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Necroptosis is a type of newly identified cell death induced by apoptotic stimuli under conditions where apoptotic execution is 
prevented. Studies over the past 10 years have revealed the molecular mechanism of necroptosis and challenged the old conception 
that necrosis is un-programmed. Recently, more and more data have emerged suggesting a close association between necroptosis 
and inflammation. In this review, the authors summarized the current knowledge of the mechanism of necroptosis, focusing on 
tumour necrosis factor α induced necroptosis and the roles of necroptosis in regulating inflammation. In particular, we discussed the 
occurrence of necroptosis and its relation with inflammation in neurological diseases hoping to provide new insight for the research 
and treatment of neuroinflammatory disorders.
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INTRODUCTION

Death is the most common ultimate fate of cells 

when challenged by death signals. By ultrastructural 

morphology, cell death is mainly classified as 

apoptosis, autophagy, or necrosis.[1] During past 

decades, extensive studies have been performed on 

apoptosis and autophagy, and have pictured very 

elegant molecular mechanisms for apoptosis and 

autophagy. By utilizing these mechanisms, apoptosis 

and autophagy can be finely regulated. Therefore, these 

2 types of cell death are regarded as “programmed cell 
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death”. Necrosis, however, has long been thought as 
acute and uncontrollable, largely owning to its elusive 
molecular mechanism, and thus been thought as “un-
programmed”.

In the year of 2005, Dr. Jun-Ying Yuan[2] at Harvard 
University reported a novel type of necrosis, which 
occurred in cells when the apoptosis machinery is 
inhibited, but extracellular apoptotic stimulation 
persisted. This type of necrosis can be inhibited 
by a chemical named Necrostatin-1 (Nec-1), which 
suppresses the activity of receptor-interacting 
protein 1 (RIP1), suggesting that the cell death is 
molecularly regulated. Because the dying cells the 
researchers originally identified showed a mixture of 
ultrastructural features of both apoptosis and necrosis, 
for example, condensation of chromatin, disruption of 
the cell membrane and lysis of cytoplasmic contents, it 
was termed as necroptosis (necrosis + apoptosis). Later 
on, it was found to show mostly the morphological 
features of unregulated necrotic death.[3]

MOLECULAR MECHANISM OF NECROPTOSIS

Since Dr. Yuan’s publication, many studies have been 
performed on the occurrence and molecular mechanism 
of necroptosis. Most of the current knowledge about 
necroptosis comes from tumour necrosis factor α 

(TNF-α) induced necroptosis. Necroptosis is initiated 
when death signals such as TNF-α and Fas bind to 
their membrane receptors. This ligation leads to the 
formation of a membrane associated protein complex, 
named complex I.[4] Complex I is composed by: (1) 
proteins which have a death domain such as tumor 
necrosis factor receptor (TNFR)-associated death 
domain (TRADD), Fas-associated death domain 
(FADD); (2) RIP1; (3) TNFR-associated factors (TRAF), 
such as TRAF2 or TRAF5, and (4) cellular inhibitor 
of apoptosis protein 1 (cIAP1) and cIAP2.[5] TRADD 
acts as an adaptor for recruiting RIP1 to TNFR1.
Subsequently, TRAF2/3/5 and cIAPs are added into the 
protein complex.[6] If E3 ubiquitin ligase is activated, 
TRAF2/5 and cIAP1/2 can ubiquitinate RIP1, which 
results in stabilization of the RIP1-containing plasma 
membrane associated complex that activates nuclear 
factor kappa and mitogen-activated protein kinases, 
and thus promoting cell survival.[7] Therefore, protein 
complex I determines the fate of cells to either survival 
or death.[8]

Activation of necroptosis signalling starts with 
deubiquitination of RIP1 and other components by 
deubiquitinating enzyme cylindromatosis, which 
removes ubiquitin chains from RIP1, thus, destabilizing 
Complex I.[9] Deubiquitinated RIP1 is released from 
Complex I and combines with FADD, TRADD, 

Figure 1: Mechanism of tumour necrosis factor-α (TNF-α) induced necroptosis. Binding of TNF-α to its receptor results in formation of Complex I. 
Activation of cIAP and tartrate resistant acid phosphatase activates downstream NF-κB signaling and subsequently promote cell survival. Complex II 
acts as a switch between apoptosis and necroptosis. Activation of caspase-8 guides the cells to apoptosis. Inhibition of caspase-8 leads to formation of 
a necrosome. Membrane translocation of phosphrylated MLKL disrupts cell membrane. The mechanisms underlying the lysis of cytoplasmic contents 
during necrosis are still unclear. DAMPs: damage associated molecular patterns; MLKL: mixed lineage kinase domain-like protein; TNF: tumour necrosis 
factor; TNFR: tumour necrosis factor receptor; cIAP: calf intestinal alkaline phosphatise; TRADD: tumor necrosis factor receptor associated death 
domain; TRAF: TNFR-associated factors; RIP1: receptor-interacting protein 1; CYLD: cylindromatosis; Casp8: caspase-8; RIP3: receptor-interacting 
protein 3; NF-kB: nuclear factor kappa.
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receptor-interacting protein 3 (RIP3) and caspase-8 
to form Complex II.[10] Active caspase-8 can cleave 
and inactivate RIP1 and RIP3, thereby promoting the 
exogenous apoptosis pathway.[11]

If caspase-8 is inhibited, RIP1 and RIP3 will remain 
active and combine together by the common RHM 
domain to take part in forming a necrosome, which 
initiates a downstream signal cascade resulting in 
necroptosis.[12] Although RIP1 and RIP3 are both 
essential in the process, over-expressed RIP3 can 
induce necroptosis without enough RIP1, but not vice 
versa.[13] It has been demonstrated that RIP3 activates 
downstream signalling pathways, in particular, the 
phosphorylated mixed lineage kinase domain-like 
protein (MLKL),[14] which plays a central role in the 
execution of necroptosis. Two models have been 
proposed for its function: (1) acts as a platform at the 
plasma membrane for the recruitment of Ca2+ or Na+ 

ion channels,[15] (2) as a direct pore-forming complex 
on cell membranes through binding of the amino-
terminus of the 4-helical bundle domain to negatively 
charged phosphatidylinositol phosphates.[16] Previous 
studies have suggested that phosphoglycerate mutase 
5 involved mitochondrial fragmentation might be the 
key downstream molecule of MLKL for necroptosis 
execution.[17] However, recent evidences have 
challenged this idea.[18]

The mechanism of necroptosis discussed above is 
outlined in Figure 1. Besides the TNF-α induced 
extrinsic necroptosis, an intrinsic necroptosis signalling 
initiated by intracellular reactive oxygen species has 
been proposed recently. Translocation of p53 has been 
suggested to play a role in ischemia induced intrinsic 
necroptosis.[19] More detailed mechanisms of intrinsic 
necroptosis remain to be elucidated.

NECROPTOSIS AND INFLAMMATION

It is known that apoptosis triggers minor or no 
inflammation, while necrosis induces inflammation 
via releasing damage associated molecular patterns 
(DAMPs), such as nuclear high mobility group box-
1 proteins, mitochondrial DNA, and IL-1 family 
cytokines.[20] The insertion of MLKL into cell 
membranes immediately suggested a possible role 
of MLKL in the release of DAMPs. Because DAMPs 
stimulate pattern-recognition receptors such as toll-
like receptors, necroptosis is thought to be beneficial 
in innate immune responses. For example, vaccinia 
virus encodes an inhibitor of caspase-1 and 8. In cases 
of vaccinia virus infection, the cells exhibit RIP3-

dependent necroptosis, which mobilize immune cells 
against viruses.[21] Therefore, in certain virus-infected 
diseases, necroptosis seems to be an evolutionarily 
cellular anti-virus strategy.

In terms of bacterial infection, it has long been 
known that TNF is an important driver of bacterial 
sepsis,[22] suggesting that necroptosis may also be a 
pro-inflammatory factor in the bacterial infection-
induced inflammation. In consistent with above 
mentioned role of RIP/MLKL-dependent necroptosis 
in the destructive inflammation after virus infection, 
RIP3 deficient mice are more resistant to TNF induced 
systematic inflammation.[23] However, some studies 
showed that RIP3-/- macrophages respond almost 
normally to liters per second stimulation, indicating 
that RIP3 may not be crucial for acute inflammation 
after bacterial infection.[24] In line with this idea, 
RIP3-dependent necroptosis and TNF expression was 
observed in tuberculosis infected tissue,[25] suggesting 
a role of necroptosis in the bacterial induced chronic 
inflammation.

In addition to its roles in infectious diseases, necroptosis 
has also been demonstrated to be involved in chronic 
sterile inflammation. For example, up-regulation 
of RIP3 and phosphorylated MLKL were detected 
in alcoholic and drug-induced liver injury. RIP3 
depletion, or necrostatin-1 (Nec-1) administration can 
significantly protect liver cells from these injuries.[26] 
In ischemia-reperfusion conditions, necroptosis was 
reported in multiple tissues, including brain, heart, 
kidney and retina.[27-29] In other chronic inflammatory 
diseases such as atherosclerosis, receptor-interacting 
serine/threonine-protein kinase 3-dependent 
macrophage necroptosis has been thought of as a direct 
driver of atherosclerotic plaque formation.[30] Although 
it has been clearly demonstrated that necroptotic 
cells release DAMPs, how DAMPs mediate this 
necroptosis-triggered sterile inflammation remains to 
be experimentally validated.

It should be pointed out that many studies used Nec-1 
to inhibit necroptosis. However, recent studies reported 
that Nec-1 has off-target effects. Besides inhibiting 
the kinase activity of RIP1, it inhibits the activity of 
endoleamine 2,3-oxygenase, which by itself, modulates 
inflammation.[31] Therefore, one should be sure to 
explain the results obtained solely by Nec-1 treatment.

NECROPTOSIS AND NEUROLOGICAL DISEASES

Necroptosis was initially identified in ischemic brain. 



159Neuroimmunol Neuroinflammation | Volume 3 | July 8, 2016

As the molecular mechanisms of necroptosis have been 
gradually discovered, necroptosis has been reported in 
more and more neurological diseases.

Spinal cord injury (SCI) is well known for its 
devastating effects on patients. One pathological feature 
of SCI is secondary injury characterized by chronic 
inflammation, astrogliosis and cavity formation.[32] 
Previous studies have demonstrated that application of 
Nec-1 can be protective for SCI, but which cells undergo 
necroptosis is unknown.[33,34] Our recent studies 
demonstrated that RIP3 and phosphorylated MLKL are 
up-regulated in reactive astrocytes and microglia after 
SCI.[35,36] Reactive astrocytes, which line the spinal 
cavity, die by M1 microglia/macrophage induced 
necroptosis partially through toll like receptor/myeloid 
differentiation 88 signalling.[35] Microglia, the major 
player of chronic inflammation post-SCI, die through 
endoplasmic reticulum stress involved necroptosis.[36] 
These researches raised the straightforward question 
of how necroptosis regulateschronic inflammation 
after SCI. 

Multiple sclerosis is another neurodegenerative 
diseases characterized by demyelization and chronic 
inflammation. The link between inflammation and 
demyelination has long been recognized. A recent 
study from Prof. Jun-Ying Yuan’s group reported that 
TNF-α induces the death of oligodendrocytes in a 
RIP1/3 dependent manner.[37] In the mouse model 
of Gaucher’s disease, systemic TNF-α and IL-1β are 
elevated, and RIP3 is up-regulated in microglia and 
neurons. RIP3 knockout can significantly ameliorate 
the development of disease and prolong the survival 
of animals.[38] Amyotrophic lateral sclerosis (ALS) 
is the most adult onset motor neuron degenerative 
disease, in which inflammation is the most striking 
hallmark of pathological changes. Recently, it has 
been demonstrated that in the spinal cord of the ALS 
model, motor neurons also undergo necroptosis.[39] 
These studies suggested that necroptosis in different 
neurodegenerative diseases is cell type specific. 
The underlying mechanisms remain to be further 
investigated.

CONCLUSION

In summary, this progress brings us the new concept 
that necrosis can be chronic and controllable, although 
the mechanism of necroptosis remains far from 
fully revealed. The current evidences suggest that 
pro-inflammatory factors, e.g., TNF-α, can induce 
necroptosis, which in turn triggers inflammation. As 

we know, inflammation is complex and dynamic. The 
outcome of inflammation depends on the coordination 
of different types of immune cells. Even sub-
populations of immune cells change their phenotypes 
in the course of inflammation, such as the M1-M2 
switch of microglia/macrophages.[40] How necroptotic 
cells affect the different immune cell populations 
during the different time-phase of inflammation, 
or how necroptotic cells influence the phenotype of 
immune cells remain to be further investigated. 

Recently, several studies showed that RIP1 and RIP3 
might also be involved in inflammation independent 
of necroptosis.[41] For example, Inflammasome 
activation and release of IL-1 in smac-mimetic treated 
macrophages or in caspase-8 deficient dendrite cells 
are dependent on RIP3,[42] suggesting a cell-death 
independent role of RIP3 in inflammasome activation. 
This should be considered when evaluating results. 
Combined results from MLKL deficient cells or 
mice may be helpful for clarifying the point. In view 
of the importance of necroptosis and its roles in 
inflammation, better understanding of the interaction 
between necroptosis and inflammation will be helpful 
for treatment of inflammatory diseases.
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