedure for the co-feeding experiment involving 13C-methanol and 12C-benzene is similar to that of 
co-feeding of 13C-methanol and 12C-propene or 12C-butene, except that the 13C-methanol and 12C-benzene 
saturators were kept at 28 °C, and corresponding partial pressures of methanol and benzene were 19.7 and 
14.5 kPa, respectively. The flow of Ar carrier gas was 24 mL/min for methanol and 6 or 3 mL/min for 
benzene to make the methanol:benzene molar ratios of 5.4 or 10.8.

Analyses of the effluents and retained species in zeolite catalyst
The gaseous products in the effluents and the retained species on catalysts were analyzed by Shimadzu 
QP2010 GC-MS. The detailed method for calculating the isotopic distribution can refer to the work of Price 
et al[41].

RESULTS AND DISCUSSION
Crystal structure and texture property of various ZSM-11 zeolites
Figure 1A displays the XRD patterns of various prepared ZSM-11 zeolites. It is found that all samples
exhibit a pure MEL phase, with typical characteristic peaks at 2θ of 7.92º, 8.78º, 23.14º, and 23.98º. The
morphology and particle size of these ZSM-11 zeolites are evaluated by SEM and TEM images [Figure 1D-I]. 
These three samples have spherical structures, with the average particle size decreasing in the order of L-
ZSM-11 (2.2 µm) > M-ZSM-11 (0.8 µm) > S-ZSM-11 (0.4 µm). Moreover, abundant intracrystalline
mesopores are observed on S-ZSM-11 due to the aggregation of small nanosized spherical-like crystals
[Figure 1I].
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Figure 1. XRD patterns (A); N2 adsorption-desorption isotherms and pore size distribution curves (B); o-xylene vapor adsorption 
isotherms (C); and SEM images (D-F) (insert: particle size distribution) and TEM images (G-I) of L-ZSM-11 (D, G); M-ZSM-11 (E, H); 
and S-ZSM-11 (F, I) zeolites.

According to the results of N2 adsorption-desorption isotherms, an obvious hysteresis loop in the region of 
0.7 < P/P0 < 1.0, corresponding to the capillary condensation in the intracrystal mesopores, is verified in 
S-ZSM-11, while it gradually attenuates in M-ZSM-11 and L-ZSM-11 [Figure 1B]. The curves of pore size 
distributions further confirm the existence of mesopores (c.a. 30 nm) in S-ZSM-11. As a result, S-ZSM-11 
exhibits a larger external surface area (155 m2 g−1) and mesoporous volume (0.31 cm3 g−1) than those of M-
ZSM-11 (102 m2 g−1 and 0.17 cm3 g−1) and L-ZSM-11 (87 m2 g−1 and 0.10 cm3 g−1), despite that they have 
similar micropore surface area and micropore volume [Table 1]. The o-xylene vapor adsorption isotherms 
give additional evidence that the uptake rate and adsorption capacity of o-xylene are considerably increased 
over S-ZSM-11 due to its smaller crystallite size and greater presence of intracrystalline mesopores 
[Figure 1C].

Elemental composition, distribution, and acidity of various ZSM-11 zeolites
All the prepared ZSM-11 zeolites exhibit a similar Si/Al molar ratio, as indicated by ICP-OES
Meanwhile, most aluminum species are incorporated into the zeolite framework, as observed by an intense 
peak at around 45-65 ppm, but a very weak one at ~0 ppm in 27Al MAS NMR, which are corresponded to 
the framework aluminum and extra-framework aluminum, respectively [Supplementary Figure 2]. 
Deconvolution of 27Al MAS NMR indicates that the peaks at 48.5, 55.6, and 58.1 ppm can be assigned to the 
aluminum atoms in the T3, T4 + T6, and T5 lattice sites of the intersection cavity, while that at 53.2 ppm is 
resulted from the siting of aluminum atoms in the T1 + T2 + T7 lattice sites of the straight channel [
Figure 2A][24,28,30,42,43]. It can be found that no evident variation in Al atoms distribution is observed over L-
ZSM-11, M-ZSM-11, and S-ZSM-11 [Supplementary Table 1].

The acidic properties of ZSM-11 samples were analyzed by NH3-TPD, Py-IR, and dTBPy-IR, as depicted in 
Figure 2B, C, and D. In the NH3-TPD profiles, the peaks at around 175 °C and 350°C are ascribed to the 
interaction of ammonia molecule with weak acid and strong acid sites, respectively. It can be found that all 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5830-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5830-SupplementaryMaterials.pdf
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Table 1. Relative crystallinity and textural properties of various ZSM-11 zeolites

Surface area 
(m2 g-1) Pore volume (cm3 g-1)

Zeolite Crystal size (μm) Crystallinity (%)
total micro ext total micro meso

L-ZSM-11 2.2 100 335 248 87 0.21 0.11 0.10

M-ZSM-11 0.8 94 343 241 102 0.28 0.11 0.17

S-ZSM-11 0.4 98 416 261 155 0.43 0.12 0.31

The average crystal size was estimated by counting about 200 zeolite crystal particles in the SEM image. The relative crystallinity of various
ZSM-11 zeolites was obtained by comparing their peak intensity for the (5 0 2) and (3 0 3) facets at 23.0° and 23.8° in the XRD patterns to that of 
L-ZSM-11. The surface area and pore volume were determined on the basis of nitrogen physisorption data by using the BET method and t-Plot 
method, respectively.

Figure 2. Deconvoluted 27Al MAS NMR spectra (A); NH3-TPD profiles (B); Py-IR spectra (C); and dTBPy-IR spectra (D) of L-ZSM-11, 
M-ZSM-11, and S-ZSM-11 zeolites.

samples have similar acid content and acid strength [Figure 2B and Table 2][44]. This is similar to the result 
of Py-IR. The peaks at 1540 and 1450 cm-1 are assigned to the desorption of pyridine from BAS and LAS, 
respectively. As expected, the difference in Brønsted acid and Lewis acid content of L-ZSM-11, M-ZSM-11, 
and S-ZSM-11 is not significant [Figure 2C and Table 2]. In addition, the results of dTBPy-IR indicate that 
all three samples have comparable external Brønsted acid content [Figure 2D and Table 2].

Catalytic results of various ZSM-11 zeolites in MTO
The catalytic performance of various ZSM-11 zeolites in methanol conversion was evaluated [Figure 3A-C 
and Supplementary Table 2]. A much higher catalytic lifetime and larger turnover numbers (TONs) are 
observed on S-ZSM-11 (243 h and 3.5 × 105) than on M-ZSM-11 (134 h and 1.9 × 105) and L-ZSM-11 (74 h 
and 1.1 × 105). As expected, S-ZSM-11 has the lowest coking rate, with the slowest rate of micropore surface 
area and micropore volume reduction [Figure 3D-F]. Besides the catalytic stability, L-ZSM-11, M-ZSM-11, 
and S-ZSM-11 are also different in the product distribution. S-ZSM-11 exhibits higher selectivity to propene 
(42.6%) and long-chain alkenes (C4

= + C5
=) (39.2%), but lower to ethene (4.9%), aromatics (2.7%), and C1-C5 

alkanes (6.5%), in comparison with L-ZSM-11 (39.2% to propene, 36.6% to long-chain alkenes (C4
= + C5

=), 
7.8% to ethene, 7.6% to C1-C5 alkanes, and 5.1% to aromatics), while the product selectivities of M-ZSM-11 
are in the middle of S-ZSM-11 and L-ZSM-11. Moreover, S-ZSM-11 gives higher values of 2-MB/E (1.6) 
and (P−E)/E (7.7) than those of M-ZSM-11 (1.3 and 6.5) and L-ZSM-11 (0.8 and 4.1), indicating that the 
alkene-based cycle is more significant in methanol conversion on the S-ZSM-11 than on the other two 
zeolites.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5830-SupplementaryMaterials.pdf
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Table 2. Elemental composition and acidic properties of various ZSM-11 zeolites

Acidity by NH3-TPD 
(μmol g-1)

Acidity by Py-IR or dTBPy-IR 
(μmol g-1)Zeolites Si/Al by ICP

weak strong total Brønsted Lewis total external Brønsted

L-ZSM-11 101 49 115 164 86 27 113 19

M-ZSM-11 105 51 107 158 83 26 109 25

S-ZSM-11 111 45 117 162 84 34 118 28

The Si/Al ratio was measured by ICP-OES; The quantities of weak and strong acid sites were determined by NH3-TPD. The quantities of Brønsted 
and Lewis acid sites were acquired by Py-IR, according to the amounts of pyridine (Py) desorbed at 150 °C. The quantities of external Brønsted 
acid were tested by dTBPy-IR, according to the amounts of dTBPy desorbed at 150 °C.

Figure 3. Methanol conversion and product selectivity with the time on stream for MTO over L-ZSM-11 (A); M-ZSM-11 (B); and S-ZSM-
11 (C) zeolites; the coke content (D); micropore surface area (E); and micropore volume (F) as a function of time on stream in MTO 
over these three samples. The reactions were performed at 0.1 MPa, 450 °C, and methanol WHSV of 3.8 h-1.

To better eliminate the effects of secondary reactions, the catalytic test for MTO was also carried out at sub-
complete conversion of methanol (approximately 18%), and the results were given in Figure 4A and 
Supplementary Table 3. Even under these conditions, S-ZSM-11 maintains higher selectivity toward 
propene (41.2%) and C4-C6 aliphatics (51.6%) while exhibiting lower selectivity toward ethene (4.8%) and 
aromatics (0.7%) compared to those of M-ZSM-11 (8.2% to ethene, 2% to aromatics, 39.7% to propene, and 
47.9% to C4-C6 aliphatics) and L-ZSM-11 (11.6% to ethene, 3.7 % to aromatics, 37.4% to propene, and 45.3% 
to C4-C6 aliphatics). Meanwhile, S-ZSM-11 also demonstrates higher values of 2MB/E and (P–E)/E (2.5 and 
7.6, respectively) in comparison to M-ZSM-11 (1.3 and 3.8) and L-ZSM-11 (0.9 and 2.2). Therefore, the 
variation in product distribution confirms that decrease of the particle size of ZSM-11 zeolite can 
significantly enhance the alkene-based cycle in MTO[30,45].

Another point should be noticed that different methanol weight hours space velocity (WHSVmethanol ) was 
used for MTO over these three samples to achieve the iso-conversion of methanol. Considering the 
WHSVmethanol of L-ZSM-11(19.0 h-1) is much higher than that of M-ZSM-11 (9.5 h-1) and S-ZSM-11(8.7 h-1), 
L-ZSM-11 should have higher initial activity for methanol conversion than the other two samples. This is 
verified by performing MTO reaction at the same WHSVmethanol (9.5 h-1). As shown in Figure 4B, the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5830-SupplementaryMaterials.pdf
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Figure 4. (A) Product selectivity and 2-MB/E ratio over various ZSM-11 zeolites under iso-conversion of methanol (about 18 %) at 350 
°C and 30 min time on stream; (B) Variation of methanol conversion rate with the reaction temperature over various ZSM-11 zeolites at 
the same WHSVmethanol.

methanol conversion rate is faster on L-ZSM-11 than on M-ZSM-11 and S-ZSM-11. One possible reason is 
that smaller particle sizes and the higher presence of intracrystalline mesopores of S-ZSM-11 shorten the 
diffusion path and decrease the interaction of methanol with BAS, thereby producing fewer active HCP 
intermediates during the initial methanol conversion process.

Influence of crystal size of ZSM-11 on the formation and evolution of initial HCP species in MTO
To evaluate the effect of the crystal size of ZSM-11 on the type and structure of initial HCP species, GC-MS, 
13C MAS NMR, and 12C/13C methanol switching experiments were carried out.

After continuous flowing of 13CH3OH at 350 °C for varying reaction times, the catalyst was cooled by liquid 
nitrogen and then measured by 13C MAS NMR. As shown in Figure 5A and 5B, the strong signal peaks at 50 
and 59.5 ppm represent the physisorbed methanol and DME[46], while peaks at 10-30 ppm and around 130 
ppm are assigned to the carbon atoms of methyl group and benzene ring of polyMBs, respectively[47,48]. 
Regardless of the reaction time, L-ZSM-11 gives a stronger intensity of peaks characteristic of polyMBs than 
that of M-ZSM-11 and S-ZSM-11.

This result is further supported by the GC-MS analysis. After reaction for 1 min at 300 °C, certain amounts 
of polyMBs are detected on GC-MS, and their content is gradually increased in the order of S-ZSM-11 < M-
ZSM-11 < L-ZSM-11 [Figure 5C]. Notably, higher polyMBs (e.g. tetra-, penta-, and hexa-MBs) accounts for 
56% of the total carbonaceous species over L-ZSM-11, followed by M-ZSM-11 (43%) and S-ZSM-11 (28%). 
Such a phenomenon becomes more evident when the reaction is conducted at 350 °C for 1 min 
[Figure 5D]; a significantly higher amount of polyMBs is observed on L-ZSM-11 than on M-ZSM-11 and S-
ZSM-11. Undoubtedly, increase of the crystal size of ZSM-11 zeolite promotes the formation and growth of 
aromatic-based intermediates (e.g., polyMBs). However, S-ZSM-11, with a smaller particle size and greater 
intracrystalline mesoporosity, shows the lowest rate of polyMB formation, thus weakening the methanol 
initial conversion capacity and prolonging the reaction induction period, as observed in Figure 4B.

The reactivity of polyMBs in MTO was further evaluated by a 12C/13C methanol switching experiment over 
L-ZSM-11 and S-ZSM-11. After 12CH3OH conversion at 350 °C for 30 min, the 12C-methanol was stopped, 
and three 13C-methanol pulses were then successively injected with an interval of 3 min. As shown in 
Figure 5E and 5F, L-ZSM-11 exhibits higher total 13C-labeled content of tetra-, penta-, and hexa-MBs, but 
lower to xylene and triMBs, in comparison with those of S-ZSM-11. This gives another piece of evidence 
that decrease of the crystal size of ZSM-11 inhibits the formation of higher polyMBs, in good agreement 
with the observation of 13C MAS NMR and GC-MS.
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Figure 5. 13C MAS NMR spectrum of the retained organic intermediates in three ZSM-11 zeolites after continuous flow 13CH3OH 
reaction at 350 °C for 1 min (A) and 30 min (B); respectively. GC-MS chromatograms of retained organic species obtained from the 
reaction of 13C methanol for 1 min at 300 °C (C) and 350 °C (D); respectively; the inserted histogram represents the relative proportion 
of higher and lower polyMBs estimated from corresponding GC-MS chromatograms. Total 13C-labeled content (%) in the retained 
aromatics (xylene to hexaMB) for MTO over L-ZSM-11 (E) and S-ZSM-11 (F) at 350 °C.

Influence of crystal size of ZSM-11 on the dual cycle mechanism
Co-feeding of 13C-methanol and 12C-propene or n-butene
The influence of the crystal size of ZSM-11 on the aromatic-based cycle and alkene-based cycle was 
investigated through the co-feeding of 13C-labeled methanol with 12C-propene or 12C-butene. After reaction 
at 350 ºC for 120 s, the total 13C-labeled content and the isotopomer distributions of light olefins and 
polyMBs are depicted in Figures 6 and 7. For co-feeding 13C-methanol and 12C-propene, the total 13C-labeled 
content of ethene and polyMBs is about 12.5% and 4.8–13.5% higher on L-ZSM-11 than on S-ZSM-11, 
whereas the difference in the total 13C-labeled content of C3+ olefins is below 3% over these two samples. 
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Figure 6. The total 13C content and isotopic labeling patterns in the effluent olefins (A, B) and retained polyMBs (C, D) after co-reacting 
13C-methanol with 12C-propene (molar ratio 5.4:1) for 120 s over L-ZSM-11 and S-ZSM-11 at 350 °C.

Figure 7. The total 13C content and isotopic labeling patterns in the effluent olefins (A, B) and retained polyMBs (C, D) after co-reacting 
13C-methanol with 12C-n-butene (molar ratio 5.4:1) for 120 s over L-ZSM-11 and S-ZSM-11 at 350 °C.

When the 12C-propene is replaced by 12C-n-butene, a similar result is observed; L-ZSM-11 shows higher 
total 13C-labeled content of ethene (79.9%) and polyMBs (81.2-91.1%) than that of S-ZSM-11 (67.5% for 
ethene and 66.3–84.8% for polyMBs); however, both of the two samples give highly comparable total 13C-
labeled content of C3+ olefins. These results indicate that decrease of the crystal size of ZSM-11 zeolite 
suppresses the aromatic-based cycle, leading to decrease of the generation of ethene and polyMBs.

Co-feeding of 13C-methanol and 12C-benzene
Since the aromatic-based cycle involves both the side-chain route and paring route [Scheme 1], the 
influence of the crystal size of ZSM-11 on these two routes was analyzed by co-feeding of 13C-methanol with 
12C-benzene at 350 °C for different times. According to the isotopomer distributions, ethene containing two 
13C atoms (13CH2=13CH2) should be produced through the side-chain route, while ethene with two 12C (12CH2

=12CH2) or one 12C and one 13C atom (12CH2=13CH2) is mainly derived from the paring route. This is because 
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Scheme 1. The proposed dual cycle mechanism for light olefins formation over ZSM-11 zeolite in MTO.

only the paring route, involving the benzene ring contraction/expansion, can incorporate the carbon atoms 
from the aromatic ring into the olefin product.

As depicted in Figure 8A, with the increase of reaction time from 30 s to 120 s, the proportion of 13CH2=13

CH2 gradually elevates from 28% to 52%, while that of 12CH2=12CH2 and 12CH2=13CH2 is decreased over L-
ZSM-11, indicating the enhancement of side-chain route. However, for S-ZSM-11 [Figure 8B], even after a 
reaction time of 120 s, 12CH2=12CH2 and 12CH2=13CH2 still account for 64% of ethene. This suggests that the 
paring route is dominant in ethene formation over S-ZSM-11. When the molar ratio of 13C-methanol:12C-
benzene is increased to 10.8, similar results are obtained; the paring route contributes more to the ethene 
formation on S-ZSM-11 than on L-ZSM-11 [Supplementary Figure 3]. This phenomenon can be 
rationalized by that reduction of crystal size, accompanied by the increase in intracrystalline mesoporous 
structure, which decreases the interaction of methanol with polyMBs intermediates, thereby inhibiting the 
alkyl side-chain growth. As a result, the side-chain route is relatively inhibited over S-ZSM-11. Notably, 
according to the isotope distribution of 13C atoms in polyMBs [Figure 8C], the majority of the polyMBs are 
generated from alkylation of 13C-methanol with 12C-benzene, whereas the contribution from sole 13C 
methanol is not evident within such short times (≤ 120 s)[9,49].

According to the above results, it can be concluded that reduction of crystal size of ZSM-11 (e.g., S-ZSM-11) 
and increasing intracrystalline mesoporosity effectively inhibits the aromatic intermediates formation and 
decreases the aromatic-based cycle contribution. In contrast, the alkene-based cycle is enhanced, resulting 
in higher yields of propene and C4+ alkenes, along with an extended catalytic lifetime. In addition, S-ZSM-11 
shows a higher diffusion ability that weakens the interaction of methanol with polyMBs intermediates. As a 
result, the growth of the alkyl side-chain on the benzene ring is inhibited, leading to a decreased 
contribution of the side-chain route in methanol conversion. Notably, reduction of the crystal size of ZSM-

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5830-SupplementaryMaterials.pdf
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Figure 8. Distribution of 13C atoms in ethene over L-ZSM-11 (A) and S-ZSM-11 (B) and isotopic labeling patterns of retained polyMBs 
(C) (xylene to hexaMB) after different reaction times of co-reacting 13C-methanol with 12C-benzene (molar ratio 5.4:1) at 350 °C.

11 to below 150 nm may further improve the catalytic lifetime[23]; however, this needs more complex 
synthesis conditions. In addition, excessively small crystal sizes can make the solid-liquid separation process 
more challenging. Therefore, considering the synthesis cost and reaction performance, we tentatively 
suggest that the crystal size in the range of 150-400 nm may be more suitable for the practical application of 
ZSM-11 zeolite in MTO.

CONCLUSIONS
Various ZSM-11 zeolites with different crystal sizes but highly comparable crystallinity, chemical 
composition, and acidic properties were prepared. The influence of the crystal size of ZSM-11 on the 
catalytic performance and reaction route in MTO was systemically investigated by GC-MS, 13C MAS NMR, 
and various isotope-labeling experiments. The results indicated that S-ZSM-11, with a smaller crystal size 
and more intracrystalline mesoporosity, exhibited superior catalytic performance in MTO, with the propene 
selectivity and catalytic lifetime reaching 42.6% and 243 h, respectively. Meanwhile, reduction of crystal size 
of ZSM-11 considerably inhibited the formation of aromatic intermediates (especially higher polyMBs) and 
suppressed the aromatic-based cycle. In contrast, the alkene-based cycle was relatively enhanced, which 
generated more propene and C3+ alkenes. Moreover, the co-feeding experiment involving isotope-labeling 13

C-methanol and 12C-benzene confirmed that ethene is mainly produced through the paring route, as the 
alkyl side-chain growth of aromatic intermediates suffers from limitation over S-ZSM-11. This work not 
only provides an efficient method to significantly improve the catalytic performance of ZSM-11 zeolite in 
MTO but also unravels the influence of the crystal size of zeolite on the formation and structural evolution 
of active intermediates and the catalytic route.
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