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Abstract
Chronic venous disease (CVD) is a common venous disorder of the lower extremities. CVD can be manifested as 
varicose veins (VVs), with dilated and tortuous veins, dysfunctional valves and venous reflux. If not adequately 
treated, VVs could progress to chronic venous insufficiency (CVI) and lead to venous leg ulcer (VLU). Predisposing 
familial and genetic factors have been implicated in CVD. Additional environmental, behavioral and dietary factors 
including sedentary lifestyle and obesity may also contribute to CVD. Alterations in the mRNA expression, protein 
levels and proteolytic activity of matrix metalloproteinases (MMPs) have been detected in VVs and VLU. MMP 
expression/activity can be modulated by venous hydrostatic pressure, hypoxia, tissue metabolites, and 
inflammation. MMPs in turn increase proteolysis of different protein substrates in the extracellular matrix 
particularly collagen and elastin, leading to weakening of the vein wall. MMPs could also promote venous dilation 
by increasing the release of endothelium-derived vasodilators and activating potassium channels, leading to 
smooth muscle hyperpolarization and relaxation. Depending on VVs severity, management usually includes 
compression stockings, sclerotherapy and surgical removal. Venotonics have also been promoted to decrease the 
progression of VVs. Sulodexide has also shown benefits in VLU and CVI, and recent data suggest that it could 
improve venous smooth muscle contraction. Other lines of treatment including induction of endogenous tissue 
inhibitors of metalloproteinases and administration of exogenous synthetic inhibitors of MMPs are being explored, 
and could provide alternative strategies in the treatment of CVD.
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INTRODUCTION
Chronic venous disease (CVD) is a common venous disorder characterized by dilation of the veins of the 
lower extremities and often varicose veins (VVs). If not treated in a timely fashion, VVs could progress to 
chronic venous insufficiency (CVI) and lead to skin changes and venous leg ulcer (VLU). VVs could also be 
associated with other venous conditions such as thrombophlebitis and deep venous thrombosis (DVT). 
Investigating the risk factors and mechanisms underlying CVD should help to develop effective treatment 
strategies.

Family history and several genetic factors have been implicated in VVs. Environmental factors including 
sedentary lifestyle and obesity may also contribute to the development of CVD. Changes in the 
levels/activity of matrix metalloproteinases (MMPs) have also been detected in VVs[1,2]. MMPs are Zn2+-
dependent endopeptidases that cause degradation of different protein substrates in the extracellular matrix 
(ECM). MMP mRNA expression, protein levels and proteolytic activity can be modulated by numerous 
factors including venous hydrostatic pressure, hypoxia, tissue metabolites and the inflammatory response. 
MMPs could promote remodeling of venous tissue through proteolytic degradation of different components 
of ECM. MMPs could also affect vascular smooth muscle (VSM) cell proliferation, migration, 
differentiation and/or apoptosis. MMPs have also been shown to affect endothelial function and VSM 
contraction mechanisms[3,4]. MMPs are negatively controlled by endogenous tissue inhibitors of 
metalloproteinases (TIMPs), and an imbalance between MMPs and TIMPs could contribute to venous 
dysfunction and CVD[1,5].

Management of CVD includes elastic compression stocking, inelastic garments, multilayerd bandaging, 
sclerotherapy, endvenous therapies, and surgical removal, but with variable results and high recurrence 
rates, making it important to find new approaches. Venotonics are being promoted to limit the progression 
of VVs. Sulodexide (SDX) has shown benefits in VLU, and may have venotonic properties by inhibiting 
MMPs and improving venous VSM contraction[6,7]. Understanding the role of MMPs, their differential 
levels and distribution in VVs, and their endogenous and synthetic inhibitors could also provide new 
approaches in the treatment of CVD.

This review will highlight reports published in PubMed and Web of Science together with data from our 
research laboratory to provide insights on the mechanisms and potential therapies for CVD. We will discuss 
the different abnormalities in the lower extremity vein structure and function observed in CVD and VVs. 
We will describe how genetic background and environmental factors could predispose to and increase the 
risk for CVD. We will then describe the alterations in MMP levels in VVs, and the different factors 
modulating MMP expression and activity including changes in the lower extremity venous hydrostatic 
pressure, hypoxia, tissue metabolites and the inflammatory response. We will also discuss how MMPs not 
only increase ECM turnover, but also cause endothelial cell dysfunction and reduce VSM contraction 
mechanisms, leading to progression of venous dilation and VVs. Lastly, we will summarize some of the 
medical and surgical strategies used for management of VVs, and discuss some of the reported benefits of 
venotonics, sulodexide and MMP endogenous and exogenous inhibitors and their potential use in the 
treatment of VVs and in retarding the progression of CVD.
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CHRONIC VENOUS DISEASE
CVD is a common venous disorder of the lower limb veins with several socio-economic consequences. 
Based on the clinical-etiology-anatomy-pathophysiology (CEAP) categorization, CVD is classified into 
clinical stages C0-C6. The C0 stage indicates no visible signs of CVD. The C1 stage shows telangiectasises or 
spider veins. C2 is manifested as VVs. C3 involves tissue edema. C4a is presented as eczema or skin 
pigmentation and C4b is associated with atrophie blanche or lipodermatosclerosis. C5 indicates healed 
VLU, and C6 presents as active VLU. The advanced CVD stages C4-C6 are often designated as CVI[8]. A 
recently published revision of the classification for CEAP has also included C2r for recurrent VVs, C4c for 
corona phlebectatica (a risk factor for VLU), and C6r for recurrent active VLU[9].

VVs of the lower extremities affect approximately 25 million of the adult population in the United States[10]. 
VVs are commonly manifested as large, distended, engorged and tortuous lower limb superficial veins. VVs 
are also associated with incompetent and dysfunctional venous valves and significant venous reflux. The 
superficial VVs typically show a venous reflux and backflow of blood that is maintained for a time period 
greater than half a second[11]. Although VVs are often thought of as a localized dysfunction in the lower limb 
veins, pathological changes may be present in other distant veins beyond those in the lower limb. In effect, 
VVs may be one component of a more generalized pathology of the venous system, and it manifests in the 
lower extremity veins due to the high venous hydrostatic pressure. This is supported by the observation that 
the arm veins of VVs patients also show increased distensibility[12]. VVs could have major socioeconomic 
impact and their unsightly appearance could cause significant psychological distress. If untreated, VVs can 
progress to CVI with VLU, and may be associated with other venous conditions such as thrombophlebitis 
and DVT[8].

Abnormal vein structure and function in VVs
VVs usually manifest as engorged and dilated veins, which could be interpreted as mainly hypertrophic 
tissue remodeling in the lower extremity veins. However, careful examination of the vein structure and 
histology has shown that VVs could have both hypertrophic and atrophic regions [Figure 1][13]. The VVs 
hypertrophic regions usually demonstrate abnormal shape and orientation of VSM cells (VSMCs) and 
extensive deposition of ECM. On the other hand, the VVs atrophic regions usually demonstrate extensive 
degradation of ECM and tissue infiltration of inflammatory cells[14]. VVs tissue histology shows no clear 
vascular layers, and lack of distinct boundaries between the tunica intima, tunica media, and the adventitia. 
VVs tissue sections may also show focal thickening of the intima, and increased tunica media thickening 
with fragmentated elastin fibers[15]. In VVs tissue sections, VSMCs are disorganized in the tunica media and 
in the vicinity of the intima, with poorly-defined nonstructured materials. The collagen fibers in VVs 
sections are also disorganized and make it difficult to demarcate between the tunica media and the 
adventitia, whereas the elastic fibers are thick and fragmented in both the tunica intima and the adventitia[2].

VVs also demonstrate an imbalance between the main components of ECM proteins with marked changes 
in tissue content of collagen and elastin. Measurements of tissue collagen varied between an increase[16], a 
decrease[17], or no difference in VVs compared with control veins[18]. Cultured VSMCs and dermal 
fibroblasts from patients with CVD and VVs have demonstrated elevated protein levels of collagen type-I 
and reduced collagen type-III, with no detectable alteration in gene transcription, suggesting post-
translational modification of collagen type-III. It has also been shown that the transcription of collagen 
type-III is normal in VSMCs from VVs, while MMP-3 activity is increased leading to post-translational 
proteolysis of collagen type-III. In support, collagen type-III production was partially restored in VSMCs 
from VVs in the presence of the MMP inhibitor marimastat[19]. Collagen type-III is very important as it 
determines the blood vessel distensibility and elasticity, and alterations in collagen synthesis and/or 
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Figure 1. Vein wall, venous valves and blood flow in normal veins and VVs. In normal veins, competent venous valves allow blood flow 
in an antegrade direction towards the heart (A). In CVD, vein dysfunction could progress to large dilated VVs with incompetent valves. 
VVs show atrophic regions where increases in MMP levels promote ECM degradation, as well as hypertrophic regions in which 
MMP/TIMP imbalance would allow ECM accumulation, leading to dilated and tortuous vein wall, defective valves, and venous reflux 
(B). VVs: Varicose veins; CVD: chronic venous disease; MMP: matrix metalloproteinases; ECM: extracellular matrix; TIMP: tissue 
inhibitors of metalloproteinase.

proteolysis and in turn the ratio between collagen type-I and type-III could negatively affect the vein wall 
integrity, and lead to weakening of the vein wall, venous dilation, and VVs formation[2]. Some studies 
suggest that a decrease in elastin could reduce the elasticicity of the vein wall and lead to venous dilation 
and VVs[20], but other reports suggest an increase in the elastin network in VVs[2].

Besides the pathological alterations in the vein wall, VVs also show incompetent and dysfunctional venous 
valves. However, whether venous valve incompetence occurs first and leads to dilation of the vein wall or 
vice versa is unclear. One hypothesis is that a primary valve incompetence could cause venous reflux and 
elevate the lower limb venous hydrostatic pressure leading to initial dilation of the vein wall. The dilated 
segments of the vein wall near the vein valves would then cause more distortion in the valves, leading to 
progressive increases in venous reflux, venous hydrostatic pressure and vein wall dilation. This hypothesis is 
supported by the findings that VVs show hypertrophic venous valves, augmented valvular annulus width[21], 
reduced viscoelasticity and collagen content[22], and increased inflammatory cells and monocyte and 
macrophage infiltration of the valvular sinuses as compared to distal VVs walls[23]. However, this hypothesis 
has been contested by the finding that VVs are sometimes detected below competent and functional venous 
valves[13]. Also, changes in collagen and elastin are detected in both the varices segments of VVs and the 
apparently normal vein segments near the varices, which suggests that changes in ECM proteins occur in 
the vein wall before valve dysfunction[16]. Notably, VVs develop not only in a retrograde manner from the 
thigh to the calf and the ankle, but also in an antegrade fashion in the normal direction of venous flow from 
the ankle to the calf and the thigh, likely due to primary dilation in the vein wall that could then lead to 
valve insufficiency[11,13]. Regardless of what happens first, both vein wall dilation and venous valve 
incompetence are involved in the pathogenesis of VVs.

Predisposing demographic and environmental factors in CVD
Several demographic and predisposing factors could increase the risk for VVs including old age, female sex, 
use of contraceptive pills and estrogen therapy, pregnancy, overweight and obesity, history of leg injury, and 
venous inflammation and phlebitis. Estrogen activates estrogen receptors in the vein wall and in turn 
increases venous dilation. Some studies suggest that CVD is more prevalent in females than males[12]. For 
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instance, the Framingham Study showed a greater annual incidence of VVs in women (2.6%) than in men 
(1.9%)[13]. Also, the Edinburgh Vein Study screened for CVD in 1566 subjects 18-64 years old at 12 general 
practices and showed that females reported more leg symptoms[14]. However, a follow-up study found that 
the age-adjusted prevalence of truncal VVs was ~40% in males and ~32% in females, and VVs and CVD 
prevalence increased with age in both sexes[15]. Also, studies using Duplex ultrasound to evaluate venous 
reflux reported CVD in ~9.4% of males and ~6.6% of females, and an increase in the incidence with age to 
~21.2% in males older than 50, and to ~12.0% in females older than 50[16]. Interestingly, we have shown that 
α-adrenergic-, angiotensin II (AngII)-, depolarization-induced, and [Ca2+]-dependent venous tissue 
contraction are less in female than in male rat inferior vena cava (IVC), likely because of increased 
expression and activity of estrogen receptors and increased endothelium-dependent venous relaxation 
pathways in female compared with male rats. These observations suggested gender differences in venous 
function, enhanced estrogen-induced venous relaxation pathways and decreased mechanisms of VSM 
contraction, leading to more distention of the venous wall in females[24].

Overweight and obesity in women increase the risk of developing VVs[25]. Compared with lean women, 
women with moderate overweight (BMI = 25.0-29.9 kg/m2) were more likely to present with VVs, and obese 
women (BMI ≥ 30 kg/m2) were 3 times more likely to present with VVs. On the other hand, a positive 
relation between BMI and CVD was not observed among men[26]. Of note, the plasma levels of total and 
bioavailable estrogens are greater in overweight and obese women compared with lean women particularly 
in the postmenopausal period[27], further highlighting the positive association between plasma estrogen 
levels and the incidence of VVs.

Pregnancy involves important physiological changes that could promote venous dilation and VVs 
formation. Plasma levels of estrogen and progesterone are elevated during pregnancy[28]. Also, increased 
blood volume and plasma volume expansion occur during early pregnancy[29]. The progressive fetal growth 
and weight gain during pregnancy also cause increases in intra-abdominal pressure and central venous 
return[30,31], which could cause venous valve incompetence and further progression of VVs.

Behavioral factors including prolonged sitting or standing and sedentary lifestyle could represent a risk for 
CVD[25,32,33]. Also, the physical activity and ergonomics of an occupation and a work place may influence 
VVs epidemiology. In a community-based study on males and females of 20 to 64 years old in Jerusalem, 
the VVs prevalence was higher in individuals spending most of their workday in a standing position. Also, 
reporting of occupations requiring prolonged standing was higher in females (31.4%) compared with males 
(13.6%), although the ratio of standing vs. sitting workplace posture was higher in men (1.88) than in 
women (1.53)[34].

Predisposing hereditary and genetic factors in CVD
Family history, hereditary and genetic factors could increase the risk for VVs [Table 1][35,36]. The lower 
extremity venous hemodynamics and elasticity of the vein wall are decreased in the children of patients with 
VVs[37]. Of note, the VVs pathology may not be restricted to the lower limb veins, and patients with VVs 
may show abnormal increase in distensibility of the arm veins, which suggests a more generalized and 
systemic disorder of the vein wall[12]. There is also an increasing evidence of a genetic component in VVs. 
Microarray analysis of 3063 cDNAs from patients with VVs demonstrated an upregulation of 82 genes, 
especially those involved in the regulation of myofibroblasts, cytoskeletal proteins and ECM[35]. An elegant 
study of nearly half a million subjects (control and cases), utilizing machine learning for risk factors as well 
as genome-wide association study (GWAS), implicated advanced age, female sex, obesity, pregnancy, DVT, 
increased height, and leg bioimpedance as risk factors for VVs. The GWAS found 30 novel genome loci that 
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Table 1. Representative genetic factors in VVs and venous leg ulcer

Gene chromosome 
locus, variants Disease Manifestations Ref.

COL3A1, COL5A1, 
ADAMTS2

Ehlers-Danlos syndrome Connective tissue disorders, abnormal collagen synthesis, joint 
hypermobility, distensible skin, ocular disease, bone 
deformities and fragility, vascular and visceral tissue wall 
fragility and susceptibility to rupture, VVs

[39,224]

von-Hippel Lindau 
gene mutation 
3p25 
598>T

Chuvash polycythemia Defective oxygen sensing, increased HIF-1α, increased serum 
erythropoietin and hemoglobin, VVs, tendency for vertebral 
hemangiomas, thrombosis, bleeding, and stroke

[225-227]

G6PC3 gene mutation Severe congenital neutropenia 
type 4

VVs, venous leg ulcer [228]

Desmuslin gene 
deficiency 
15q26.3

VVs Decreased intermediate filament protein desmuslin in VSM, 
smooth muscle switch from contractile to synthetic phenotype, 
weakening of vein wall, venous dilation. Increased MMP-2 and 
collagen

[48,117,120,229,230]

Thrombomodulin (-
1208/-1209 TT 
deletion)

Deep venous thrombosis, VVs Dysregulation of thrombin, thrombus formation [231]

Translocation of 
chromosome 8q22.3 
& 14q13 
EII3K or VG5Q gene 
mutation on 
chromosome 5

Klippel-Trenaunay syndrome Cutaneous capillary 
malformations (port wine stain), VVs, bone and soft tissues 
hypertrophy

[232,233]

FOXC2 gene mutation 
16q24.3

Lymphoedema distichiasis Lymphedema, distichiasis (extra eyelashes from meibomian 
glands), VVs, congenital heart defects, vertebral anomalies, 
extradural cysts, ptosis, cleft palate

[234-236]

Notch3 gene mutation 
1279G>T

CADASIL Cerebral autosomal-dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy, VVs

[46]

Trisomies 
chromosomes 7, 12, 18 
Monosomy 
chromosome 14

VVs Abnormalities in cell lines from patients with VVs [237]

F13A1 gene Factor XIII deficiency Delayed venous ulcer healing [54]

HFE gene mutation 
C282Y and H63D

Increased iron deposition Venous ulcer exacerbation [51]

MTFR gene 
SNP C677T

Decreased 
methylenetetrahydrofolate 
reductase activity

Hyperhomocystinemia, VVs, CVI [238,239]

SLC40A1 
SNP 8CG

Impaired iron metabolism, 
increased iron deposition

CVD, venous ulcer [240]

MMP-12 
SNP 82AA

Altered MMP activity Venous ulcer [240]

FGFR-2 
SNP 2451AG

mRNA instability, reduced 
wound healing

CVI, non-healing venous ulcer [241]

VVs: Varicose veins; VSM: vascular smooth muscle; MMP: matrix metalloproteinases; CADASIL: cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy; CVI: chronic venous insufficiency; CVD: chronic venous disease.

were robustly associated with VVs, including genes encoding for blood pressure, vascular mechanosensing 
channels, vascular maturation, development and integrity, and genes near the hemochromatosis gene that is 
strongly associated with VLU and DVT[38]. Patients with Ehlers-Danlos syndrome show increased 
propensity to developing vascular pathologies and VVs[39]. Ehlers-Danlos syndrome includes several 
connective tissue disorders that involve abnormal collagen synthesis and could be manifested in the form of 
distensible skin, joint hypermobility, bone fragility and deformity, ocular disease, and cardiovascular and 
visceral disorders in which the blood vessels and visceral tissue walls become more fragile and prone to 
rupture. Patients with vascular Ehlers-Danlos syndrome have defective COL3A1 gene and are more 
susceptible to vascular disease and VVs[39,40]. Of note, patients with hereditary connective tissue syndromes 
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do not always report VVs. For example, Marfan syndrome, an autosomal dominant connective tissue 
disorder with a mutation in the FBN1 gene that codes for fibrillin-1 and promotes elastic fiber synthesis[41], 
mainly affects the aorta and heart valves, but unlike Ehlers-Danlos syndrome, it does not present with VVs.

Primary lymphedema-distichiasis is a rare syndrome that involves a mutation in the FOXC2 gene on 
chromosome 16q24 and is associated with VVs in early age[42,43]. A genealogical tree study in 9 families has 
shown a link between VVs and the candidate marker D16S520 on chromosome 16q24, which may explain 
the linkage to FOXC2 gene. Saphenofemoral junction reflux was also found in families of affected patients 
with the D16S520 marker. The linkage to a candidate marker for the FOXC2 gene suggests a functional gene 
variant that predisposes to VVs, and a heritable autosomal dominant CVI with incomplete penetrance[43]. 
Patients with Klippel-Trenaunay Syndrome present with congenital venous anomalies including atresia, 
agenesis of the deep veins, valve incompetence, venous aneurysms, and embryonic veins[44]. Patients could 
also present with impaired venous muscle pump function, VVs, limb hypertrophy, and dermal capillary 
hemangiomas or port wine stain[45]. The lymphatic system can also be involved and show pathological 
changes in this syndrome. A heterozygous Notch3 gene mutation has been detected in the CADASIL 
(cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) pedigree 
with VVs[46].

A single nucleotide polymorphism (SNP) - 1562C/T in the promoter region of MMP-9 gene has been linked 
to increased promoter activity and plasma levels of MMP-9 and VVs in the Chinese population[47]. 
Desmuslin is an intermediate filament protein involved in smooth muscle function, and variants in its gene 
could be associated with VVs. In human smooth muscle cells (SMCs) from the saphenous vein, desmuslin 
knockdown using small interfering RNA (siRNA) causes increases in the synthesis of collagen and the 
expression of MMP-2, decreases in the expression of the SMC differentiation markers SM α-actin, SM-
myosin heavy chain and smoothelin, and disassembly of actin stress fibers. Desmuslin is important for 
preserving the VSMC contractile phenotype, and a reduction in desmuslin expression could cause VSMC 
phenotypic switch from contractile to synthetic phenotype, leading to weakening of the vein wall and the 
formation of VVs[48].

Other genetic factors have been associated with advanced CVI, VLU and non-healed VLU, and include the 
genes for MMP-12, fibroblast growth factor receptor-2, hemochromatosis, factor XIII, and ferroportin 
[Table 1][36]. For instance, mutations in iron metabolism genes could be involved in VVs pathology. 
Prolonged venous reflux could cause iron overload and dermal hemosiderin deposition which is directly 
correlated with some of the manifestations of CVI such as lipodermatosclerosis and skin changes[49]. Iron 
deposition promotes free radical formation, thus aggravating tissue injury, and causing further progression 
to CVI and VLU[50,51]. Also, factor XIII is a cross-linking protein that is critical for VLU healing[52], and 
mutations in hemochromatosis HFE gene C282Y and Factor XIII gene V34L have been associated with 
severe CVI, skin changes and the size of VLU[53-55].

MMP LEVELS IN CVD
Changes in MMP expression/activity have been described in VVs[1]. The levels of MMP-1, -2, -3, and -7 are 
elevated, and MMP-2 activity is increased in VVs[2]. Patients with primary VVs also show elevated plasma 
levels of MMP-10, the hemostatic markers prothrombin fragments 1 and 2, von Willebrand factor and d-
dimers, and increased activity of plasminogen activator inhibitor (PAI-1), which suggests a 
proinflammatory and prothrombotic state[56]. Studies have also shown increases in MMP-1 levels in the 
great saphenous vein and in the levels of MMP-1 and -13 in the proximal vs. distal regions of VVs, with no 
change in MMP mRNA expression, suggesting MMP post-transcriptional modification[57]. MMP levels also 
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vary among different cell types in VVs. In VVs tissue sections, MMP-1 is localized in fibroblasts, VSMCs 
and endothelial cells; MMP-9 is mainly in endothelial cells, medial VSMCs and adventitial microvessels; 
and MMP-12 is detected in fibroblasts and VSMCs[58]. The localization of MMPs in fibroblasts and the 
tunica adventitia is in agreement with their role in degradation of ECM proteins, especially during the later 
stages and progression of VVs[58]. Other studies have found increases in MMP-1 expression in all layers of 
VVs, and MMP-9 expression in the intima and adventitia of VVs[15]. Studies also showed increases in MMP-
2 levels in all layers, and in MMP-1, -3 and -7 in the tunica intima and media of VVs[2], which suggests 
potential effects of MMPs on the endothelium and VSMCs[58,59].

While many studies showed increases in certain MMPs in VVs, some studies showed no change or even a 
decrease in MMP levels. One study reported a decrease in the levels of active MMP-1 and both the pro- and 
active forms of MMP-2 in VVs[60]. The variable MMPs levels may explain the variable collagen content in 
different regions of VVs showing a decrease[17], no change[18], or even an increase[16]. The variability in MMP 
levels could also be due to examining different regions of VVs, e.g., hypertrophic vs. atrophic regions at 
different anatomic locations, or examining vein segments at different stages of CVD progression, or 
inability to distinguish the proMMPs from active forms of MMPs.

MMP expression and activity could be associated with CVD progression and advanced stages of CVI. 
Serum levels of MMP-2, disintegrin and metalloproteinase with thrombospondin motif-1 (ADAMTS-1) 
and ADAMTS-7 are elevated during the initial stages of CVD development, while the serum levels of MMP-
1, -8, -9, neutrophil gelatinase-associated lipocalin (NGAL), ADAM-10 and -17 and ADAMTS-4 are mainly 
elevated during advanced stages of CVD in association with skin changes[61]. MMP-1 and -8 expression is 
increased in the tissues and fluids of non-healing VLU[62], and their levels are even higher in infected than 
uninfected VLU[63].

MMP INDUCERS/ACTIVATORS IN CVD
MMPs can be induced or activated by multiple factors. Some factors could specifically regulate the mRNA 
expression or proteolytic activity of MMPs in VVs and include increased lower limb venous hydrostatic 
pressure, inflammation, hypoxia, and tissue metabolites.

Venous hydrostatic pressure regulates MMPs in CVD
An increase in lower limb venous hydrostatic pressure could increase MMP expression/activity and lead to 
VVs [Figure 2]. In vitro studies have demonstrated that mechanical stretch increases MMP expression in 
cultured endothelial cells, VSMCs and fibroblasts[64]. Our ex vivo studies have also shown that prolonged 
stretch of rat IVC causes an increase in MMP-2 and MMP-9 expression in the vein tunica intima and in 
MMP-9 expression in the vein media. Also, prolonged stretch of the rat IVC was associated with a decrease 
in the vein contraction to the α-adrenergic receptor agonist phenylephrine, and MMP inhibitors reversed 
the effects of prolonged mechanical stretch on IVC contraction. These observations led us to hypothesize 
that prolonged increases in venous pressure or wall tension cause increases in MMP-2 and MMP-9 
expression/activity, leading to decreased vein contraction and increased venous dilation[65]. The mechanisms 
linking the increased venous hydrostatic pressure to the increases in MMP expression could involve 
different intermediary biological steps including hypoxia inducible factors (HIFs), tissue metabolites and 
inflammation[66].

Hypoxia and MMPs in CVD
HIFs are nuclear transcriptional factors that are triggered in response to tissue hypoxia, and in turn regulate 
many of the genes that control oxygen homeostasis. Mechanical stretch could also affect HIFs expression. 
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Figure 2. Pathophysiology and management of CVD. Genetic, environmental and behavioral risk factors cause an increase in HIFs and 
tissue metabolites leading to increases in MMPs. Increased venous hydrostatic pressure also causes changes in shear stress, 
endothelial dysfunction, glycocalyx injury, increased permeability, leukocyte infiltration, and increased adhesion molecules, 
inflammatory cytokines, ROS, and RNS, leading to further increases in MMPs. Increased MMPs cause VSM hyperpolarization and 
relaxation as well as ECM degradation leading to vein wall dilation, and progressive increases in venous hydrostatic pressure (vicious 
cycle). Increased MMPs generally promote ECM degradation particularly in atrophic regions. Other theories (indicated by interrupted 
arrows) suggest a compensatory anti-inflammatory pathway involving prostaglandins and their receptors that leads to decreased 
MMPs, ECM accumulation in hypertrophic regions, and tortuous VVs. Increased venous hydrostatic pressure in the lower extremity 
saphenous and femoral veins also causes venous valve dysfunction and venous reflux. Progressive vein wall dilation and valve 
dysfunction lead to different stages of CVD and CVI. Current treatment (presented in shaded arrows) includes compression stockings, 
venotonics and other pharmacological and surgical approaches. MMP inhibitors (also presented in shaded arrows) may provide 
potential tools for the management of CVD/CVI. CVD: Chronic venous disease; HIFs: hypoxia inducible factors; MMPs: matrix 
metalloproteinases; VSM: vascular smooth muscle; ECM: extracellular matrix; VVs: varicose veins; CVI: chronic venous insufficiency; 
TIMPs: tissue inhibitors of metalloproteinases; ICAM-1: intercellular adhesion molecule-1; VCAM-1: vascular cell adhesion molecule-1; 
siRNA: small interfering RNA; ROS: reactive oxygen species; RNS: reactive nitrogen species; SDX: sulodexide.

Prolonged stretch of rat skeletal muscle causes increases in HIF-1α and -2α mRNA expression and protein 
levels in the muscle capillaries’ endothelial cells[67]. Also, in the rat heart, application of mechanical stretch to 
the ventricular wall promotes increases in HIF-1α expression[68]. Our previous studies demonstrated that 
prolonged mechanical stretch of the rat IVC causes increases in mRNA expression and protein levels of 
MMP-2 and MMP-9 as well as HIF-1α and -2α. The stretch-induced increases in the mRNA expression and 
protein levels of MMPs and HIFs were accompanied with a decrease in the contractile response of the rat 
IVC to phenylephrine. Of note, the IVC contractile response was reduced even further during pretreatment 
of the veins with dimethyloxallyl glycine (DMOG), an HIF stabilizer that inhibits HIF-prolyl hydroxylase 
and prevents HIF inactivation. On the other hand, HIF inhibitors such as echinomycin and U0126 
prevented the decrease in IVC contraction in response to prolonged stretch, suggesting that HIF could 
provide an intermediary mechanism between the increase in venous hydrostatic pressure and the reduction 
in the vein contractile response [Figure 3][66]. It is possible that mechanical stretch causes activation of Ca2+ 
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Figure 3. Mechanisms linking increased venous hydrostatic pressure to upregulation of MMPs in varicose veins. Increased lower 
extremity venous hydrostatic pressure causes vein wall stretch, increased HIF mRNA expression and protein levels, and increased 
MMP levels. Increased vein wall stretch could also increase other MMP inducers such as EMMPRIN, chymase, hormones and NGAL. 
Increased MMPs may activate PARs in endothelial cells leading to activation of NO-cGMP pathway or EDHF and BKCa channels in VSM, 
leading to hyperpolarization, decreased Ca2+ influx, and VSM relaxation. Prolonged loss of contractile function in VSM causes a 
phenotypic switch to synthetic VSMCs and increased propensity to stretch. MMPs may also increase the release of growth factors and 
cause ECM degradation leading to VSMC migration, further decreases in vein contraction and increases in venous dilation, and VVs. 
MMP-induced ECM degradation may also cause valve degeneration leading to further increases in venous hydrostatic pressure. As 
indicated in shaded arrows, inhibitors of MMP synthesis (U-0126, HIF siRNA, 17-DMAG, Echinomycin, MMP siRNA), activity (MMP 
inhibitor) or actions (Iberiotoxin) represent potential new tools for management of VVs. BKCa: Large conductance Ca2+-activated K+ 
channels; DMOG: dimethyloxallyl glycine, inhibitor of HIF-prolyl hydroxylase; HIF: hypoxia-inducible factor; Hsp90: heat shock protein 
90. MAPK: mitogen-activated protein kinase. SMCs: smooth muscle cells; siRNA: small interfering RNA; MMP: matrix 
metalloproteinase; EMMPRIN: extracellular matrix metalloproteinase inducer; NGAL: neutrophil gelatinase-associated lipocalin; PARs: 
protease activated receptors; VSM: vascular smooth muscle; ECM: extracellular matrix; VSMCs: VSM cells; VVs: varicose veins.

entry via transient receptor potential vannaloid TRPV4 channel, leading to activation of phosphoinositide 
3-kinase (PI3K) and induction of HIFs[69]. It is also possible that mechanical stretch may affect membrane 
integrins and trigger a signaling cascade that eventually causes activation of mitogen-activated protein 
kinase (MAPK) and induction of HIF mRNA expression. Mechanical stretch may also stimulate G protein-
coupled receptors (GPCRs) or tyrosine kinases or increase the production of reactive oxygen species (ROS), 
leading to MAPK activation and increased HIF expression. We have shown that MAPK inhibitors reverse 
the increases in mRNA expression of HIFs and the decreases in contraction in IVC segments under 
prolonged mechanical stretch, which supports a role of MAPK as signal transduction pathway linking 
mechanical stretch, HIF expression and vein contraction[66].
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Other observations support the contention that HIF is involved in the pathogenesis of CVD. For instance, 
HIF-1α and -2α mRNA expression and the HIF-activated target genes are increased in VVs[70]. HIF-1α may 
also regulate MMP-2 and MMP-9 expression in arterio-venous fistulas and hemodialysis 
polytetrafluoroethylene grafts[71]. Besides mechanical stretch, additional factors including low pH, low 
oxygen tension, metallic ions, heat exposure, and hormones  could affect the expression of HIFs and MMPs 
in lower extremity veins.

Tissue metabolites in CVD
Increased venous tissue metabolism and increased generation of ROS and tissue metabolites could also play 
a role in CVD. Metabolic profiling and metabolomic approaches have shown increased concentration of 
lactate, creatine and myo-inositol metabolites in VVs samples as compared to non-varicose control veins[72]. 
Also, using a metabolomic approach, Dr. Alun Davies’ research group in collaboration with our group have 
shown increases in the levels of triglyceride moieties and choline and valine metabolites in association with 
decreased contraction in IVC segments under prolonged stretch compared with veins under normal control 
basal tension, supporting that increased vein wall tension/venous pressure could alter the tissue metabolic 
profile in the setting of VVs[73]. Whether the increases in tissue metabolites affect the vein tissue expression 
of HIFs and MMPs and in turn affect vein contraction remains to be examined.

Inflammation and MMPs in CVD
Increases in venous hydrostatic pressure in the lower extremities could also cause injury to the vein 
endothelium, damage to the glycocalyx, increases in the permeability of endothelial cells, activation of 
adhesion molecules, infiltration of leukocytes and inflammation of the vein[74]. Altered shear stress could 
lead to injury to the glycocalyx, endothelial dysfunction and progression of CVD. The glycocalyx structure 
is markedly altered and is associated with increased inflammation in CVD and VVs[75]. The glycocalyx is 
composed of glycoproteins with acidic oligosaccharides and terminal sialic acid, proteoglycans (heparan 
sulfate proteoglycan, syndecans and glypican core proteins), and glycosaminoglycan side chains that are 
sulfated (chondroitin sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, and heparin), and non-
sulfated (hyaluronic acid). The most common glycoasaminoglycans found on the glycocalyx are heparan 
sulfate, chondroitin sulfate, and hyaluronic acid[76,77]. The glycocalyx has important functions including 
mediating mechanotransduction, sense changes in shear stress, selective permeability, electrostatic barrier to 
cells and proteins, anti-coagulation barrier, anti-inflammatory, anti-adhesive, and counteracting endothelial 
injuries induced by the hemodynamics[77]. Several models have determined the effect of shear stress on 
glycocalyx expression (heparan sulfate proteoglycan, syndecan family and glypican-1) on endothelial cells, 
and their role in vascular dysfunction[78]. Other models in rat venous mesentery have demonstrated that 
reducing shear stress has a marked effect on activation of leukocytes and adhesion, inflammatory molecules, 
and MMPs expression. Human leukocytes also have similar behavior with respect to low shear stress[79,80]. 
Rat models of increased hind limb venous pressure induced by a femoral arterio-venous fistula, show 
increased saphenous vein venous pressure, upregulation of P-selectin and intercellular adhesion molecule-1 
(ICAM-1), infiltration of leukocytes, and inflammation of the vein wall[81]. Leukocytes are an important 
source of MMPs[82], and the activation of adhesion molecules and subsequent adhesion and infiltration of 
leukocytes in the vein wall could augment the production and release of MMPs. Subsequently, MMPs 
degrade different substrates in ECM, leading to weakening of the vein wall, decrease in the vein contraction, 
venous dilation, valve incompetence, further increases in the lower extremity venous hydrostatic pressure, 
and progression of CVD [Figure 2][4]. The relationship between increased lower limb venous hydrostatic 
pressure, inflammation of the vein wall, increased release of MMPs and degradation of ECM proteins is 
typically observed in the VVs atrophic regions.
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In support of a role of inflammation in CVD, segments of saphenous vein obtained from VVs patients show 
increased monocyte/macrophage infiltration in the vein wall and valves[23,83], and increased expression of 
ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells[84]. VVs patients also show 
increases in the plasma levels of the inflammatory markers ICAM-1, VCAM-1, angiotensin converting 
enzyme, and L-selectin in association with increases in plasma proMMP-9 levels, supporting a relationship 
between postural blood stasis, increased lower limb venous hydrostatic pressure, infiltration of 
polymorphonuclear leukocytes in the vein wall, and increased MMP release in VVs[85].

Proinflammatory cytokines may contribute to the inflammation of the vein wall and the increases in the 
release of MMPs. Urokinase plasminogen activator (uPA) contributes to the inflammation process by 
increasing tumor necrosis factor-α (TNF-α) expression in injured vessels. TNF-α increases MMP-9 gene 
promoter activity via activation of specificity protein-1 (Sp-1), activator protein-1 (AP-1), and nuclear factor 
κ light chain enhancer of activated B cells (NF-κB)[86]. Also, interleukins such as IL-17 and IL -18 induce 
MMP-9 mRNA expression through activation of signaling pathways involving AP-1 and NF-κB[87]. Of note, 
patients with infected VLU show greater levels of TNF-α, IL-1, IL-6, and IL-8, MMP-1 and MMP-8, and 
vascular endothelial growth factor (VEGF) compared to patients with non-infected VLU, supporting an 
association between inflammation, cytokine secretions, and MMP activation in advanced CVD and CVI[63].

Cytokines could also increase ROS which consequently affect the expression and activity of MMPs. MMP 
expression is regulated by NADPH oxidase-1 (Nox-1) in fibroblasts[88]. Also, uPA affects the expression of 
MMP-9 in part through increasing ROS production[89]. ROS could activate MMPs through oxidation of the 
MMP prodomain thiol and its autolytic cleavage. ROS may also modify the critical amino acids required for 
MMP proteolytic activity and lead to MMP inactivation, thereby providing a feedback-mechanism that 
controls any undesirable bursts in MMP activity[90]. Recent evidence also suggests the importance of reactive 
nitrogen species (RNS) in CVD. Peroxynitrite (ONOO-) is a potent oxidizing and nitrating agent that causes 
damage to the mitochondria, DNA, lipids via peroxidation, and protein oxidation and nitration, leading to 
post-translational modifications of many proteins, enzyme inactivation, and destruction of cellular 
functions. Specifically, ONOO- inhibits superoxide dismutase (SOD), causing further increases in ROS 
generation and activation of MMPs. A recent study of VLU tissue showed markedly elevated oxidative 
stress markers (increased lipid peroxidation, gluthathione activity, and radical scavenging activity), and 
tissue injury (as indicated by elevated lactate dehydrogenase). There were also marked increases in the levels 
of poly ADP ribose, an indicator of DNA damage/repair, as well as elevated levels of nitrotyrosine, a stable 
byproduct of ONOO- activity. This study was one of the first to demonstrate the presence and activation of 
poly ADP ribose and ONOO- in CVD[91]. Further investigations are needed to determine if ONOO- is also 
present in VVs, and consequently develop treatment strategies to reduce ONOO- formation.

Other MMP inducers/activators in CVD
Other MMP inducers and activators could increase MMP expression and activity in VVs. For instance, 
extracellular MMP inducer, also known as extracellular matrix metalloproteinase inducer (EMMPRIN), 
Basigin or CD147, is a membrane protein and a member of the immunoglobulin superfamily that is widely 
expressed and involved in the remodeling of many tissues and in the pathophysiology of many conditions 
including atherosclerosis, vascular aneurysm, cardiac failure, rheumatoid arthritis, and cancers. High 
volume mechanical ventilation could cause acute injury of the lung, and could promote increases in the 
expression of MMPs such as MMP-2, MMP-9, and MT1-MMP as well as EMMPRIN[92]. MMP-2, MT1-
MMP, MT2-MMP and EMMPRIN are also upregulated in dermal structures of VLU, causing uncontrolled 
increase in MMP activity and further increases in ECM degradation[93].
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Vascular cells also produce bioactive lipid metabolites and prostanoids that could affect MMP activity in 
CVD and VVs. Prostaglandin-E2 (PGE2) through activation of EP1-4 receptors play a role in the regulation 
vascular tone, vascular wall remodeling and tissue inflammation[94]. In human endometriotic stromal and 
epithelial cells, PGE2-induced stimulation of EP2 and EP4 receptors causes increases in the activity of 
MMPs[95]. Of note, the synthesis of PGE2 may decrease in CVD and VVs owing to compensatory increases 
in the anti-inflammatory 15-deoxy-delta-12,14-PGJ2, decreases in membrane-associated PGE-synthase-1, 
and increases in the 15-hydroxyprostaglandin dehydrogenase enzyme degradation activity. A decrease in 
PGE2 levels and in turn reduction in EP4 receptor activity could lead to a decrease in the activity of MMP-1 
and MMP-2 activity, resulting in increased collagen accumulation that is mainly observed in the 
hypertrophic regions of VVs [Figure 2][60].

Chymase, a chymotrypsin-like serine protease produced by mast cells and the cardiovascular system, has 
been associated with the increases in MMP-9 activity and the infiltration of monocytes and macrophages in 
the aortic wall of stroke-prone spontaneously hypertensive rats[96]. Estrogen and progesterone increase the 
expression and activity of MMP-2 and MMP-9 in blood vessels, the uterus and placenta[97,98]. Also, NGAL 
binds to and protects MMP-9 from degradation by proteolytic enzymes, and leads to increases in its 
levels/activity[99]. Whether these MMP inducers and activators are upregulated in CVD and VVs needs to be 
explored.

MMP ACTIVITIES IN CVD
MMPs are largely known for their ability to cause proteolysis of different substrates and to promote 
degradation of various ECM proteins, which could contribute to venous tissue remodeling and the 
pathogenesis of VVs. Additionally, MMPs could affect other molecular and signaling pathways in VSMCs 
and endothelial cells and consequently affect vein function, particularly in the initial vasodilation stages of 
CVD.

MMPs and ECM degradation in CVD
Alterations in MMP activity affect ECM composition and contribute to the abnormalities in vein structure 
and function associated with CVD. While many studies have shown that MMP levels are increased in VVs, 
some reports show that MMP levels could be decreased in VVs[60]. The discrepancy in the levels of MMPs 
may in part explain the structural and pathological differences observed in the atrophic vs. hypertrophic 
regions of VVs. Increases in the activity of MMPs are expected to cause degradation of ECM proteins 
mainly in the atrophic regions of VVs[14]. Conversely, decreased MMP activity would preserve and cause 
accumulation of ECM proteins in the hypertrophic regions of VVs, thus interfering with the contractility of 
VSMCs, and leading to reduction in the vein contractile function and increased venous dilation in VVs[100].

MMPs could affect the ECM content of collagen and elastin. VVs show increased collagen type-I and 
decreased collagen type-III compared with control veins[19,101,102]. Cultured VSMCs from VVs also show 
decreased collagen type-III and fibronectin possibly due to proteolytic degradation induced by MMP-3[19]. 
VVs may also demonstrate a decrease in their elastin content possibly due to increased elastolytic 
degradation by MMPs or other proteases and elastases produced by fibroblasts, platelets, macrophages and 
monocytes[20]. The net amount of collagen and elastin in VVs is influenced by the dynamic interaction 
between different biological processes at different stages of CVD. For example, increases in the vein collagen 
content could compensate for the decreases in elastin levels during the early stages of CVD. Conversely, the 
vein collagen content may show a decrease in the later stages of VVs. This may provide an explanation for 
the divergent reports of the collagen levels in VVs, showing a decrease[17], no change[18,20] or even an 
increase[16]. VVs may also show changes in other ECM proteins including increases in the levels of tenascin 
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and decreases in the vein laminin levels[19,101,102].

MMPs and VSMC dysfunction in CVD
Besides the MMP-induced changes in ECM proteins, MMPs could participate in the pathophysiology of 
CVD by influencing VSMC migration, growth, apoptosis and contractile function [Figure 3].

MMP-mediated ECM proteolysis modulates cell-matrix adhesion and in turn facilitates VSMC migration. 
MMP-1 and -9 can mediate increases in human aortic SMC migration[103,104]. In rat aortic SMCs, 
upregulation of MMP-1 increases flow-mediated cell motility through phosphorylation of ERK1/2 and 
increases in c-Jun and c-Fos transcription factors[103]. In cultured human VSMCs, MMP-2 affects 
chemokine-induced chemotaxis[105]. Also, in mouse model of carotid artery ligation, MMP-2 knockout 
reduces SMC migration and neointima formation[106,107]. Similarly, MMP-9 promotes SMC migration, and 
MMP-9 knockout in mouse models of filament loop injury and carotid artery occlusion reduces SMC 
migration and intimal hyperplasia[108,109].

MMPs disrupt the basement membrane, facilitate the interaction between ECM and integrins, and promote 
activation of focal adhesion kinases (FAK) and SMC migration[110]. MMPs also cause fragmentation of 
basement membrane proteins such as collagen type-I, thus uncovering new integrin-binding sites. In 
preparation for cell migration, integrins, cadherins and growth factor receptors coordinate their functions 
in order to reorganize the cytoskeleton[111,112]. MMPs cleave E-cadherin in epithelial cells, VE-cadherin in 
endothelial cells and N-cadherin in VSMCs[113,114], thus dissolving adherence junctions and allowing the cells 
to migrate. In addition to facilitating cell migration by promoting ECM proteolysis, MMP-1 binds to and 
cleaves protease-activated receptor-1 (PAR-1) and in turn uncovers tethered ligands that stimulate cell 
signaling and migration[115]. By sensing a proteolytic environment, the cells then actively and gradually move 
to the area where ECM is degraded.

SMC reorganization and migration into the vein intima may occur in CVD[116-119]. SMCs in VVs appear 
disorganized, dedifferentiated, and show vacuolization and phagocytosis[116,117]. Compared to the VSMC 
contractile phenotype in healthy veins, VSMCs isolated from VVs are largely dedifferentiated and show 
increased MMP-2 secretory potential and tendency for migration[120]. MMP-mediated SMC 
dedifferentiation and migration lead to phenotypic switch from contractile to synthetic phenotype, 
decreases in the vein contractile response and further venous dilation [Figure 3].

MMPs also facilitate a growth-permissive environment between VSMCs and ECM through integrin-
mediated signaling[121]. MT1-MMP stimulates the release of transforming growth factor-β (TGF-β) and 
facilitates maturation of osteoblasts[122]. Also, MMP-2 upregulation increases, while downregulation of 
MMP-2 decreases VEGFa expression in human gastric cancer cell line[123]. MMPs also facilitate the release of 
growth factors from their binding proteins, which may promote VSMC hypertrophy in the hypertrophic 
regions of VVs[124].

The contacts between the cells and ECM enhance VSMC survival, and disruption of these cell-ECM 
contacts causes apoptosis and anoikis (programmed cell death of anchored cells when they become 
detached from ECM)[125]. ECM-integrin interactions activate FAK and induce the p53 signaling pathway and 
cell survival[126,127]. Normal MMP levels are required for FAK activation and induction of the cell survival 
signaling pathway, but if MMP production becomes excessive it could cause increases in the degradation of 
ECM proteins and integrins and lead to anoikis[128]. For instance, MMP-7 cleaves N-cadherin and in turn 
regulates apoptosis of VSMCs. MMPs could also regulate apoptosis by cleaving the death ligands TNF-α 
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and Fas and their receptors. MMP-1, -2, - 8, -9, -13, -14 and -17 cleave the TNF-α precursor pro-TNF-α into 
its active form[129,130]. Also, MMP-7 cleaves Fas-L leading to its shedding from the cell surface[131,132]. MMP-2 
has been localized in the nucleus of isolated cardiac myocytes, where it promotes caspase-dependent 
cleavage of the DNA repairing enzyme poly-ADP ribosepolymerase and leads to cell apoptosis[133]. While 
MMPs regulate cell apoptosis, the contribution of SMC apoptosis to VVs pathology needs to be further 
examined.

Besides the tunica adventitia and ECM, the localization of MMPs in the tunica intima and tunica media 
suggests additional effects on endothelial cells and VSMCs[58,59]. In rat mesenteric arteries, MMP-2 and -7 
through PI3K activation and ATP synthesis cause transactivation of epidermal growth factor receptor and 
maintain phenylephrine-induced vascular tone. In support, MMP-2 or -7 knockdown by siRNA blunts Akt 
phosphorylation of PI3K in rat aortic VSMCs[134]. On the other hand, MMP-2 and MMP-9 inhibit 
phenylephrine-induced contraction in rat aortic segments in a time-dependent, concentration-dependent, 
and reversible fashion, which suggests that the MMP effects are not caused by irreversible proteolysis and 
degradation of ECM protein components[135]. Also, the MMP-induced inhibition of the VSM contractile 
response may not be due to destruction of the phenylephrine molecule or proteolytic degradation of the α-
adrenergic receptors because MMPs also inhibit vascular contraction induced by prostaglandin F2α, and 
these observations can be interpreted as direct effects of MMPs on a common post-receptor VSMC 
contraction mechanism. VSMC contraction is initiated by Ca2+ release from the sarcoplasmic reticulum and 
maintained by Ca2+ influx through plasma membrane channels. Our previous studies have shown that 
MMP-2 and MMP-9 do not affect phenylephrine-induced contraction in rat aortic segments incubated in 
Ca2+-free solution, suggesting that MMPs do not affect the Ca2+ release mechanism from the sarcoplasmic 
reticulum[135]. Importantly, MMP-2 and MMP-9 inhibit Ca2+ influx in rat aortic segments[135], and MMP-2 
inhibits extracellular Ca2+-dependent contractile response in rat IVC[136]. It could be argued that MMPs 
induce protein degradation and in turn produce Arg-Gly-Asp (RGD)-containing peptides, which could 
bind to αvβ3 integrins and lead to inhibition of Ca2+ influx into VSMCs[137]. This may be unlikely because our 
experiments with RGD peptides showed that they did not inhibit the IVC contractile response[136]. One 
possibility is that MMPs could activate PARs and their downstream signaling pathways leading to blockade 
of Ca2+ channels in VSMCs[138]. In support, thrombin acts as a protease and activates PARs, consequently 
promoting endothelium-dependent inhibition of Ca2+ influx and relaxation of VSMCs[139]. We have 
previously reported that the relaxation of rat IVC segments induced by MMP-2 is prevented in veins 
incubated in a high KCl depolarizing solution, which blocks outward movement of K+ ion via 
plasmalemmal K+ channels. Also, iberiotoxin, a blocker of large-conductance Ca2+-activated K+ channels 
(BKCa), inhibited MMP-2 induced relaxation of rat IVC, which suggests that MMP-2 actions involve 
membrane hyperpolarization, activation of BKCa, and inhibition of Ca2+ entry through voltage-dependent 
Ca2+ channels [Figure 3][140]. Long-term, maintained MMP-induced inhibition of Ca2+ entry and the vein 
contractile response could lead to progressive venous dilation and formation of VVs.

MMPs and endothelial integrity and function
VVs often show inflammatory cell infiltration and increased ICAM-1 and VCAM-1 expression[57,84,116], and 
these effects could be related to changes in MMP expression. MMPs regulate endothelial integrity and 
vascular permeability. Application of supernatants from cultured colon cancer and melanoma cells on 
human umbilical endothelial cells (HUVECs) and human dermal microvascular endothelial cells renders 
the cells a more prothrombotic, proinflammatory, and cell-adhesive state through activation of MMP-
1/PAR-1 pathway[141]. In mouse aorta, MMP-13 induced cleavage of ICAM-1 may require endothelial nitric 
oxide synthase[142]. Upregulation of MMP-2 and MMP-9 plays a role in the increases in vascular 
permeability and membrane disruption induced by human immunodeficiency virus-1 in rat brain[143]. 
MMP-2 and MMP-9 also disrupt membrane barrier integrity in porcine brain capillary endothelial cells[144], 
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and the MMP inhibitor GM6001 prevents degradation of the tight junction protein occludin and reduces 
the intercellular gap and vascular permeability in porcine cerebral microcapillary endothelial cells[145]. 
Endothelial cells regulate vascular tone by releasing NO, prostacyclin (PGI2) and endothelium-derived 
hyperpolarizing factor (EDHF)[146]. Also, MMPs could activate PARs, and in turn contribute to venous 
dilation in CVD [Figure 3]. PARs 1-4 are GPCRs that have been found in humans and other species. PAR-1 
is expressed in endothelial cells, VSMCs[147], and platelets[148] and is coupled to increased NO production[149]. 
MMP-1 activates PAR-1[115], which could contribute to progressive venous dilation and VVs formation.

EDHF causes vascular relaxation through the opening of small and intermediate conductance Ca2+-activated 
K+ channels and endothelial cell hyperpolarization. The hyperpolarization of endothelial cells then spreads 
through myoendothelial gap junctions and causes VSM relaxation. EDHF-mediated vascular relaxation may 
involve epoxyeicosatrienoic acids, which are produced from the metabolism of arachidonic acid by 
cytochrome P450 epoxygenases. Other EDHFs include K+ ion and hydrogen peroxide (H2O2)[140]. EDHF 
could then open BKCa and cause hyperpolarization of VSMCs[146]. Our studies in rat IVC have suggested that 
MMP-2 could increase EDHF release and promote K+ efflux via BKCa, which in turn causes vein 
hyperpolarization and relaxation[140]. On the other hand, studies suggest that MMP-3 may impair 
endothelium-dependent vasodilation[150], and therefore it is important to further study the effects of MMPs 
on the endothelium and vascular relaxation mechanisms.

MANAGEMENT OF CVD
Treatment of CVD includes conservative approaches and venotonics in the early stages, and interventional 
surgical approaches in more advanced stages [Table 2]. MMP inhibitors have also been considered as 
potential approaches for management of CVD.

Conservative approaches for CVD
VVs can first be managed using physical approaches such as graduated elastic compression stockings, which 
promote venous emptying, decrease pain and edema, and could slow VVs progression to the more 
advanced forms of CVI presented as skin changes and VLU[151,152]. Compression elastic stockings could also 
help to reduce the incidence of venous thromboembolism after VVs surgical procedures, and improve the 
hemodynamics in post-thrombotic syndrome[153].

Venotonic therapy for CVD
Venotonic drugs could enhance venous tone, improve capillary permeability, and decrease leukocyte 
infiltration in the vein wall. Venotonics include α-benzopyrones (coumarins), γ-benzopyrones (flavonoids), 
plant extracts (blueberry and grape seed, ergots, and Ginkgo biloba), saponosides (Centella asiatica, escin, 
horse chestnut seed extract, and ruscus extract)[154], and other naturally occurring compounds such as 
catechin (green tea), escletin, hesperitin, hesperidine, oxerutin, quercetin, rutosides, troxerutin, 
umbelliferone and venoruton[155].

Flavonoids affect endothelial permeability and leukocyte infiltration and decrease edema and inflammation, 
and saponosides reduce vein wall distensibility and morphologic changes. Flavonoids such as diosmin and 
saponosides such as Aesculus hippocastanum, aescin, and escin have been used in the management of VVs 
and VLU[156,157]. Diosmin, the active ingredient in Daflon-500, could improve venous tone, microcirculatory 
flow, microvascular permeability and lymphatic activity[156,158,159]. Escin could reduce leg edema, pain, and 
fatigue/heaviness, and decrease calf itching and cramps[160,161]. Escin exerts its venotonic action through 
several mechanisms including improved permeability of endothelial cells, release of endothelium-derived 
vasoconstrictors such as prostaglandin-F2α, and vein sensitization to the contractile actions of histamine 
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Table 2. Management of varicose veins

Treatment strategy Specific treatment Ref.

Compression therapy Graduated compression stockings, velcro compression, inelastic garments, multilayer 
bandaging, short-stretch bandages

[152]

Pharmacological 
treatment

α-benzopyrones (Coumarins) 
γ-benzopyrones (Favonoids) 
Saponosides (Escin, horse chestnut seed extract) 
Plant extracts (Blueberry and grape seed, Ginkgo biloba) 
Daflon-500 
Venoruton (Oxerutin) 
Others: Pentoxifylline, red vine leaves (AS-195), prostaglandin E1

[154] 
[155] 
[156,157,163] 
[242] 
[156,158,159,243] 
[170] 
[244-246]

Sclerotherapy Sodium tetradecyl sulfate, sodium morrhuate and polidocanol [172,247]

Surgical intervention Endovenous ablation (Radiofrequency or infrared laser) 
Surgical stripping 
Ambulatory micro-phlebectomy, transilluminated power phlebectomy

[174-176] 
[177] 
[178]

and serotonin[157,162,163]. Escin is also known to form small pores in the cell plasma membrane and is utilized 
experimentally to examine the sensitivity of the vascular contraction pathways to various vasoconstrictor 
agonists, and for permeabilization or skinning of VSMC membrane in order to change critical intracellular 
ions or regulatory proteins[157,163-165]. Escin-induced pores permit Ca2+ and other biologically-relevant factors 
(> 3000 dalton) including calmodulin and heparin to diffuse across the plasma membrane without 
damaging membrane receptors or coupling mechanisms[166]. On the other hand, diosmin may increase 
lymph drainage, decrease vein inflammation, and inhibit venous cathecol-O-methyltransferase (COMT) 
and in turn decrease norepinephrine metabolism and prolong its effects on vein constriction[167,168]. Some 
studies also suggest that diosmin may enhance the venotonic effects of escin[164]. Our recent studies have 
examined the effects of escin and diosmin in rat IVC[169]. In Ca2+-free solution, escin did not cause IVC 
contraction. In veins pretreated with escin in a 0 Ca2+ incubation solution, gradual increases in extracellular 
CaCl2 were associated with stepwise increases in the vein contractile response. In escin-pretreated rat IVC, 
the contraction to phenylephrine, AngII and high KCl was reduced. In comparison, diosmin caused small 
IVC contraction in normal or Ca2+-free solution. In rat IVC pretreated with diosmin in a 0 Ca2+ incubation 
solution, gradual increases in extracellular CaCl2 caused negligible contraction. Diosmin did not augment 
the IVC contractile response to phenylephrine, AngII or escin, but increased the vein contraction in 
response to high KCl solution. These observations in rat IVC suggested that escin promotes extracellular 
Ca2+-dependent venous contraction, but disrupts α-adrenergic receptor- and angiotensin receptor-mediated 
contraction mechanisms. Thus, the initial extracellular Ca2+-dependent venotonic benefits of escin could be 
offset by its disruption of the vein contractile response to various endogenous venoconstricting factors, 
which would limit its long-term usefulness in pharmacological treatment of VVs. Also, diosmin does not 
appear to promote vein contraction on its own or enhance the venotonic effects of escin or endogenous 
venoconstricting factors, and therefore its benefits as a venotonic agent need further examination[169].

In patients with advanced CVI, rutosides have shown some enhancement of endothelial cell function[170]. 
Also, pentoxifylline, a xanthine derivative that has anti-inflammatory and hemorheologic effects such as 
TNF-α inhibition, decreased synthesis of leukotrienes, and reduced deformability of red blood cells, may 
have benefits in advanced CVI[171]. PGE1 and red vine leaves (AS 195) may also improve microcirculatory 
blood flow and transcutaneous oxygen tension leading to reduction of leg edema in CVI[4].

Surgical approaches for CVD
Several strategies can be used to obliterate the engorged VVs and improve the venous hemodynamics. 
Sclerotherapy under the guidance of Duplex ultrasound involves administration of hypertonic solutions of 
saline or high concentrations of sclerosing compounds such as ethanolamine oleate or sodium morrhuate in 
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the dilated VVs. Other sclerosing agents approved by the Food and Drug Administration (FDA) include the 
liquid detergent sodium tetradecyl sulfate (STS) and polidocanol[172]. STS and polidocanol produce foam 
that displaces blood, and causes vasoconstriction and eventually thrombosis and occlusion of VVs. VVs 
patients treated with proprietary polidocanol endovenous microfoam have reported good benefits and 
improved quality of life[173].

Other surgical approaches include endovenous ablation with a radiofrequency or infrared laser at 
wavelengths ranging between 810 and 1320 nm, but could be as high as 1470 and 1550 nm. The high 
endovenous heat denatures endothelial cell proteins and occludes VVs[174]. Ablation therapy has shown 
acceptable vein occlusion rates, good clinical outcomes, and ~2% vein recanalization rate 4 years following 
radiofrequency therapy[175] and only 3%-7% VVs recurrence rate 2-3 years following infrared laser 
therapy[176]. Stripping of the saphenous vein and high ligation of the saphenofemoral junction are also 
commonly used surgical approaches with a low VVs recurrence rate[177]. Ambulatory micro-phlebectomy 
involves avulsion of clusters of large VVs and incompetent saphenous vein. Transilluminated power 
phlebectomy is also used to remove clusters of VVs through fewer incisions and a shorter surgical 
procedure[178].

Innovative endovenous treatment of VVs involves the use of non-thermal and non-tumescent approaches 
including cyanoacrylate glue and related mechanochemical techniques[179,180]. Initial clinical outcomes are 
promising, but further studies are needed to evaluate the potential benefits of these new approaches vs. the 
thermal ablation and surgical procedures.

SDX in venous leg ulcer
SDX is a highly-purified glycosaminoglycan with antithrombotic and profibrinolytic effects, which has 
shown benefits in atherosclerotic and thrombotic vascular disease. SDX-mediated decrease in blood 
viscosity together with its fibrinolytic and lipolytic properties has made it beneficial in vascular disorders 
such as atherosclerotic peripheral arterial disease, chronic leg ischemia, post-thrombotic venous syndrome, 
and venous thromboembolism[181-186]. SDX has also shown some benefits in diabetic microangiopathy and 
nephropathy, advanced CVI and VLU[182,185,187]. Experimental studies have also shown beneficial actions of 
SDX including reduction of oxidative stress[188], modulation of growth factors, decreased MMP expression, 
reduced inflammation, anti-angiogenic effects[189], and protection of endothelial cells[14,75,190-195].

Recent studies have shown that in CVD patients at CEAP stage C5, SDX treatment for 2 months was 
associated with reduction in MMP-9 serum level[196]. Also, treatment of leukemia white blood cells in culture 
with SDX causes reduction in the proMMP-9 and complexed MMP-9 in a concentration-dependent 
manner[14]. We have recently shown that SDX could improve venous contraction. In IVC segments under 
control basal tension, SDX caused concentration-dependent (0.001-1 mg/mL) contraction. In IVC segments 
under prolonged stretch, high KCl-induced contractile response and phenylephrine-elicited contraction 
were reduced. In IVC under prolonged stretch and pretreated with SDX, the high KCl-induced contractile 
response was restored and phenylephrine-induced contraction was improved. MMP-2 and MMP-9 levels 
and activity were increased in IVC segments under prolonged stretch, and reversed to control levels in IVC 
segments under prolonged stretch and pretreated with SDX. These observations suggest that SDX enhances 
contraction in veins under protracted stretch likely through decreases in MMP-2 and MMP-9 activity, and 
these effects could contribute the potential benefits of SDX in CVI and VVs[14].

Interestingly, SDX shows different effects in arteries vs. veins. In contrast with the contractile effect of SDX 
in rat IVC, our recent experiments showed that phenylephrine caused contraction in rat aortic and 
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mesenteric artery segments that was decreased in arterial segments pretreated with 1 mg/mL SDX. Also, in 
rat aortic and mesenteric artery rings precontracted with phenylephrine, SDX (0.001-1 mg/mL) caused 
dose-dependent arterial relaxation. In phenylephrine precontracted aortic and mesenteric arterial segments, 
SDX-induced relaxation was reduced by removal of the endothelium or treatment with the NO synthase 
(NOS) blocker Nω-nitro-L-arginine methyl ester (L-NAME), which suggests a role of NO in SDX-induced 
arterial relaxation. Interestingly, the arterial relaxation and increases in nitrate/nitrite production induced in 
response to acetylcholine were also enhanced by SDX. These observations suggest that SDX enhances 
arterial relaxation through endothelial cell-mediated release of NO, a beneficial effect that could improve 
vasodilation and reduce vasoconstriction in vascular disease[197]. In support, meta-analyses of data from 
randomized controlled trials have shown that treatment with SDX for at least one month may reduce blood 
pressure in patients with hypertension[195,198].

Inhibitors of MMPs in CVD
Current treatment of CVD mainly focuses on the symptoms instead of the causes of VVs. The growing 
evidence of a role of MMPs in the pathogenesis of VVs has generated interest in the effects of MMP 
inhibitors, and their potential use to reduce the development and/or recurrence of CVD. Inhibitors of 
MMPs are either endogenous such as TIMPs and α2-macroglobulin, or synthetic Zn2+-dependent and Zn2+-
independent compounds.

TIMPs are naturally occurring inhibitors of MMPs that bind to the MMP molecule in a 1:1 
stoichiometry[199,200]. TIMPs have 4 homologous subtypes, TIMP-1, -2, -3 and -4, which have different 
efficacies in inhibiting various MMPs. TIMP-1 is not a good inhibitor of MMP-19 and MT1-, MT3-, and 
MT5-MMP, whereas TIMP-2 and -3 are good inhibitors of MT1- and MT2-MMP[201]. TIMP-1 and -2 bind 
MMP-3, and this binding is a 10-fold stronger than that for MMP-10[202].

Studies have shown higher TIMP-2 expression and greater accumulation of connective tissue in the tunica 
media of VVs vs. control veins. The expression of TIMP-2 and -3 is also greater in the hypertrophic than 
atrophic regions of VVs, and in the thicker proximal regions vs. the distal regions of VVs. Increases in the 
expression of TIMPs are predicted to inhibit the activity of proteases, decrease degradation of ECM 
proteins, promote accumulation of connective tissue, and thicken the vein wall[203]. Studies have also 
identified TIMP-1 and -3 in the tunica intima and TIMP-1, -2, and -3 in the tunica media of VVs compared 
to TIMP-1, -2, and -3 in the tunica intima and TIMP-1 and -2 in the tunica media of control veins[2].

MMP/TIMP imbalance could be an important factor in the pathogenesis of CVD. Studies have shown slight 
changes in the levels of MMP-7 and -9, and TIMP-1, -2 and -3, increased levels of MMP-1, -2 and -3 levels, 
and increases in the elastic network and the deposition of collagen type-I, fibrillin-1 and laminin in the vein 
wall and the skin of patients with VVs compared with control veins isolated from patients undergoing 
surgical coronary bypass. These observations suggest that MMP/TIMP imbalance disrupts ECM turnover. 
Also, the observed changes not only in the vein wall but also in the skin of patients with VVs suggest 
systemic connective tissue remodeling[2]. Studies have also shown a decrease in the ratio of MMP-2 to 
TIMP-1 in avulsed VVs and increased ECM accumulation in the hypertrophic regions of VVs[204]. Patients 
with VLU also show elevated plasma levels of MMP-2 and -9, TIMP-1 and -2, and increased ratio between 
MMP-2 and TIMP-2. On the other hand, patients with healed VLU show decreases in MMP-9, TIMP-1 and 
the ratio between MMP-2 and TIMP-2 below basal levels[205], highlighting the importance of examining 
MMPs and TIMPs in different VVs regions and at different stages of CVD and CVI.
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Divalent ions such as Cu2+, Mg2+, and Mn2+ inhibit MMPs by interfering with Zn2+ at the Zn2+ binding site in 
the MMP catalytic domain[206]. The MMP Zn2+ binding property has been utilized to develop several MMP 
inhibitors[4,207]. Inhibitors of MMPs usually have a Zn2+ binding side-chain such as carboxylic acid, 
hydroxamic acid, or a sulfhydryl group[208]. Zn2+ binding globulins (ZBGs) inhibit MMPs by displacing the 
Zn2+-bound water molecule in the MMP catalytic domain. ZBG also functions as anchors to keep the MMP 
inhibitor attached to the MMP active site and allow it to diffuse inside the substrate-binding pocket[209]. 
Hydroxamic acid-based MMP inhibitors include phosphinamide, succinyl, and sulfonamide 
hydroxamates[208,210,211]. Succinyl hydroxamates such as batimastat (BB-94), marimastat (BB-2516), and 
ilomastat (GM6001) have a structure similar to collagen, and function as broad spectrum MMP inhibitors 
through bidentate chelation of Zn2+[208,212]. Other ZBGs such as aminomethyl benzimidazole-containing 
ZBGs, nitrogen- and phosphorous-based ZBGs, carboxylic acids, sulfonylhydrazides, thiols, and 
heterocyclic bidentate chelators have also been developed[209,213,214]. Mechanism-based MMP inhibitors and 
tetracyclines also inhibit MMPs by chelation of Zn2+ from the MMP active site[208]. An example of 
mechanism-based MMP inhibitors is SB-3CT or compound-40 which coordinates with the MMP Zn2+ and 
allows the conserved Glu202 in the MMP molecule to initiate a nucleophilic attack and form a covalent 
bond with the MMP inhibitor[209]. The mechanism-based MMP inhibitors have an advantage over other Zn2+ 
chelating MMP inhibitors, as the strong covalent bond between SB-3CT and the MMP molecule prevents 
dissociation of the MMP inhibitor, and thereby reduces the concentration of MMP inhibitor required to 
saturate the MMP active site[215].

Other MMP inhibitors including compound-37 do not have ZBGs, and do not bind to the highly-conserved 
Zn2+ binding site, but rather interact non-covalently with the S1’, S2’, S3’, and S4’ pockets in the MMP 
molecule in a manner similar to that of the substrate P1’, P2’, P3’, and P4’ substituents[216]. The efficacy and 
specificity of these MMP inhibitors depend on which of the pockets it blocks in the MMP molecule[208].

MMP-specific siRNA inhibits the transcription of specific MMPs[217]. Also, some compounds could have 
pleiotropic properties including inhibition of MMPs. For instance, statins such as atorvastatin decrease 
MMP-1, -2, and -9 expression in human retinal pigment epithelial cells[218], and inhibit MMP-1, -2, -3, and 
-9 release from human saphenous vein SMCs, rabbit macrophages and rabbit aortic SMCs[219]. Also, 
treatment of rat models of heart failure with pravastatin suppresses the increases in activity of MMP-2 and 
-9[220]. Although the design and development of MMP inhibitors has shown great advances, doxycycline 
remains the only MMP inhibitor approved by the FDA[221]. Patients with VLU who received basic 
compression therapy with or without VVs surgery in addition to oral doxycycline 20 mg b.i.d. for 3 months 
showed a higher rate of healed VLU than patients receiving basic therapy alone. Of note, the lower VLU 
healing rate in patients who received basic therapy alone was also associated with increased MMP-9, NGAL 
and VEGF levels in the plasma, wound fluid and tissue biopsies. Doxycycline therapy through its anti-
inflammatory actions and MMP inhibition could also improve ECM function and facilitate VLU 
healing[222]. MMP inhibitors have major limitations as they cause several musculoskeletal side-effects 
including joint pain, stiffness, inflammation, and tendonitis[223]. Improved selectivity of MMP inhibitors and 
their directed targeting locally to the dilated venous segments could enhance their therapeutic potential and 
minimize their systemic side-effects in the management of CVD.

CONCLUSION AND PERSPECTIVE
CVD is a challenging venous disorder in terms of understanding its underlying mechanisms and providing 
effective management. Demographic, genetic and environmental factors have been suggested as 
predisposing risk factors for CVD. Changes in MMPs could also promote venous dilation. Changes in 
venous shear stress and endothelial glycocalyx lead to leukocyte and adhesion molecule activation. 
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Increased lower extremity venous hydrostatic pressure, elevated levels of HIFs, ROS and RNS tissue 
metabolites, and inflammation and leukocyte infiltration of the vein wall lead to increases in cytokines and 
MMP expression/activity, and result in progressive dilation of the vein wall, valve incompetence and venous 
reflux. MMPs have been localized in different layers of the vein wall. MMPs promote proteolytic 
degradation of different protein substrates in ECM including collagen and elastin, leading to weakening of 
the vein wall architecture and venous dilation. MMPs could promote VSM cell migration, growth and 
apoptosis, and could modulate K+ channels, Ca2+ signaling and VSM contraction. MMPs could also affect 
the endothelium integrity and endothelium-dependent relaxing factors. Current management of VVs 
includes compression stockings, venotonic drugs, sclerotherapy or surgical procedures to remove the 
affected veins. Sulodexide has been used successfully in VLU, and may have venotonic and MMP inhibitory 
effects, which may benefit patients with CVD. The identification of the MMP role in venous tissue 
remodeling suggests that they could serve as biomarkers for CVD progression and as promising targets in 
the management of VVs. However, several MMPs may be altered in CVD. Also, changes in the levels of 
MMPs may not be uniform in different regions of VVs with atrophic regions showing high levels of MMPs 
and small amount of ECM while the hypertrophic regions show low MMP levels and excessive ECM. Vein 
tissue remodeling is also a dynamic process so that an upregulation of one MMP in one region could be 
paralleled by downregulation of another MMP in a different region. MMP activity could also change during 
the different stages of CVD. MMP activity is controlled by endogenous inhibitors such as TIMPs. Therefore, 
different types of MMPs and TIMPs should be measured in the different regions of VVs and during the 
course of CVD. Currently available MMP inhibitors are not very selective and could cause multiple side-
effects[208]. The availability of more selective MMP inhibitors and their targeting locally in the veins in close 
proximity of VVs could limit their systemic side-effects and improve their effectiveness in treatment of 
CVD.
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