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Abstract

Radio Frequency (RF) sensing has emerged as a pivotal technology for non-intrusive human perception in various
applications. However, the challenge of collecting extensive labeled RF data hampers the scalability and effective-
ness of machine learning models in this domain. Our prior work introduced innovative generative Al frameworks -
RF-Artificial Intelligence Generated Content using conditional generative adversarial networks and RF-Activity Class
Conditional Latent Diffusion Model employing latent diffusion models - to synthesize high-quality RF sensing data
across multiple platforms. Building upon this foundation, we explore future directions that leverage generative Al for
enhanced 3D human pose estimation and beyond. Specifically, we discuss our recent advances in pose completion
using latent diffusion transformers and propose additional research avenues: cross-modal generative models for RF
sensing, real-time adaptive generative Al incorporating evolutionary learning for dynamic environments, and address-
ing security and privacy concerns in intelligent cyber-physical systems. These directions aim to further exploit the
capabilities of generative Al to overcome challenges in RF sensing, paving the way for more robust, scalable, and

secure applications.

Keywords: Generative Al, 3D human pose estimation and completion, latent diffusion models, multi-modal condi-

tioning, RF sensing

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0

£ International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-
ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

m www.oaepublish.com/comengsys



https://creativecommons.org/licenses/by/4.0/
www.oaepublish.com/comengsys
OAE
图章

http://crossmark.crossref.org/dialog/?doi=10.20517/ces.2024.97&domain=pdf

Page 2 of 8 Wang et al. Complex Eng. Syst. 2025,5,6 | http://dx.doi.org/10.20517/ces.2024.97

1. INTRODUCTION

The proliferation of wireless communication technologies has ushered in an era where Radio Frequency (RF)
signals are not only mediums for data transmission but also carry important information for sensing and per-
ception. RF sensing enables device-free, privacy-preserving monitoring of human activities, offering signifi-
cant advantages over traditional vision-based or wearable systems. Recently, Deep learning has significantly
advanced RF sensing by enabling complex pattern recognition and interpretation of RF signals for applications
such as vital sign monitoring, human activity recognition (HAR) and 3D human pose estimation (HPE) ], De-
spite its high potential, RF sensing faces a significant hurdle: the collection of large-scale, high-quality labeled
datasets is both time-consuming and costly. RF data is highly sensitive to environmental changes, device
configurations, and temporal dynamics, making it challenging to generalize models across different settings.
Moreover, the randomness and complexity inherent in RF signals complicate the data acquisition process.

Generative Al offers a promising solution to this data scarcity problem (>*/. By synthesizing realistic RF data,
we can augment limited datasets, enhance model robustness, and reduce the dependency on extensive data
collection efforts. In our previous work, we harnessed the capabilities of generative adversarial networks
(GANs)* and diffusion models!®! to address these challenges. The diagram of generative Al for RF sens-
ing is illustrated in Figure 1. In this perspective paper, we summarize our contributions in this emerging
field and propose future research directions that build upon our foundational work. Specifically, we discuss
our latest findings in 3D human pose completion using latent diffusion transformers (LDTs) and outline two
promising avenues: cross-modal generative Al for enhanced RF sensing and real-time adaptive generative Al
for dynamic environments. These directions aim to further exploit the potential of generative Al in addressing
the challenges of RF sensing, ultimately enhancing the performance and practicality of RF-based applications.

2. ADVANCEMENTS IN GENERATIVE Al FOR RF SENSING

2.1. Related works

Traditional data augmentation techniques, such as geometric transformations and time-series interpolation,
have been applied to RF data®], but these methods often fail to generalize across unseen environments. GANs,
Variational Autoencoders (VAEs), and Diftusion Models have also been explored to generate synthetic RF data
for wireless sensing. For example, a prior study has applied GANs to RF sensing, primarily focusing on WiFi
Channel State Information (CSI) augmentation for improving HAR performance!”). Such generated synthetic
data lacks the complexity and variability required for practical RF sensing applications. Ultimately, existing
methods fall short in generalization, limiting their ability to synthesize diverse and adaptable RF data that
accurately represents a wide range of human activities. Diffusion models have been increasingly adopted due
to their ability to generate high-fidelity, diverse synthetic signals. As time-series signals with multidimensional
features, RF signals present abundant opportunities for sensing applications. Ref.[®] provides a comprehensive
survey that discusses the utilization of generative Al to augment wireless sensing.

2.2. RF-AIGC with conditional GANs

In our first study, we introduced an Artificial Intelligence Generated Content (AIGC) framework termed RF-
AIGC, utilizing a conditional Recurrent Generative Adversarial Network (RF-CRGAN). This model used
an autoencoder-based GAN network as the generator to synthesize labeled RF data from specific human
poses across multiple wireless sensing platforms, including WiFi, radio-frequency identification (RFID), and
Frequency-Modulated Continuous Wave (FMCW) radar.

To enhance the realism and diversity of synthesized RF data, we employ a two-stage generator fine-tuning
and adversarial learning process. After an initial pretraining phase, where the generator learns from real RF-
pose data, we fine-tune it using adversarial training with weakly supervised learning to improve generaliza-
tion across different RF modalities and activity types. Unlike conventional GANs, which often suffer from
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Figure 1. The diagram of our proposed “Generative Al for RF Sensing” framework: After appropriate signal processing for different RF
sensory data, GANs or diffusion models can start training and learning the diverse data distributions to generate high-quality synthetic
data. The goal is to automatically and interactively (allowing users to provide prompts such as class labels and texts) generate, complete,
enhance, edit or repair RF sensing data with fidelity and diversity.

mode collapse, our approach ensures the generator learns to produce diverse and temporally coherent RF sig-
nals. This is achieved through RF feature perturbations, where the generator synthesizes data conditioned on
pose skeletons and global motion variations, helping it learn fine-grained motion dynamics. By augmenting
limited training datasets with synthesized RF data, we demonstrated that models could achieve comparable
performance to those trained on extensive real-world data. The ability to synthesize RF data from vision data
(more easily acquired and modified) for specified activities allows for targeted augmentation, addressing class
imbalances, and improving model robustness.

2.3. RF-ACCLDM with latent diffusion models

Building upon the success of RF-CRGAN, our second study proposed the RF-ACCLDM (Activity Class Con-
ditional Latent Diftusion Model). This framework leverages latent diffusion models to directly generate high-
fidelity synthetic RF data based on the user prompt of a body shape and an activity label (e.g., drinking, boxing,
and walking). Operating in latent domains, RE-ACCLDM supports various RF technologies and modalities, in-
cluding RFID, WiFi CSI, and FMCW radar. The use of latent spaces reduces computational complexity and en-
ables the model to capture essential features across different RF modalities. By compressing high-dimensional
RF data into latent representations, the diffusion model operates more efficiently, allowing for the synthesis of
high-quality data at a fraction of the computational cost of its counterparts. The conditional diffusion process
ensures that the generated data aligns with specified activity classes, providing precise control over the data
generation process.

Our experiments showed that RF-ACCLDM outperforms traditional diffusion models on raw RF data in terms
of quality, computational efficiency, and scalability. Quantitatively, we use Fréchet Inception Distance (FID)
scores to measure the realism of the generated RFID data using our various generative models. GAN-based
RF-CRGAN had the highest FID (48.89), indicating a relatively large domain gap in realism compared to
real RF data. Diffusion-based RF-ACCDM improved fidelity by 47.5% (FID = 25.64), showing better feature
alignment with real RF data. Latent Diffusion-based RF-ACCLDM achieved the lowest FID (10.45), a 78.6%
improvement over GANS, nearly approaching real RF data quality (FID = 6.22). Latent diffusion produces
the most realistic RF data, demonstrating higher fidelity and better structural coherence compared to other
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methods, while taking significantly less time to train compared to standard diffusion models (with an over 40%
improvement).

The quality improvements are also evident in downstream tasks such as HAR classification. RF-CRGAN
reached 91.2% F1-score only when augmented with an adequate amount of real data, but struggled with do-
main shifts when used as is. However, diffusion-based RF-ACCDM improves performance to 92.1% (+ 1.0%)
without the need of mixing real data. Latent Diffusion RF-ACCLDM achieved the highest F1-score at 93.0%
(+2.0%), demonstrating superior activity classification, and offering better cross-domain adaptability. For com-
plicated regression tasks such as 3D HPE, synthetic models trained with only RF-CRGAN-generated data
achieved a median error of 6.08 cm, substantially larger than 4.89 cm obtained by standard diffusion models,
and 4.23 cm obtained by latent diffusion models. This is further supported by the fact that RE-CRGAN esti-
mates unnatural and discontinuous poses. Standard diffusion models perform better, but struggle with outliers
and noise. Latent diffusion models achieve natural and temporal poses with smoothness and rare outliers.

2.4. Pose completion with latent diffusion transformers

While our previous models addressed data scarcity, another challenge in RF-based 3D HPE is the incomplete
capture of skeletal joints due to sensing constraints. In our current research, we introduce a novel framework
that leverages LDTs with cross-attention conditioning to infer missing joints in skeletal poses®). By gener-
ating high-quality, diverse RFID sensing data and training a transformer-based kinematics predictor termed
RF-Former, we can estimate 3D poses with temporal smoothness from RFID data. Our model then completes
full 25-joint configurations from these partial 12-joint inputs, marking the first method to detect over 20 dis-
tinct skeletal joints using generative Al technologies in wireless sensing-based continuous 3D HPE tasks. This
advancement is particularly significant for RFID-based systems, which typically capture limited joint informa-
tion. Our approach extends the applicability of wireless-based pose estimation to scenarios where collecting
extensive paired datasets is impractical, such as pedestrian and health monitoring in occluded environments.
The architecture of the LDT system is shown in Figure 2.

To assess the realism and utility of 3D human poses estimated from LDT-generated RFID data in depth, we
evaluate the results using key structural and temporal metrics, as summarized in Table 1. These evaluations are
conducted across diverse subjects and multiple rounds of synthetic RFID data, ensuring robust analysis. The
estimated poses demonstrate strong alignment with anatomical and temporal expectations. Specifically, the
average joint position error is 8.99 cm, which, while slightly higher than real data, reflects realistic limb place-
ments given the generative setting. The joint angle error of 6.91° further confirms the structural plausibility
of the generated poses. Importantly, the temporal smoothness score of 1.51 cm/frame closely approximates
that of real motion data (1.40 cm/frame), demonstrating that our generated sequences preserve continuous
and fluid motion trajectories. In terms of generative quality, the FID score of 1.42 reflects high similarity to
real data (ground truth FID = 0.73), and our diversity score of 10.98 slightly exceeds the real data baseline
(10.35), indicating that the generated samples span a wide range of pose configurations without sacrificing
coherence. These outcomes indicate that LDT-generated RFID sequences not only resemble real-world dy-
namics but also generalize well to different skeletons, as our model was tested on subject configurations not
seen during RE-Former training. Altogether, the results support the conclusion that our LDT-based system
is capable of producing high-quality synthetic RF data that can be reliably transformed into 3D poses. These
poses maintain anatomical realism and temporal fluidity, enabling their effective use in data augmentation,
human motion analysis, and AIGC-empowered wireless sensing applications.

Furthermore, to fairly evaluate the effectiveness of our pose completion framework, we generate the same
number of samples as the ground truth data and report average scores under two scenarios: seen (partial
poses seen during training) and unseen (new partial poses never observed during training). The results are
presented in Table 2.
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Figure 2. The architecture of the RFID-based 3D human pose completion system empowered by latent diffusion transformers.

Table 1. Evaluation metrics for estimated 3D human poses using LDT generated RFID data

Metrics LDT Metrics LDT
Average joint error (cm) 8.99 FID 142
Joint angle error (°) 6.91 Diversity 10.98
Smoothness (cm/frame) 1.51 GT Diversity 10.35
GT Smoothness (cm/frame) 140

In the seen scenario, our model achieves strong structural and temporal performance: an average joint error
of 11.74 cm, bone length consistency of 1.77 cm, and a low joint angle error of 6.65°, indicating anatomically
plausible completions. The temporal smoothness score of 2.46 cm/frame closely aligns with that of real motion
sequences, preserving natural transitions across frames. Furthermore, the generated poses show high fidelity
and coverage with a FID of 0.87 and diversity score of 26.59, comparable to real data baselines (FID = 0.15,
diversity = 27.12), confirming both realism and motion variety. In the more challenging unseen scenario, the
model generalizes reasonably well despite no exposure to the partial pose patterns during training. The joint
error increases to 19.23 cm and the angle error to 11.13°, which remains acceptable given the added difficulty of
inferring 13 missing joints out of 25. Notably, the smoothness score drops slightly to 1.90 cm/frame, suggesting
that certain joints exhibit reduced motion. This is expected, as some generated motions may become overly
conservative without matching examples. Given that limb lengths in human skeletons average around 35 cm,
a 10 cm deviation corresponds to roughly one-third of an arm or one-quarter of a leg. The reported errors
are thus reasonable - especially considering that our model completes full-body poses (25 joints) from partial
inputs (12 joints) in motion, not static form.

Finally, we conduct detailed comparisons between our framework and two self-supervised learning (SSL) meth-
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Table 2. Evaluation metrics for 3D pose completion with ground truth and unseen partial pose conditioning

Metrics Ground truth Unseen
Avg joint error (cm) 1.74 19.23
Bone consistency (cm) 177 212
Joint angle error (°) 6.65 113
Smoothness (cm/frame) 2.46 190
FID (-) 0.87 4.67
Diversity (-) 26.59 13.71

ods for pose completion. The autoencoder-based model, despite its temporal-aware architecture, suffers from
severe overfitting, leading to poor generalization beyond the training dataset. While it achieves reasonable
joint position accuracy, it struggles with high trajectory errors and structural inconsistencies, particularly in
unseen cases. It produces unnatural joint twisting, with an average joint angle error of 16.0° and low temporal
smoothness (0.3 cm/frame), indicating it prioritizes minimizing reconstruction loss over learning meaningful
pose structures. The KNN-based approach, while offering better trajectory consistency, lacks flexibility in pose
completion, relying on direct interpolation and stitching of existing training samples rather than generating
novel poses. This limitation results in poor adaptability in unseen scenarios.

In contrast, the LDT model achieves state-of-the-art pose completion performance, significantly outperform-
ing both Autoencoder and KNN-based approaches. In seen scenarios (cases where the model is tested on pose
configurations that were present during training), LDT achieves an MPJPE of 11.7 cm, a bone length consis-
tency error of 1.77 cm, and a joint angle error of just 6.6°, ensuring that its generated poses are both structurally
sound and kinematically accurate. Unlike the autoencoder, which produces rigid and overfitted outputs, LDT
maintains fluid motion transitions, reflected in its superior temporal smoothness of 1.51 cm/frame. Even in
unseen scenarios, where generalization is critical, LDT maintains strong performance as LDT learns an un-
derlying manifold of human motion, enabling it to generate diverse, anatomically realistic, and temporally
coherent pose completions. Its superior generalization ability ensures smooth, accurate motion reconstruc-
tion, making it most effective for real-world tasks.

3. FUTURE DIRECTIONS

3.1. Cross-modal generative models for RF sensing

An exciting future direction is the development of cross-modal generative models that bridge RF sensing with
other data modalities, such as different wireless technologies, along with audio and vision data. By conditioning
RF data generation on these modalities, we can enhance the richness and context of synthetic RF datasets. For
instance, using synchronized audio cues or small amounts of visual data, a generative model could produce RF
signals that reflect complex human activities or environmental interactions. This cross-modal approach can be
particularly beneficial in situations where visual data is limited or privacy concerns restrict the use of cameras.
It also opens avenues for multi-sensor fusion, improving the robustness and accuracy of HAR systems.

A practical implementation of cross-modal generative Al could involve aligning WiFi CSI-based human activ-
ity data with video-based pose estimation models, where a joint embedding space maps RF signals to visual
motion representations. For example, a diffusion-based generative model could condition RF data synthesis
on concurrent depth images to improve the quality of RF-generated poses. A key challenge in this integration
is data synchronization and alignment across heterogeneous modalities, especially when dealing with differ-
ent sampling rates and noise characteristics. Another challenge is ensuring privacy compliance when fusing
RF with vision-based sensing, where sensitive data must be securely processed while retaining performance
benefits.
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3.2. Real-time generative Al for dynamic environment adaptation

Another critical research avenue is the application of generative Al for real-time data augmentation in dynamic
environments. RF sensing systems often suffer performance degradation due to changes in the environment,
such as moving objects, variable crowd densities, body shapes of test subjects, or alterations in room layouts.
By developing generative models capable of synthesizing RF data on-the-fly, we can continuously adapt and
augment the training data to reflect the current environment. Techniques like online learning, adaptive diftu-
sion models, and evolutionary algorithms could be explored to achieve this goal.

A practical approach could involve integrating evolutionary learning-based generative AI, where a model mon-
itors variations in RF data streams and adjusts synthetic data generation accordingly. For example, a real-time
latent diffusion model could refine its internal noise schedule based on environmental drift, ensuring that gen-
erated RF signals remain relevant even under shifting room layouts or varying subject appearances. However,
real-time adaptation poses several implementation challenges. First, computational constraints must be ad-
dressed to ensure that generative Al operates efficiently on edge devices. Second, real-time models must be
robust to transient anomalies, such as sudden occlusions or temporary RF interference, which could mislead
adaptation mechanisms.

3.3. Ethical Considerations in Synthetic RF Data Generation

While generative Al significantly enhances RF sensing by addressing data scarcity, it introduces concerns re-
garding bias and privacy risks. If training data is skewed toward specific body types or demographics, synthetic
RF signals may fail to generalize across diverse populations. For instance, HAR models trained predominantly
on young adults may struggle to recognize movement patterns of elderly individuals, leading to disparities
in real-world applications. Additionally, synthetic data generation must ensure that sensitive information is
not inadvertently leaked or reconstructed, as models may inadvertently encode latent representations of orig-
inal training data. For instance, a diffusion model trained on RF gait signals from a hospital setting could
regenerate identifiable gait patterns extracted from detected activities, posing deanonymization risks. More-
over, adversaries could exploit synthesized RF signals to mimic an individual’s movement profile, potentially
compromising RF-based authentication. To mitigate these risks, ensuring diverse and representative training
datasets is essential for reducing bias, while differential privacy techniques can be applied to prevent mod-
els from memorizing and reconstructing specific movement signatures. Furthermore, adversarial detection
mechanisms capable of distinguishing real from synthetic RF signals can be integrated to prevent unautho-
rized misuse. Secure multi-party computation and federated learning can enable collaborative model training
without sharing raw data, enhancing privacy in distributed systems!°),

4. CONCLUSIONS

Generative AT holds immense potential for overcoming the challenges associated with RF sensing data scarcity
and variability. Our work demonstrated that by employing advanced generative models such as conditional
GANs and LDTs, we can synthesize high-quality RF data, enhance model performance, and expand the ca-
pabilities of wireless sensing systems. Future research in cross-modal generative models and real-time data
augmentation promises to further advance the field, enabling more robust, versatile, and adaptive RF sensing
applications. As we continue to explore these directions, significant contributions are expected to areas such
as HAR, healthcare monitoring, autonomous driving, and beyond.
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