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The liver is an essential organ for nutrient and drug metabolism - possessing the remarkable 
ability to sense environmental and metabolic stimuli and provide an optimally adaptive 
response. Early growth response 1 (Egr1), an immediate early transcriptional factor which 
acts as a coordinator of the complex response to stress, is induced during liver injury and 
controls the expression of a wide range of genes involved in metabolism, cell proliferation, and 
inflammation. In support of an important role of Egr1 in liver injury and repair, deficiency of 
Egr1 delays liver regeneration process. The known upstream regulators of Egr1 include, but 
are not limited to, growth factors (e.g. transforming growth factor β1, platelet-derived growth 
factor, epidermal growth factor, hepatocyte growth factor), nuclear receptors (e.g. hepatocyte 
nuclear factor 4α, small heterodimer partner, peroxisome proliferator-activated receptor-γ), 
and other transcription factors (e.g. Sp1, E2F transcription factor 1). Research efforts using 
various animal models such as fatty liver, liver injury, and liver fibrosis contribute greatly 
to the elucidation of Egr1 function in the liver. Hepatocellular carcinoma (HCC) represents 
the second leading cause of cancer mortality worldwide due to the heterogeneity and the 
late stage at which cancer is generally diagnosed. Recent studies highlight the involvement 
of Egr1 in HCC development. The purpose of this review is to summarize current studies 
pertaining to the role of Egr1 in liver metabolism and liver diseases including liver cancer.
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INTRODUCTION

Early growth response 1 (Egr1) is an immediate early, 
zinc finger transcription factor that was first identified 
based upon its induction by nerve growth factor (NGF) 
in rat PC12 cells, which is why it was initially known as 
nerve growth factor inducible protein A (NGFI-A)[1]. Egr1 
is one of four family members that also include Egr2, 
Egr3, and Egr4[2]. Also known as Krox24, zif268, and 
TIS8, Egr1 encodes a protein of 80-82 kDa that consists 
of three zinc finger DNA-binding motifs [Figure 1]. Thus, 
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it is not elusive that zinc metal is crucial to the 
function of Egr1, such as nuclear localization [3]. 
Specifically, two of three zinc fingers interact with 
the nuclear localization sequence to promote Egr1 
nuclear localization[3]. Depletion of the zinc metal 
reduces Egr1 promoter activity[4]. Transcriptional co-
repressors NGFI-A binding protein 1 and 2 (NAB1 
and NAB2, respectively) repress Egr1, Egr2, and Egr3 
transcriptional activity by binding to the respective 
repressor domains upstream of the zinc finger motifs 
and could potentially co-regulate Egr1 target genes[5-7].
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Egr1 expression can be induced by growth factors, 
ionizing radiation[8], and insulin signaling[9]. Upstream 
regulators of Egr1 include transforming growth factor 
β1 (TGF-β1) [10], mitogen-activated kinase kinase-1, 
hepatocyte nuclear factor 4α, and E2F transcription 
factor 1 (E2F1); whereas small heterodimer partner 
and peroxisome proliferator-activated receptor-γ 
agonist are negative regulators of Egr1[11-14]. Egr1 
recognizes a highly conserved G-C-rich consensus 
nucleotide sequences (GCGGGGGCG)[15] and either 
activates or represses the transcription of genes in a 
zinc-dependent manner. The presence of this specific 
Egr1 response element on its target gene promoter 
could thus be a good indication of direct transcriptional 
regulation by Egr1. 

The expression of Egr1 has been described in liver, 
heart, brain, spleen, skeletal muscle, kidney, ovary 
and prostate[16]. Accordingly, important roles of Egr1 
has been implicated in various cell types and pertain 
to embryogenesis[17], cell growth and differentiation[18], 
neurogenesis [19], adipogenesis [20], apoptosis [21], 
fibrogenesis[22], and tumorigenesis[23]. Egr1 is one of 
the predominantly expressed EGR family members 
in the liver and liver-derived cell lines[24,25]. Extensive 
research has been conducted in animal models to 
elucidate Egr1 function in various liver diseases. In 
this review article, we begin by discussing the role of 
Egr1 in liver metabolism, and then focus on Egr1 in 
pathological states of liver with a particular interest 
in hepatocellular carcinoma (HCC). An unbiased 
discussion of what additional studies are necessary to 
aid in developing possible therapeutic interventions is 
also included.

EGR1 AND LIVER METABOLISM

Liver is a major site for synthesis, metabolism, storage 
and redistribution of glucose and lipids [26]. In the 
postprandial state, insulin is secreted from pancreatic 
beta cells in response to a high blood-sugar level. 
Circulating glucose is taken up by the hepatocyte 
via the glucose transporter type 2 - regulated by 
the serine/threonine kinase PI3K/AKT pathway in 
response to insulin signaling - and is phosphorylated 
to glucose-6-phosphate by liver glucokinase (Gck). 
Glucose-6-phosphate is either further processed 
for fuel via glycolysis, for nucleotide biosynthesis via 
pentose phosphate pathway or utilized for glycogen 
synthesis via glycogen synthase, depending on the 
systemic metabolic state. In addition, insulin further 
promotes de novo lipogenesis of fatty acids from 
acetyl-CoA or malonyl-CoA. In the fasting state, 
glucagon is secreted by the alpha cells of pancreas in 
response to a low blood-sugar level. Upon glucagon 
stimulation, the liver synthesizes glucose de novo 
as well as catabolizes glycogen to release glucose 
for other organs to use for energy. During this time, 
lipolysis in adipose tissues is increased and results 
in the production of free fatty acids, which is taken up 
by hepatocytes. Depending on the metabolic state, 
fatty acids are then either processed to triglycerides 
(TAGs) for storage or rapidly metabolized for the 
generation of ketone bodies that are, in part, oxidized 
by hepatic mitochondria. In the event of excess lipid 
accumulation in hepatocytes that exceeds 5% of liver 
weight, whether due to over nutrition or hyperglycemia, 
non-alcoholic fatty liver disease can develop. Thus, 
hepatic lipids can either derive from endogenous 

Figure 1: Schematic representation of EGR1 protein structure and post-translational modifications. EGR1 is a 543-amino acid (aa) 
protein consisting of three Cysteine 2-Histidine 2 (C2H2) zinc fingers DNA-binding domains, approximately 23 aa each. Zinc fingers 2 and 
3 (amino acids 361-419) interact with amino acids 315-330 for EGR1 nuclear localization. The T309 and S350 sites are phosphorylated 
by protein kinase B (PKB, also known as AKT); whereas, S378, T391, and T526 sites are phosphorylated by casein kinase II. EGR1 
protein can be SUMOylated by SUMO1 at K272. Transcriptional co-repressors NGFI-A binding protein 1and 2 (NAB1 and NAB2, 
respectively) inhibit Egr1 transcriptional activity by binding to the repressor domain (RD). EGR1: early growth response 1
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lipogenesis (de novo lipogenesis), which may account 
for up to 30% of TAGs in steatotic livers[27], or derive 
from the active uptake of circulating fatty acids into the 
hepatocytes. 

Glucose and insulin regulate Egr1 expression 
The contributions of glucose and insulin to Egr1 
expression have been extensively studied in a variety 
of tissues and cell types. One earlier study showed that 
glucose rapidly and transiently induces Egr1 mRNA 
in SV40-transformed murine pancreatic beta-cell line 
MIN6 cells that is accompanied with an induction 
of insulin[28]. This study also demonstrated that the 
induction of Egr1 by glucose was unique to beta cells 
since glucose couldn’t induce Egr1 expression in NIH-
3T3 fibroblasts or hepatocytes[28]. The results raise a 
question whether glucose regulates Egr1 expression 
requires insulin signaling activation. Later, another 
study showed that in vascular endothelial cells, 
glucose and insulin independently regulated Egr1 
expression and they had an additive effect to induce 
Egr1 in the co-treatment [29]. Specifically, glucose 
mediates its effects through activation of PKC while 
insulin acts through the extracellular signal-regulated 
kinase (ERK1/2) pathway[29]. Collectively, these studies 
suggest that glucose or insulin differentially regulates 
Egr1 expression in a cell-type dependent manner. 

Insulin regulates Egr1 expression in hepatoma cells[9] 

and in non-liver-derived cells overexpressed with 
insulin receptors[30,31]. Keeton et al.[9] showed that in 
rat hepatoma H4IIE cells, insulin treatment rapidly and 
transiently induced Egr1 mRNA, reaching its maximum 
levels by 15 min, which was coordinately regulated by 
a regulatory network involving MAPK kinase (MEK)-
ERK, p38 MAPK, and PI3-kinase (PI3K). In addition, 
the authors found that the activation of ERK1/2 was 
essential for the induction of Egr1 in response to 
insulin that could be further modulated by alterations 
in the activity of the p38 MAPK pathway [9]. By 
contrast, inhibition of the PI3K pathway augmented 
insulin’s effect on Egr1 expression, suggesting that 
some factor downstream of PI3K may partially inhibit 
induction of Egr1. Of particular interests, Egr1 has been 
implicated to mediate the regulation of insulin on genes 
in liver metabolism, including hepatic malic enzyme 
(ME)[32,33] and apolipoprotein A-I gene (ApoA1) [34]. 
Taken together, these studies suggest that induction of 
Egr1 in response to insulin is vital to insulin’s action on 
liver metabolism. 

Egr1, insulin resistance, and obesity
Insulin resistance is a central defect in type 2 diabetes 
mellitus (T2DM). The link between Egr1 and insulin 
resistance is originally from the observation that Egr1 

mRNA is highly increased in adipocytes from diabetic 
mice[35]. PI3K/Akt pathway is activated upon insulin 
stimulation, which is required for glucose uptake and 
glycogenesis to lower circulating glucose level[36]. 
Meanwhile, insulin stimulates the activation of MAPK 
(ERK1 and 2) that promotes insulin resistance[37]. Thus, 
the balance between PI3K/Akt and MAPK signaling 
pathway is critical to maintain insulin sensitivity. 
Egr1 transcriptionally regulates phosphatase and 
tensin homologue (PTEN), a suppressor of PI3K/Akt 
signaling[38]. Meanwhile, Egr1 regulates geranylgeranyl 
pyrophosphate synthase (GGPPS), an activator of 
ERK/MAPK signaling [39]. Thus, inhibiting Egr1 in 
adipocyte simultaneously blocks MAPK signaling 
and augments PI3K/Akt signaling, and subsequently 
improves insulin sensitivity[40]. Collectively, these 
studies suggest that pharmacological targeting 
adipocyte Egr1 could be potentially applied for 
developing novel treatment for T2DM.  

Obesity commonly coexists with Insulin resistance. 
The link of Egr1 to obesity and obesity-associated 
fatty liver has been reported in mouse studies. For 
example, whole body Egr1-deficient mice fed a high 
fat diet are less susceptible to diet-induced obesity 
and obesity-associated disorders such as insulin 
resistance, hyperinsulinemia, hyperlipidemia, and fatty 
liver, which largely depends on the increase of energy 
expenditure in the adipose tissue of Egr1-null mice[20]. 
These studies suggest that the upregulation of Egr1 
in adipocytes is involved in promoting metabolic 
disorders and that targeting Egr1 in adipocyte could 
be useful for the obesity treatment. 

The report of Egr1 function in liver steatosis is 
somehow contradictory. One earlier study showed 
that Egr1 expression levels in the liver are positively 
correlated to high caloric intake in mice, humans, 
and non-human primates [41]. In addition, whole-
body Egr1-/- mice are protected from chronic ethanol-
induced fatty liver due to the decreased expression 
and release of TNFα from macrophages[42]. However, 
recent studies highlight that increasing Egr1 levels in 
the liver ameliorates diet-induced fatty liver disease. 
For example, the white pitaya (hylocereusundatus) 
juice attenuates diet-induced liver steatosis and 
improves insulin sensitivity in C57BL/6J mice, which 
is accompanied by an increase in hepatic Egr1 mRNA 
level[43]. Thus, future research focusing on hepatocyte-
specific Egr1 function in liver metabolism will be very 
valuable.

Egr1 and cholesterol biosynthesis
Cholesterol is an essential component for cell 
membrane and serves as the precursor to all steroid 



                Hepatoma Research ¦ Volume 3 ¦ November 20, 2017

Magee et al.                                                                                                                                                                           Egr1 in liver metabolism and cancer

271

hormones. However, high intracellular cholesterol 
is toxic to cells and high blood levels of cholesterol 
increase the risk for atherosclerosis development[44]. 
Therefore, the overall cholesterol level is tightly 
controlled in the body. The liver plays a central role in 
this regulation by balancing multiple pathways involved 
in de novo cholesterol biosynthesis, cholesterol 
conversion to bile acids, biliary cholesterol excretion, 
and reverse cholesterol transport[45]. Sterol response 
element binding proteins (SREBPs) are important 
transcription factors that regulate expression of genes 
in lipid metabolism including fatty acids and cholesterol 
synthesis. Three isoforms (SREBP-1a, SREBP-1c, 
and SREBP-2) have been identified in mammals. 
SREBP-1 mainly regulates genes required for fatty 
acid biosynthesis and SREBP-2 is responsible for the 
induction of genes involved in cholesterol biosynthesis 
and uptake, including HMG-CoA synthase (Hmgcs) 
and low-density lipoprotein receptor (Ldlr)[46]. 

Egr1 regulates the expression of cholesterol 
biosynthetic genes, such as Hmgcs, farnesyl-
diphosphate synthase (Fdps), farnesyl-diphosphate 
farnesyltransferase 1 (Fdft1), lanosterol synthase (Lss), 
sterol-4α-carboxylate 3-dehydrogenase (Nsdhl), and 
malic enzyme (Me1), in rat hepatomaH4IIE cells[24]. 
Additionally, Egr1 acts in concert with SREBP-2 to 
mediate insulin-induced cholesterol biosynthesis in the 
liver[24]. Oncostatin M (OM) is a gp130 family member 
produced by the F4/80-positive macrophages[47]. In 
human hepatoblastoma HepG2 cells, Egr1 is induced 
by OM and binds to the sterol-independent regulatory 
element (SIRE) in LDLR promoter region with co-
activator CCAAT/enhancer binding protein-beta (C/
EBPβ) and activates LDLR transcription[48,49]. Together, 
these studies point to Egr1 as an important modulator 
of cholesterol metabolism in the liver. 

EGR1 AND LIVER REGENERATION

The liver has a tremendous capacity to regenerate 
after injury, which is a highly coordinated process 
involving both liver parenchymal and non-parenchymal 
cells. During liver regeneration, adult hepatocytes enter 
the cell cycle (G0 to G1) and progress through the cell 
cycle (G1 to M) until liver mass is restored[50]. Many 
signals regulate the process of liver regeneration[51]. 
For example, lipopolysaccharide and cytokines are 
important mediators of the initiation phase[52]. Growth 
factors such as hepatocyte growth factor (HGF) 
and epidermal growth factor (EGF) regulate the 
progression phase[53]. TGF-β1 signals later terminate 
hepatocyte proliferation [54]. Additionally, growth 
arrest-specific 1 (Gas1), a cell proliferation inhibitor, 
is induced during liver regeneration at the cycle G1/

S transition, contributing to the final termination of 
regeneration[55]. Perturbations in the liver-regenerative 
response cause prolonged liver injury and delayed 
liver recovery.  

The role of Egr1 in liver regeneration was f irst 
suggested by animal studies demonstrating that Egr1 
was immediately induced during the initiation phase 
of liver regeneration[56,57]. Using a transgenic Egr1 
luciferase (Egr1-luc) mouse model, Dussmann et al.[14] 
demonstrated that Egr1 expression was increased 
at the site of wound healing in partial hepatectomy. 
Another earlier study showed that Egr1 expression 
significantly increased after 15 min and subsided within 
60 min after partial hepatectomy in rat livers[56]. More 
recent studies in mice have extended the peak of Egr1 
induction to 12 h in partial hepatectomy-induced liver 
regeneration[58] and to 2 h in carbon tetrachloride (CCl4) 
exposure-induced liver regeneration[18]. The specific 
signals that regulate Egr1 expression during liver 
regeneration are not quite understood, a number of 
candidates are worthy of consideration. For example, 
extracellular ATP has been implicated as a potent 
stimulus for Egr1 expression[59]. P2Y purinoceptor 
2 (P2Y2) is a G protein coupled receptor that is 
activated by ATP in hepatocytes. The fact that the 
induction of Egr1 is impaired in P2Y2-/- liver subjected 
to partial hepatectomy indicates that P2Y2 may 
regulate Egr1 expression during liver regeneration[60]. 
Additional candidates that regulate Egr1 expression 
are likely to include interleukin-6 (IL-6) and C/EBPβ, 
because the induction of Egr1 has been shown to be 
impaired in IL-6-/- or C/EBPβ-/- liver subjected to partial 
hepatectomy[61,62]. 

EGR1 is essential for cell-cycle entry and progression 
during liver regeneration as Egr1 directly regulates cell 
cycle mediators. Lai et al.[63] found that Egr1-deficient 
mouse livers had a substantially lower recovery rate 
after liver injury, which was accompanied with the 
reduced expression of cell cycle mediators such as 
Cyclin D1, Cyclin E, and proliferating cell nuclear 
antigen. After subcutaneous administration of CCl4, 
Egr1-deficient mice exhibited increased liver injury 
and delayed cell cycle progression[18,58]. Acute ethanol 
dosing of Egr1-/- mice also resulted in exacerbated 
liver injury associated with impaired liver repair[64]. 
Collectively, these studies suggest that Egr1 and its 
regulated cell-cycle entry and progression is critical 
for liver regeneration. Additionally, Egr1 contributes to 
the regulation of a large number of genes required for 
the regenerative response, including cell division cycle 
20 (cdc20), a key regulator of the mitotic anaphase-
promoting complex, and cytokines necrosis factor-
alpha (TNFα), IL-6, and lymphotoxin-beta[14,18,57,65,66]. 
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Therefore, Egr1 plays a critical role in liver regeneration 
after injury.

EGR1 IN LIVER FIBROSIS AND 
ACETAMINOPHEN-INDUCED 
HEPATOTOXICITY

Liver fibrosis is the wound-healing response of the 
liver to chronic injury that entails cell proliferation, 
inflammation, angiogenesis, as well as synthesis and 
remodeling of extracellular matrix [67-70]. Prolonged 
tissue injury can lead to excessive accumulation of 
extracellular matrix in the organ, a hallmark of fibrosis. 
Egr1 has been shown to induce transcription of growth 
factors and stimulate collagen production in human 
fibroblasts and fibrosarcoma cells, suggesting the 
contribution of Egr1 to fibrogenesis[22,71]. TGF-β1, a key 
regulator of fibrogenesis, is an upstream regulator of 
Egr1[10]; however, Egr1 also regulates the expression 
of TGF-β1 in response to the hepatitis B virus[72], which 
hints to the existence of a possible feedback regulation 
between TGF-β1 and Egr1 during fibrogenesis.

Acetaminophen (APAP) is widely used to treat pain 
and reduce fever. APAP is mainly metabolized by 
the liver, undergoing glucuronidation, sulfation, or 
N-hydroxylation. The sulfate product is the primary, 
non-toxic metabolite in children; whereas, the 
glucuronide metabolite is the primary, non-toxic 
metabolite in adults. The hydroxylated product is the 
bioactivation of APAP by cytochrome 2E1 (Cyp2E1) 
that leads to the toxic, reactive metabolite, N-acetyl-
p-benzoquinone imine (NAPQI). The final attempt to 
prevent toxicity is to conjugate NAPQI to glutathione[73]. 
In the event of APAP overdose, the glutathione stores 
are depleted; the reactive metabolite binds to hepatic 
proteins, leading to hepatic necrosis. In western 
countries, acute liver injury due to APAP overdose is 
the main cause for drug-induced acute liver failure[74]. 
In addition, long-term application of APAP has been 
linked to the increased hepatic inflammation and liver 
fibrosis in patients[75]. 

The report of Egr1 function in acute or chronic APAP-
induced hepatotoxicity is contradictory. In an acute 
APAP-induced liver injury mouse model, both Egr1 
mRNA level and transcriptional activity in hepatocytes 
are increased[76]. Inhibition on ERK1/2-mediated Egr1 
transcriptional activation by caffeic acid (an organic 
compound found in coffee, fruit, and herbs) attenuates 
APAP-induced hepatotoxicity[76], suggesting that 
inhibiting Egr1 activation is beneficial to protect against 
APAP-overdose induced acute hepatotoxicity. By 

contrast, a recent study using WT and Egr1-/- mice in 
chronic APAP-induced liver injury has demonstrated 
that Egr1-/- livers exhibited a more severe hepatotoxicity 
and fibrotic response compared to WT mice under 
APAP overdose[77]. Collectively, these data support 
Egr1 as an important mediator in APAP-induced 
hepatotoxicity and liver fibrosis; however, whether Egr1 
could act as an inducer or protector against APAP-
induced liver injury has remained elusive. Additional 
studies using cell-type specific Egr1-deficient animals 
to determine the involvement of Egr1 in acute and 
chronic APAP-induced liver injury would be highly 
beneficial for a more clear definition of cell-type 
specific role of Egr1 in liver injury and fibrosis.

EGR1 AND LIVER CANCER

Egr1 is demonstrated to act as both a tumor suppressor 
and a tumor promoter in cancers. The tumorigenic role 
of Egr1 was described in prostate, skin and kidney 
cancers[78]. By contrast, tumor suppressor activity 
of Egr1 was reported in fibrosarcoma, glioblastoma, 
lung and breast cancers[79,80]. The role of Egr1 in liver 
cancers remains elusive, as studies evaluating the role 
of Egr1 in liver cancer development and progression 
have reported contradicting conclusions. 

Accumulating studies suggest Egr1 as a tumor 
suppressor in HCC. Egr1 is commonly downregulated 
in HCC tissues from humans and murine, indicating 
that the downregulation of Egr1 is related to HCC 
development[81]. However, mechanisms responsible 
for the downregulation of Egr1 in liver cancer remain 
unknown. A recent study has described that EGR1 
carries mutational intratumoral heterogeneity and 
frameshif t mutations in colorectal and gastr ic 
cancers which have high microsatellite instability[82]. 
Thus, it could be interesting to know whether the 
same mechanism could exist in liver cancer and 
contr ibute to the decrease of EGR1. Aberrant 
MAPK signaling activation is a key player in driving 
tumor proliferation[83-85]. Inhibition of P42/44MAPK 
in HepG2 cells leads to suppression on cell growth, 
proliferation, and survival, accompanied by an 
induction of Egr1 in tumor cells[86]. Recently, (125)I-UdR 
radionuclide therapy combined with Egr1-promoter-
based interferon gamma (IFNγ) gene therapy was 
described to efficiently reduce tumor proliferation 
and promote animal survivals in mice bearing H22 
hepatomas[87]. Overexpression of Egr1 decreases the 
growth rate and tumorigenicity of the HCC cell line 
HHCC cells[88]. Furthermore, Egr1 induces apoptosis 
in human hepatoma cells (HepG2 and Hep3B) that 
can be enhanced by synthetic chenodeoxycholic acid 
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derivative, HS-1200 [89]. Collectively, these studies 
have demonstrated that Egr1 functions as a tumor 
suppressor in HCC via inhibiting tumor proliferation 
and promoting apoptosis.

In addition, Egr1 regulates the expression of a large 
number of genes required for suppressing HCC growth, 
including PTEN[38], a very well known tumor suppressor 
that inhibits PI3K signaling pathway in HCC. EGR1 
protein sumoylation is required for activation of 
PTEN transcription, in which the phosphorylation 
of EGR1 by AKT at S350 and T309 allows EGR1 
protein sumoylation[90]. In addition, Egr1/PTEN axis 
is essential for ribonucleotide reductase regulatory 
TP53 inducible subunit M2B (RRM2B) inhibition on 
HCC cell migration[91]. Recently, Wang et al.[92] has 
described a cascade, involving Egr1, microRNA-203a 
(miR-203a), and homeobox D3 (HOXD3), inhibits 
HCC tumorigenesis. Through both in vitro and in vivo 
studies, the authors have demonstrated that Egr1 
directly activates miR-203a expression by binding to 
the miR-203a promoter that results in suppression on 
HOXD3[92]. Taken together, these studies support an 
anti-tumor role of Egr1 in HCC.

Contrasting the anti-tumorigenic role of Egr1 is 
study indicating that Egr1 is associated with HCC 
tumorigenesis. In a study using cDNA microarray and 
chromatin immunoprecipitation (ChIP) assay to assess 
the genes associated with tumor angiogenesis, Egr1 
is identified as a key player to mediate HGF-induced 

upregulation of vascular endothelial growth factor and 
IL-8[93]. In an attempt to identify early biomarkers of 
HCC, Archer et al.[94] has performed gene expression 
microarray analyses in HCC tissues and revealed 
that Egr1 and vesicle associated membrane protein-2 
are positively correlated to hepatitis virus-induced 
HCC. Additionally, G protein-coupled receptor kinase2 
overexpression reduces insulin-like growth factor 
1-induced HCC cell proliferation and migration that 
is mediated by decreasing Egr1[95]. All these studies 
suggest that activation of Egr1 might promote HCC 
development. 

Additionally, Egr1 is described to contribute to hypoxia-
induced HCC cells’ resistance against anticancer 
drugs[74,96]. One of the proposed mechanisms behind 
such phenomenon connects Egr1, hypoxia, and 
microtubules. Egr1 is co-localized with microtubules 
and mediates hypoxia- induced stabilization of 
microtubules from disassembly[96]. Expected, knockdown 
of Egr1 improves drug effectiveness under hypoxic 
conditions [96]. Another mechanism connects Egr1, 
hypoxia, and autophagy to HCC drug resistance. 
Autophagy contributes to the HCC cells resistance 
against chemotherapeutic agents under hypoxic 
conditions [97-99]. Egr1 transcriptionally regulates 
hypoxia-induced autophagy by binding to the promoter 
of microtubule-associated protein 1 light chain 3 and 
promotes autophagosomes formation in HCC cells[74]. 
Collectively, these studies suggest that inhibiting 
Egr1 expression or function to increase tumor cells’ 
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sensitivity to chemotherapeutics could be applied 
as a novel approach for HCC therapy. In addition, 
whether the current discrepancies on Egr1 function in 
HCC could be due to a dual role of Egr1 during HCC 
development, first acting as an activator and then as 
a repressor, still remains elusive and requires further 
investigation.

CONCLUSION

As a Zinc-finger transcription factor, Egr1 has a 
diverse range of functions implicated in various cell 
types. The major roles of Egr1 in liver diseases are 
summarized and depicted in Figure 2. Research 
efforts using various animal models such as fatty liver, 
liver injury and fibrosis have contributed greatly to the 
elucidation of Egr1 liver-specific function. However, in 
some instances, such as in insulin signaling as well 
as HCC studies, the data regarding the role of Egr1 
are contradictory. Hence, much progress is required 
to uncover and characterize the role of Egr1 in various 
types of cells in the regulation of normal liver function. 
For example, studying the effects of insulin signaling, 
APAP, ethanol, or CCL4 in hepatocyte-specific or 
macrophage-specific Egr1 knockout models are 
greatly appreciated. Utilization of primary cell cultures 
(such as hepatocytes, stellate cells, and macrophages) 
from normal liver to assess Egr1 functions may also 
aid in elucidation of liver-specific Egr1 regulation. On 
the other hand, due to its regulation of key fibrotic 
mediators, Egr1 may be a promising target for anti-
fibrotic therapy. Overall, much progress is required to 
uncover and characterize the cell-type specific role of 
Egr1 in the liver. Improving our understanding of Egr1 
in liver metabolism and liver cancer may provide new 
insights to facilitate developing novel treatments or 
prevention strategies for liver diseases. 
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