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Abstract
Aim: This study evaluated the Genetic Addiction Risk Severity (GARS) panel, which assesses genetic 
predisposition to addictive disorders by examining eleven polymorphisms in ten genes associated with 
dopaminergic reward system functioning.

Methods: The GARS registered mark instead panel includes six single-nucleotide polymorphisms [DRD1, DRD2, 
DRD3, DRD4, OPRM1, and catechol-O-methyltransferase (COMT)], four simple sequence repeats (5HTT, DAT1, DRD4, 
and MAOA), and one dinucleotide repeat (GABRA3). Criterion validity was tested in 393 polydrug abusers by 
correlating GARS scores with Addiction Severity Index-Multimedia Version (ASI-MV) alcohol and drug severity 
scores.

Results: We identified a significant correlation between GARS and the ASI-MV alcohol severity score. While 
individuals with elevated drug severity also exhibited increased GARS, the relationship did not follow a strictly 
linear pattern. Variations in multiple genes involved in dopaminergic signaling contributed to risk in an additive 
manner, with age serving as a significant covariate. A greater number (≥ 7) of reward gene polymorphisms 
associated with moderate reductions in dopamine signaling demonstrated a significant association with higher 
ASI-MV alcohol severity scores. In contrast, individuals possessing four or more reward gene polymorphisms 
associated with moderate reductions in dopamine signaling exhibited significantly elevated ASI-MV drug severity 
scores.

Conclusion: Our findings align with previous research implicating dopaminergic pathways in the progression of 
alcoholism and substance abuse. Additionally, they build upon prior work by identifying a potential pre-existing 
polygenic risk factor, as defined by the GARS panel, that may be influenced by age-related physiological changes 
and environmental factors. Further research is warranted to explore associated endophenotypes, with particular 
emphasis on the role of Reward Deficiency Syndrome linked to dysfunction within the dopaminergic reward 
system.

Keywords: Genetic addiction risk score (GARS), dopaminergic system, polymorphisms, reward deficiency 
syndrome, reward gene, brain reward circuitry
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The United States (US) is currently facing a significant public health crisis due to addiction and overdoses. 
According to the Centers for Disease Control and Prevention (CDC) in 2022, the US experienced a 
staggering 107,941 drug overdose deaths[1]. This represents a dramatic increase in the rate of drug overdose 
deaths, which has nearly quadrupled since 2002[1]. Additionally, approximately 70.3 million people over the 
age of 12 were found to have used illicit drugs in 2022, according to the Substance Abuse and Mental Health 
Services Administration (SAMHSA)[2]. The most commonly abused illicit drug was marijuana 
(61.9 million), followed by hallucinogens (8.5 million), pain relievers (8.5 million), cocaine (5.3 million), 
sedative/tranquilizer (4.8 million), prescription stimulants (4.3 million), methamphetamines (2.7 million), 
inhalants (2.3 million), and heroin (1 million)[2]. Addiction and substance use often culminate in substance 
use disorders (SUDs) and 48.7 million individuals over the age of 12 were diagnosed with a SUD in 2022[2].

While illicit drug use garners significant attention, the consumption of non-illicit substances, such as 
alcohol, tobacco, or vaping, poses equally pressing public health concerns. SAMHSA reported that 
168.7 million people, over the age of 12, were found to have used tobacco, alcohol, or an illicit drug in the 
past month[2]. Specifically, 46.6 million people had used illicit drugs, 50.9 million had used a tobacco 
product, 23.5 million had vaped nicotine, and 137.4 million people had consumed alcohol in the past 
month[2]. When analyzing alcohol use, it was also found that, in individuals over the age of 12, 61.2 million 
individuals had engaged in binge drinking and 16.1 million people in heavy drinking within the past 
month[2]. Finally, it was reported that approximately 29.5 million individuals had been diagnosed with an 
alcohol use disorder (AUD) in 2022[2].

According to data from the National Institute on Drug Abuse (NIDA)[3], the annual cost of substance abuse 
in the US-including illicit drugs, alcohol, and tobacco exceeds $740 billion and continues to increase. The 
ongoing rise in addiction to chemical substances[4,5] underscores the necessity for innovative neurobiological 
insights to enhance prevention, diagnosis, and treatment strategies[6]. Studies in animals[7] and neuroimaging 
human research[8,9] attribute a pivotal role to the mesolimbic dopaminergic circuits subserving reward and 
motivation[10,11] at various stages of alcohol/drug addiction ranging from the acquisition of 
self-administration[12,13] to craving[14] and relapsing after a period of abstinence[15]. Alcohol and other 
addictive substances initially stimulate dopaminergic neurotransmission[16] within the brain’s reward 
network. This network includes dopamine-releasing neurons in the ventral tegmental area and their 
terminal projections in the nucleus accumbens, orbitofrontal cortex, the ventral striatum, and several nuclei 
of the amygdala[17]. Over time, however, alcohol/drugs produce a counter-adaptive response, characterized 
by a hypodopaminergic state[18,19], clinically associated with negative affect, reduced motivation and a 
diminished ability to experience pleasure, collectively referred to as reward deficiency syndrome (RDS)[20-23], 
driving further alcohol consumption that provides temporary comfort but eventually exacerbating aversive 
feelings and intensifying craving[24]. RDS may not only be a consequence of chronic substance use, but also a 
pre-existing condition of genetic origin[22,25]. Thus, individuals with RDS often perceive themselves as being 
perpetually “several drinks behind” the rest of the world[26] and possess a personality trait characterized by 
high novelty seeking[27,28], driving their consumption of alcohol and drugs[29]. Moreover, in the form of 
emotional numbing[30,31], anhedonia, or affective flattening[32,33], RDS is a common element of other 
neuropsychiatric conditions that are highly comorbid with alcoholism and drug abuse, to name a few, major 
depression[34], schizophrenia[35], s u g a r - binging[36], obesity[37], g a m b l i n g  disorder[38], s e x  addiction[39], 
post-traumatic stress disorder (PTSD)[30], aggression[40-43], and suicidality[44]. Hence, it is crucial to find the 
genetic factors underlying the connection between alcohol/drug addiction and RDS so that they may be 
harnessed for preventive, diagnostic, and therapeutic efforts. Such an investigation faces a first major 
question: how to define and operationalize reduced dopaminergic function? Although RDS has been 
defined from clinical[45], behavioral[46], pathophysiological[30,47], neuroimaging[48], and neurochemical[49,50] 
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standpoints, understanding its genetic basis is challenging in part due to its multifactorial nature involving 
polymorphic genes implicated in dopaminergic pathways[51]. Likewise, RDS may be caused by a reduced 
number of dopamine receptors[52], especially D2[53], reduced dopamine synthesis[54] and release[55], and 
increased synaptic dopamine clearance due to a high number of dopamine transporter sites[56] or 
combination of these underlying mechanisms.

Even though it is generally accepted that RDS is linked to mesolimbic circuitry, the debate about the roles of 
specific candidate genes is still ongoing. One extant panel[57] is comprised of comprehensive haplotype 
information for candidate genes in alcoholism, other addictions, and mood and anxiety disorders; it is 
comprised of 130 genes that were tagged and genotyped in 51 reference populations and 7 case/control 
populations using Illumina Golden Gate single-nucleotide polymorphism (SNP) genotyping technology. A 
comprehensive analysis[58] that synthesized data from 2,343 peer-reviewed studies, utilizing methodologies 
such as single-gene strategies, microarray analyses, proteomics, and genetic approaches to examine 
associations between genes or chromosomal regions and addiction, identified 1,500 human genes implicated 
in addictive behaviors. The resultant “Knowledgebase for Addiction Related Genes” (http://karg.cbi.pku.
edu.cn) is the first molecular database for addiction-related genes with extensive annotations and a Web 
interface. The same authors also performed a meta-analysis of 396 genes supported by two or more 
independent items of evidence to define a putative common molecular network for addiction[58]. 
Nonetheless, it remains unclear what specific genes out of these 396 candidates subserve RDS and related 
neuropsychopathology.

As with complexities inherent in defining a single subtype of RDS, such as alcoholism or PTSD[17,47,59-61], the 
exigencies of an accurate control sample recruitment that is representative of the population of interest 
could confound genetic study results. According to the Epidemiological Catchment Area survey, close to 
one-third of the general population meets the criteria for common psychiatric disorders at some point in 
their lives. RDS is a “polygenic disorder” that involves multiple genes with various polymorphisms[62]. 
Expression of RDS requires reaching a threshold number of these polygenes and associated variants. 
Consequently, individuals may carry some of these polymorphic genes but do not exhibit RDS behaviors 
because the threshold has not been reached.

To that end, we balanced the recruiting efforts with pragmatics by removing confounding cases from the 
control group and by using stratified (weighting) samples to design the Genetic Addiction Risk Score 
(GARS) test, capturing distinct aspects of dopaminergic function that predicts liability for addiction and 
RDS[63,64]. Reward candidate genes were selected based on a thorough literature review to yield the rationale 
utilized for each listed risk allele. The unifying concept guiding the selection of specific alleles included in 
the panel was based on their significant contributions to diminished dopaminergic function, including 
genes encoding dopamine receptors (DRD1, DRD2, DRD3, DRD4), the dopamine transporter (DAT1), the 
serotonin transporter, catechol-O-methyltransferase (COMT), monoamine oxidase (MAO), gamma-
aminobutyric acid (GABA) receptors, the µ-opioid receptor (OPRM1), and cytochrome P450. In addition, 
specific single nucleotide polymorphisms (SNPs) and point mutations that influence dopamine release in 
the brain's reward centers were incorporated. These genetic variants were selected to represent a 
hypodopaminergic phenotype, a choice substantiated by thousands of association studies that have 
provided compelling evidence linking these risk alleles to various addictive behaviors[65].

The ten genes (encompassing eleven polymorphisms) examined in this study encode proteins that are 
abundantly present in both cortical and subcortical neural structures. Dysregulation of these genes in the 
prefrontal cortex and limbic system may result in RDS[66-67]. A prior study[68] proposed a five dopamine-
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related gene panel including the DRD2/ANKKI, DRD3, and DAT to predict depression. Similarly, the 
Convergent Functional Genomics project[69] identified eleven candidate genes separating alcoholics from 
non-alcoholics. Even a single gene such as synuclein alpha (SNCA) regulating dopamine signaling showed a 
strong association with severe alcoholism (P = 0.0001). While it might be appealing to adopt such a 
parsimonious approach, it would be unreasonable to limit the testing to SNCA alone due to concerns 
regarding specificity and sensitivity[68]. Therefore, we have chosen to avoid an overly reductionistic approach 
to GARS by utilizing a small number of genes, e.g., DRD2/ANKKI, DRD1, and DAT1.

Although GARS’ construct validity can be ascertained via existing theoretical and empirical 
considerations[70-72], it is also important to juxtapose GARS against validated benchmarks, i.e., to assess its 
criterion validity.

The Addiction Severity Index (ASI) exemplifies a well-established tool for collecting comprehensive data, 
providing detailed information on the quantity, frequency, recency, and duration of alcohol and drug 
use[73]. This commonly utilized semi-structured interview also elicits information about life areas that are 
affected by alcohol/drug addiction. As both a psychodiagnostic and psychometric tool, ASI assesses 
addiction as a continuous measure of symptom severity c.f., categorical (present or absent) variables 
enabling the performance of more powerful correlational analyses.

The primary hypothesis pertained to an association between GARS and the ASI alcohol/drug scores. An a 
priori emphasis was given to the assumption that alcoholism, as well as addiction to other addictive 
substances, develops via negative reinforcement, i.e., alcohol/drugs are used to ameliorate the discomfort 
associated with the RDS[74]. However, an alternative explanation may be surmised in the form of the positive 
reinforcement idea - explicitly, that RDS, manifested via depressive symptomatology and related negative 
affective states, enhances alcohol/drug use by amplifying their rewarding and reinforcing properties[75]. This 
concept is reinforced by studies demonstrating a positive correlation between drug-induced euphoria and 
depressive symptoms, as reported by other research groups[76,77] and confirmed in our own investigations[78]. 
Furthermore, alcohol consumption may paradoxically offer a form of harm reduction in individuals with 
RDS by enhancing the sensitivity of previously under-responsive reward circuitry. This cross-sensitization 
effect not only augments responsiveness to drugs but also increases sensitivity to natural rewards, including 
those associated with social functioning[79]. Among varied drugs that are abused concurrently with alcohol, 
we could not a priori predict the net result. Therefore, exploratory analyses were employed to examine 
directionality and even the presence of potential interactions.

METHODS
Subjects
Study subjects were enrolled from nine addiction treatment centers geographically dispersed throughout the 
United States, namely Inflexxion, Addiction Recovery Resource, Catholic Charities of Maine, Center for 
Psychiatric Medicine, G & G Holistic Addiction Treatment Center, Integrative Life Center, Malibu Beach 
Recovery Center, Meadows Edge Recovery Center, and Tennessee Treatment Center. All study protocols 
were reviewed and approved by the PATH FOUNDATION IRB and received an exemption notification. 
The participants provided written informed consent after the study procedures were thoroughly explained 
to them. The genotyping data collection process conformed to the standards defined by the Health 
Insurance Portability and Accountability- and Genetic Information Non-Discrimination Acts.
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Exclusion/Inclusion criteria
Since this paper primarily involved genotyping whereby the subjects volunteered to provide cheek cells for 
DNA analysis, whereby DNA is not altered by environmental factors including disease, the exclusion 
criteria included exposure to radiation or pollution toxicity. The second criterion involved English language 
comprehension, as each participant had to complete an online ASI Media V questionnaire.

Biopsychosocial assessments
Patients were interviewed and evaluated by Addiction Specialists using a standard battery of psychometric 
and -diagnostic questionnaires. Alcohol and drug use data were obtained using the ASI-Multi-Media 
(ASI-MV) version, which includes questions about lifetime alcohol/drug use and use in the last 30 days. 
Severity scores, determined via the algorithm generated by Inflexxion, range from “no real problem” (0) to 
“extreme problem” (9)[80]. Clinically, severity scores are utilized for disease staging and treatment planning 
purposes. Complementary psychometric tools included the Drug History Questionnaire[81] and Symptom 
Severity Questionnaires[82]. All subjects were evaluated for acute intoxication in each treatment center. 
Patients in each treatment center were also screened for standard biochemical tests including: urine 
toxicology screening, breathalyzer, and complete blood count.

Sample collection and chain of custody
Participants were instructed to provide approximately 2 mL of saliva into a collection tube provided by the 
Institute for Behavioral Genetics (IBG) at the University of Colorado Boulder, Boulder, CO. Each sample 
was assigned a predetermined identification number and barcoded by Dominion Diagnostics. The saliva 
was stabilized using a buffer solution composed of Tris-EDTA, sodium dodecyl sulfate, and proteinase K at 
pH 8.0. Specimens were stored at room temperature at the collection sites and subsequently shipped to 
Dominion Diagnostics for transfer to Andrew Smollen at IBG for DNA extraction and isolation using 
standardized protocols[83].

Genotyping
An index of the genes included in the GARS panel and their associated polymorphisms are provided in 
Table 1. Each genetic variant or polymorphism was selected based on its well-established association with 
RDS, specifically its role in contribution to hypodopaminergic functioning within the brain’s reward 
circuitry. The allele and genotype frequencies observed for each variant align closely with those reported 
previously and in publicly available databases, suggesting that genotyping error (i.e., a ready source of bias 
that can reduce the power to detect a true effect) did not contribute to the observed frequencies.

Because we did not have RDS-free controls, we decided to count the number of alleles instead of developing 
a weighted power analysis (utilizing Odds Ratios). To further understand the relationship between ten genes 
and eleven polymorphisms employed in this study and the power of counting compared to weighing the 
power of each gene polymorphism, a subsequent test was statistically utilized, whereby each allele was 
provided with a higher power score (without actual ORs each allele was multiplied by a number above 1 to 
provide a differential power). In doing so, this test resulted in non-significance. Furthermore, switching an 
allele, for example, 10 R rather than 9R for DAT1, similarly canceled any statistical significance. Such 
manipulations suggest that utilizing the cluster of candidate genes and strict polymorphisms of the reward 
genes as represented by GARS provides discriminatory validity for addiction features defined via ASI 
clinical scores.

Assays for Amelogenin, MAOA-uVNTR, 5HTTLPR, DRD4, and DAT1[71] were performed using a 
multiplex polymerase chain reactiom (PCR) approach. In each 20 µL reaction, 2 µL of DNA (20 ng or less) 
was combined with 1.8 mM MgCl2, 180 µM of each deoxynucleotide triphosphate (dNTP, NEB), and 10% 
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Table 1. GARS panel: genetic variants and risk alleles

Polymorphisms/Repeat Gene Variants Risk 
allele

Single nucleotide polymorphisms (SNPs)

rs4532 Dopamine D1 Receptor (DRD1) A/G G

rs1800497 Dopamine D2 Receptor (DRD2) A1 (A)/A2 (G) A1

rs6280 Dopamine D3 Receptor (DRD3) C/T C

rs1800955 Dopamine D4 Receptor (DRD4) C/T C

rs4680 Catechol-O-Methyltransferase (COMT) A (Met)/G (Val) G

rs1799971 Mu-Opioid Receptor (OPRM1) A (Asn40)/G 
(Asp40) 

G

Simple sequence repeats (variable number tandem repeats & insertion/deletions)

3’ 40 base-pair repeat Dopamine Transporter Receptor (DAT1) 9 repeat (R) 9R

Intron 3, 48 base-pair repeat Dopamine D4 Receptor (DRD4) 7, 8, 9, 10, 11 repeats 
(R)

7R

3’ 30 base-pair Repeat Monoamine Oxidase A 3.5, 4, 5  
repeats (R)

4R

43 base-pair 5’ insertion/deletion + rs25531 
(5HTTLPR)

Serotonin Transporter Receptor (5HTT) S (short) or Lg S’

Dinucleotide repeats

CA-repeat Gamma-Aminobutyric Acid (GABA) A Receptor, beta 3 
(GABRA3)

171 - 201 181

DMSO, with 7’-deazadeoxyGTP (deaza-GTP, Roche Applied Science, Indianapolis, IN) substituting for half 
of the dGTP concentration. Fluorescently labeled forward primers and the corresponding reverse primers 
were included, as detailed in Table 2. The reaction mixture also contained one unit of AmpliTaq Gold® 
polymerase (Life Technologies, Grand Island, NY) and 1 × PCR buffer II, resulting in a final volume of 20 
µL[71].

The analysis of the dinucleotide repeat in GABRB3 was performed in a reaction containing 2 µL of DNA (20 
ng or less), 200 µM of each deoxynucleotide triphosphate (dNTP, NEB), 2.5 mM MgCl2_22, fluorescently 
labeled forward and reverse primers (details provided in Table 2), 1 unit of AmpliTaq Gold® polymerase, 
and 1× PCR buffer II, resulting in a total reaction volume of 20 µL[84]. Amplifications utilized a modified 
touchdown PCR protocol[85,86].

The PCR cycling protocol commenced with an initial denaturation at 95 °C for 10 min. This was followed 
by two cycles consisting of 95 °C for 30 s, 72 °C for 60 s, and 65 °C for 30 s. Subsequently, the annealing 
temperature was decreased by 2 °C every two cycles from 65 °C to 57 °C across 10 cycles. This phase was 
then succeeded by 30 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 60 s. The reaction concluded with 
a final extension at 72 °C for 30 min, followed by a hold at 4 °C. To ensure assay accuracy, each 96-well plate 
incorporated non-template controls and DNA standards with established genotypes.

The assay for rs25531 (A/G), located within the long form of the 5HTTLPR region, has been described in 
detail elsewhere. This SNP facilitates the distinction between the LA and LG alleles. Amplification of the 
5HTTLPR site containing the SNP was performed using a single PCR reaction composed as previously 
described, with primers referenced in prior studies. The thermal cycling conditions included an initial 
denaturation at 95 °C for 10 min, followed by two cycles of 95 °C for 30 s, 65 °C for 30 s, and 72 °C for 60 s. 
This was followed by two cycles at 95 °C for 30 s, 63 °C for 30 s, and 72 °C for 60 s, then 30 cycles at 95 °C 
for 30 s, 61 °C for 30 s, and 72 °C for 60 s. The process concluded with a final extension at 72 °C for 30 min 
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Table 2. Marker, primer, and resulting size ranges of characterized polymorphisms

Primer Sequence (5’ → 3’) Concentration 
(nM)

Size range
(bp)

Amelogenin-F NED-CCC TGG GCT CTG TAA AGA ATA GTG 300 103,109

Amelogenin-R ATC AGA GCT TAA ACT GGG AAG CTG 300 (X, Y)

MAO-uVNTR-F 6FAM-ACA GCC TGA CCG TGG AGA AG 200 291-381

MAO-uVNTR-R GAA CGG ACG CTC CAT TCG GA 200 (2R-5R)

DAT1-F 6FAM-TGT GGT GTA GGG AAC GGC CTG AG 300 200-600

DAT1-R CTT CCT GGA GGT CAC GGC TCA AGG 300 (3R-13R)

DRD4-F VIC-GCT CAT GCT GCT GCT CTA CTG GGC 600 279-711

DRD4-R CTG CGG GTC TGC GGT GGA GTC TGG 600 (2R-11R)

5HTTLPR-F NED-ATG CCA GCA CCT AAC CCC TAA TGT 600 376, 419-549

5HTTLPR-R GGA CCG CAA GGT GGG CGG GA 600 (S, L-XL)

5HTTLPR-Hu-F 6FAM-GCA ACC TCC CAG CAA CTC CCT GT 500 138, 181

5HTTLPR-Hu-R GAG GTG CAG GGG GAT GCT GGA A 500 (S, L)

GABRB3-F 6FAM-CTC TTG TTC CTG TTG CTT TCA ATA CAC 500 171 - 201

GABRB3-R CAC TGT GCT AGT AGA TTC AGC TC 500

and a hold at 4 °C.

Following PCR amplification, the products were incubated with five units of MspI (NEB, Ipswitch, MA) at 
37 °C for 90 min[87]. The presence of a 97 bp restriction fragment indicated the LG allele. For the GARS 
panel, two combined alleles were reported: S’, which includes the S and LG alleles, and L’, which comprises 
the LA and extra-long alleles. These categories represent activity bins rather than individual alleles. Each 
96-well plate included non-template controls and DNA standards with known genotypes. Following 
amplification, the PCR products and MspI digests were purified using Zymo Research ZR-96 DNA 
Sequencing Clean-up Kits in strict adherence to the manufacturer’s protocol. The purified samples were 
then combined with a loading buffer containing a size standard (Rox1000, Gel Company, San Francisco, 
CA) and analyzed on an ABI PRISM® 3130xl Genetic Analyzer (Life Technologies) according to the 
manufacturer’s guidelines. Data processing was performed using GeneMapper software, with all results 
independently validated by two investigators.

Genotyping of the SNPs TaqIA (rs1800497), COMT val158met (rs4680), DRD1 (rs4532), DRD3 (rs6280), 
DRD4-521C/T (rs1800955), and OPRM1 (rs1799971) was performed using the fluorogenic 5’ nuclease assay 
(TaqMan®, ABI, Foster City, CA)[88] on an ABI Prism® 7000 Sequence Detection System in allelic 
discrimination mode[89,90]. Each reaction was conducted in a total volume of 15 µL, containing 20 ng of 
genomic DNA, TaqMan® Universal PCR Master Mix, and primers and probes at final concentrations of 
900 nM and 200 nM, respectively. A standardized cycling protocol was employed, with primer and probe 
sequences for TaqIA and COMT detailed in Table 3. Assays for the remaining SNPs were obtained directly 
from Life Technologies. To ensure genotyping accuracy, each 96-well plate included non-template controls 
and DNA standards with verified genotypes.

Statistical analysis
Mean, standard deviations, regression tests, and chi-square were executed using SPSS (Version 21.0). 
Significant differences between dichotomized alcohol and drug severity scores were assessed using a Fischer 
Exact Test. Scores above and below the means of 4.65 for alcohol and 4.00 for drugs were respectively 
determined to be “high” (1) and “low” (0). Regression analyses were executed to determine the relationship 
between the severity risk score and genetic risk score, adjusting for age (continuous) and sex (dichotomous) 
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Table 3. Probe and primer sequences for COMT val158met and DRD2 Taq1A polymorphisms

Gene Probe/Primer Sequence (5’ → 3’)

COMT T (met) probe VIC-ACCTTGTCCTTCATGCCAGCGAAAT-NFGMGB

C (Val) probe FAM-CCTTGTCCTTCACGCCAGCGA-NFQMGB

Forward primer TCGAGATCAACCCCGACTGT

Reverse primer AACGGGTCAGGCATGCA

DRD2 T (A1) probe VIC-CCTGCCTTGACCAGC-NFQMGB

C (A2) probe FAM-CTGCCTCGACCAGC-NFQMGB

Forward primer GTGCAGCTCACTCCATCCT

Reverse primer GCAACACAGCCATCCTCAAAG

COMT: Catechol-O-methyltransferase.

variables. The distribution of scores on the alcohol and drug severity risk scales exhibited a slight skew 
toward lower values. To assess potential normalization, the effects of square-root and log-transformations 
were examined. In accordance with predefined criteria, each identified risk allele was assigned a value of 1. 
An individual's overall genetic risk score was then determined by summing the total number of risk alleles 
present within their genotype.

A dichotomous addiction risk scale was created by classifying those at or below the mean of 7.97 as having a 
“low” number of risk alleles and those above the mean as having a “high” number of addiction risk alleles. 
GARS severity scores were computed by dividing the summed GARS score by the total possible number of 
alleles (22 alleles from 11 genes). Scores below 0.30 were binned together in the “low” severity range, scores 
between 0.31 and 0.69 into the “moderate” severity range, and 0.70 to 0.99 into the “high” severity range. 
Hardy Weinberg equilibrium (HWE) was confirmed for each gene using chi-square tests.

RESULTS
Sample characteristics
The mean age of this sample was 35.3± standard deviation (SD) = 13.1 years; 57.8% (n = 160) of the sample 
were males and 88.1% (n = 244) reported their race as White [Table 4]. The “consented” subjects at seven 
different treatment centers were similar in terms of their demographics, except for younger males at the 
G & C Holistic Addiction Treatment Centers. One center failed to provide adequate ASI-MV data, thus 
bringing the number of subjects with both genetic and ASI data to 273. Furthermore, 50 additional subjects 
were removed from the analyses due to zero alcohol severity scores. Among the remaining 223 patients, the 
mean alcohol severity rating score ±SD was 4.65±2.55 and it did not differ significantly between males and 
females or as a function of the treatment center. The mean ±SD for the drug severity ratings (n = 244) was 
5.81±2.45.

Allele and genotype frequencies
Among the discovery sample (n = 393), 17.6% scored in the “low severity” range, 80.7% in the “moderate” 
severity range, and 1.5% in the “high” severity range. No deviations from HWE were detected for any of the 
genotypes generated [Tables 5 and 6].

Alcohol and drug severity scores
ASI alcohol and drug severity scores were slightly skewed to the left (Alcohol: skewness = -0.211, kurtosis = 
-1.473; Drugs: skewness = -0.922, kurtosis = -0.483), suggesting a mild-moderate range of addictive 
problems related to chemical substances. Patients with high alcohol severity ratings had increased 
psychiatric (χ2 = 10.26, P = 0.001), family- and medical- (χ2 = 8.20, P < 0.004), but not economic- or legal 
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Table 4. Demographics by treatment center (N = 273)

Treatment center N (%) Gender Age (years) 
mean (standard deviation, N)

Addiction recovery resource 39 (14.1) Males 32.9 (12.7, 29) 96.6

Females 35.5 (15.1, 10) 80.0

Catholic charities - maine 41 (14.8) Males 33.7 (9.5, 34) 88.2

Females 40.4 (10.7, 1) 85.7

Center for psychiatric medicine 1 (0.4) Males 34.0 (0, 1) 100

Females -- --

G & G holistic addiction treatment centers 108 (39.0) Males 30.9 (12.0, 59) 88.1

Females 37.1 (14.2, 49) 91.8

Integrative life center 2 (0.9) Males 22 (0, 1) 100

Females 22 (0, 1) 100

Malibu beach recovery center 65 (23.5) Males 38.1 (13.8, 28) 85.7

Females 39.8 (14.3, 37) 86.5

Meadows edge recovery center 17 (6.1) Males 36.9 (15.4, 8) 100

Females 37.3 (11.3, 9) 88.0

N: Sample size; Bolded: indicates significant mean differences between males and females.

problems (χ2 > 0.1). Higher GARS was associated with higher alcohol severity scores (χ2 = 8.84, P = 0.004); 
this association survived gender and age adjustment. When dichotomized alcohol severity scores (low and 
high) were employed, there was a trend (χ2 = 3.37, P = 0.07) association. Patients with “high” drug severity 
scores had increased psychological- (χ2 = 8.26, P = 0.004) and family- (χ2 = 11.7, P = 0.001), but not medical-, 
economic-, or legal problems (χ2 > 0.1). Those with high drug severity had more addiction risk alleles, i.e., 
heightened GARS (P = 0.05); this did not seem to be a linear association evidenced in an insignificant result 
when continuous drug severity values were considered (χ2 = 1.43, P = 0.71); the contributions of age and 
gender were significant (See Figures 1-4 and Tables 7-9).

DISCUSSION
This study was carried out with a medium-sized cohort of addicted patients recruited from seven diverse 
chemical dependence programs. Besides gender at one center, there were no significant variations in any of 
the tested parameters across the cohort. Consequently, the dataset meets the Hardy-Weinberg Equilibrium 
criteria[91] for gene polymorphism distribution, thus enhancing our findings’ validity. An important aspect 
of the present multi-locus approach[92,93] study is that it captures the polymorphisms affecting the following 
fundamental processes of the dopaminergic system: (a) dopamine transport across the neuron; (b) synaptic 
metabolism of dopamine; (c) dopamine binding at the primary receptor subtypes; (d) endorphinergic sites 
determining the synaptic content of dopamine that are influenced by serotonin transporters, and e) GABA 
receptors that are inhibited via  opiate receptor influencing the neuronal release of dopamine. A higher 
number (≥ 7) of reward-gene-polymorphisms linked to reduced dopamine signaling were significantly 
associated with increased ASI-MV alcohol severity scores. Similarly, a high number (≥ 4) of such 
polymorphisms were significantly correlated with higher ASI-MV drug severity scores.

Interestingly, the importance of a hypodopaminergic trait was demonstrated when significance was 
improved by exchanging specific SNPs of the DAT 10 allele with reduced dopaminergic function (9 alleles). 
Another key finding from this study is that these genetic influences are additive. We also found that age, but 
not gender, was a predictor of the ASI alcohol and drug severity scores. This finding may have molecular 
underpinnings given the well-described age-related D2 density reduction[94]. Since age is associated with 

Ethnicity 
(% white)
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Table 5. Allele and genotype frequencies of specific genes

Gene N Allele Genotype HWE 
(P-value) Risk allele

T C TT CT CCDRD1  
368 0.66 (488) 0.34 (246) 0.44 (162) 0.45 (164) 0.11 (42)

 
0.95

 
C

A1 A2 A1A1 A1A2 A2A2DRD2 
(rs1800497, Taq1A)

 
381 0.25 (188) 0.75 (574) 0.06 

(23)
0.37 (141) 0.57 (216)

 
0.99

 
A1

T C TT CT CCDRD3 
(rs6280)

 
383 0.62 (472) 0.38 (294) 0.38 (145) 0.47 (181) 0.15 (56)

 
0.97

 
C

T C TT CT CCDRD4 
(rs180095)

 
350 0.51 (360) 0.49 (340) 0.26 (92) 0.50 (174) 0.24 (82)

 
0.99

 
C

A G AA AG GGCOMT 
(rs4680)

 
380 0.45 (345) 0.55 (415) 0.21 (78) 0.50 (188) 0.30 (113)

 
0.99

 
G

A G AA AG GGOPMR1  
385 0.87 (670) 0.13 (100) 0.76 (291) 0.23 (87) 0.02 (6)

 
0.86

 
G

9R 10R 9R/9R 9R/10R 10R/10RDAT1 VNTR  
372 0.25 (187) 0.75 (557) 0.06 (23) 0.38 (139) 0.56 (208)

 
0.97

 
9R

4R 7R 4R/4R 4R/7R 7R/7RDRD4 VNTR  
372 0.78 (587) 0.22 (165) 0.61 (229) 0.34 (128) 0.05 (18)

 
0.98

 
9R

3R 4R 3R/3R 3R/4R 4R/4RMAOA-uVNTR VNTR* 375 
(males + females) 0.37 (274) 0.63 (476) 0.13 (50) 0.46 (173) 0.40 (151)

  
4R

3R 4R 3R/3R 3R/4R 4R/4RMAOA-uVNTR 
VNTR

169 
(females only) 0.37 (124) 0.63 (214) 0.13 (22) 0.46 (78) 0.40 (68)

 
0.96

 
4R

T C TT CT CCDRD1 (rs 
4531)

 
274 0.66 (359) 0.34 (189) 0.43 (117) 0.45 (123) 0.12 (32)

 
0.96

 
C

A1 A2 A1A1 A1A2 A2A2DRD2 (rs1800497, Taq1A)  
278 0.24 (135) 0.76 (421) 0.06 (16) 0.37 (102) 0.57 (159)

 
0.97

 
A1

T C TT CT CCDRD3 (rs6280)  
277 0.62 (345) 0.38 (209) 0.39 (107) 0.47 (130) 0.14 (39)

 
0.96

 
C

T C TT CT CCDRD4 (rs180095)  
271 0.51 (278) 0.49 (264) 0.26 (71) 0.50 (135) 0.24 (64)

 
0.99

 
C

A G AA AG GGCOMT (rs4680)  
271 0.49 (278) 0.51 (264) 0.24 (64) 0.50 (135) 0.36 (71)

 
0.99

 
G

A G AA AG GGOPMR1 (rs1799971)  
278 0.88 (490) 0.12 (66) 0.78 (215) 0.21 (58) 0.01 (4)

 
0.97

 
G

9R 10R 9R/9R 9R/10R 10R/10RDAT1 VNTR  
277 0.24 (135) 0.76 (419) 0.06 (16) 0.37 (102) 0.57 (158)

 
0.93

 
9R

4R 7R 4R/4R 4R/7R 7R/7RDRD4 VNTR  
275 0.76 (420) 0.24 (130) 0.58 (160) 0.36 (99) 0.06 (15)

 
0.95

 
9R

VNTR: MAOA-uVNTR repeat; *: Males and females were included together in this population (N). HWE could not be calculated as MAOA-
uVNTR males are hemizygous for this polymorphism. For females, only a HWE p-value was listed; however, as noted under each table, HWE 
could not be calculated, i.e., “HWE cannot be calculated as MAOA-uVNTR is on the X-Chromosome.”

hypodopaminergic state due to a reduced number of D2 receptors[95], it may drive substance-seeking 
behaviors[96]. In short, a combination of age and high GARS should have clinical relevance and may even 
serve as the basis for enhanced RDS spectrum behaviors[97], e.g., alcoholism in the elderly[98].

The present results extend our earlier report on the allelic association of the dopamine D2 receptor gene in 
alcoholism, in which we suggested that the presence of a specific allele predicted 77% of alcoholics whereas 
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Table 6. Repeat number and genotype frequencies of specific genes

Gene N Repeat number Genotype HWE 
(P-value) Risk allele

362 179* 0.71 (512) 179/179 179/181 181/181GABRA3 dinucleotide repeat

181 0.29 (212) 0.50 (181) 0.41 (149) 0.09 (31)

 
0.97

 
181

371 S’ 0.51 (377) S’/S’ S’/L’ L’/L’5HTTLPR insertion/deletion and rs25531 SNP**

L’ 0.49 (365) 0.26 (96) 0.50 (185) 0.24 (90)

 
0.96 

 
S’

274 179* 0.70 (382) 179/179 179/181 181/181GABRA3 dinucleotide repeat allele

181 0.30 (166) 0.49 (133) 0.42 (115) 0.09 (25)

 
0.98

 
181

271 S’ 0.49 (264) S’/S’ S’/L’ L’/L’5HTTLPR insertion/deletion and rs25531 SNP**

L’ 0.51 (278) 0.23 (64) 0.50 (135) 0.26 (71)

 
0.96 

 
S’

HEW: Hardy weinberg equilibrium; N: population sample; VNTR: variable number tandem repeat; SNP: single-nucleotide polymorphism; *179: 
denotes all repeats except for 181. **5HTTLPR includes Short (S) and Long (L) variants; rs25531 includes A and G alleles; S’/S’ genotype includes 
S/S, L-G/S, L-G/L-G; S’/L’ genotype includes L-A/S, L-A/L-G; L’/L’ genotype includes L-A/L-A.

Table 7. Mean, standard deviation, sample size for alcohol & drug risk severity scores and genetic addiction risk scale by treatment 
center and gender

Treatment center Gender

Alcohol risk severity 
score 
Mean (standard 
deviation, N)

Drugs risk severity score 
Mean (standard 
deviation, N)

GARS 
Mean (standard 
deviation, N)

Males 5.15 (2.65, 26) 6.64 (1.85, 28) 7.90 (1.88, 29)Addiction Recovery Resource

Females 6.11 (2.52 9) 6.00 (2.16, 7) 9.80 (3.49, 10)

Males 3.33 (2.23, 30) 5.75 (2.14, 32) 7.62 (2.39, 34)Catholic Charities - Maine

Females 4.00 (2.94, 4) 6.60 (1.52, 5) 7.71 (2.87. 7)

Males 2.00 (0, 1) 4.00 (0, 1) 7.00 (0, 1)Center for Psychiatric Medicine

Females -- -- --

Males 5.46 (2.22, 39) 5.24 (2.73, 42) 8.08 (2.18, 49)G & G Holistic Addiction Treatment 
Centers

Females 4.71 (2.74, 42) 6.47 (1.95, 59) 7.71 (2.40, 59)

Males 1.00 (0, 1) 5.00 (0, 1) 7.00 (0, 1)Integrative Life Center

Females 4.00 (0, 1) 5.00 (0, 1) 7.00 (0, 1)

Males 4.65 (2.65, 23) 5.34 (2.91, 26) 7.96 (1.97, 28)Malibu Beach Recovery Center

Females 4.44 (2.96, 34) 5.33 (3.10, 27) 8.38 (2.25, 37)

Males 5.67 (2.94, 6) 4.38 (2.50, 8) 7.88 (2.14, 8)Meadows Edge Recovery Center

Females 3.29 (2.63, 7) 5.43, 3.04, 7) 7.67 (3.32, 9)

GARS: Genetic addiction risk score; N: sample size; S.D.: standard deviation; Bolded: indicates significant mean differences between males and 
females.

Table 8. Parameter estimates and summary statistics for ASI alcohol risk severity score

Variable B S.E. Wald Chi-Square Df

Intercept -1.93 0.52 13.84 1

Sex -0.19 0.29 0.42 1

Age 0.05 0.11 15.29 1

GARS 0.74 0.29 6.39 1

B: regression parameter estimates; S.E.: standard error; df: degrees of freedom; GARS: genetic addiction risk score; ASI: addiction severity index.
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Table 9. Parameter estimates and summary statistics for ASI drug risk severity score

Variable Non-standardized 
beta

Unstandardized 
S.E.

Standardized
beta T Significance

Intercept 0.92 0.09 - 10.50 < 0.001

Sex 0.07 0.04 0.12 1.87 0.06

Age -0.01 0.01 -0.21 -3.43 0.001

GARS -0.13 0.01 -0.10 -1.59 0.11

S.E.: standard error; GARS: genetic addiction risk score; ASI: addiction severity index.

Figure 1. The allelic distribution of the total 393 cohort.

lack thereof predicted 72% of non-alcoholics[99]. Although there were conceptual similarities between the 
latter and present study (e.g., alcoholic subjects and genotyping techniques), there were also important 
differences, including the comprehensive panel measuring reward genes and polymorphisms, a larger 
sample size, as well as the focus on a clinical population rather than on post-mortem samples. Thus, the 
present data demonstrate a creation validity of GARS against the established criterion, that is to say, the ASI, 
which is the most commonly used psychometric tool in substance use disorders (https://www.sciencedirect.
com/topics/medicine-and-dentistry/addiction-severity-index).

The observed pattern in ASI drug severity scores (i.e., higher GARS in patients with high vs. low drug 
severity) is consistent with prior observations[100], including the association of the DRD2/AAKKI haplotype 
with comorbid alcohol- and drug addiction[101]. However, a lack of linear relationship between GARS and 
ASI drug severity scores calls for further inquiry into the type of this relationship. Several hypotheses could 
explain this non-linear relationship. One possibility is that at a certain severity level, individuals might 
substitute drugs with alcohol consumption, which could temporarily improve some aspects of drug-related 

https://www.sciencedirect.com/topics/medicine-and-dentistry/addiction-severity-index
https://www.sciencedirect.com/topics/medicine-and-dentistry/addiction-severity-index
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Figure 2. The allelic distribution of the cohort that completed the ASI questionnaire (n = 273). ASI: Addiction severity index.

Figure 3. Distribution of genetic addiction risk alleles as a function of “low” and “high” alcohol severity ratings scores.
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Figure 4. Distribution of genetic addiction risk alleles as a function of ‘low” and “high” drug severity ratings scores.

severity[102]. Alternatively, a more complex independent pattern may emerge particularly given the 
heterogeneous nature of addictive substances and their varying effects on the dopaminergic system[103]. It is 
also possible that the obtained results are a mere reflection of the underreporting of illegal drug 
consumption as compared to a legal substance, alcohol. Regardless of the underlying factors, it is critical for 
clinical assessments of addicted patients to account for all classes of addictive substances for comprehensive 
psychopathology characterization and for formulation of optimal treatment plans. Importantly, patients 
with “high” alcohol severity ratings also had increased psychological, family, and medical but not economic 
or legal problems. A similar pattern was recognized for those scoring in the “high” range of drug severity 
ratings, that is to say, increased psychological and familial but not medical, economic, or legal problems. In 
contrast, we did not detect a significant difference in the diagnosed psychiatric disorders. Taken together, 
these observations support further inquiry into additional GARS’ validity criteria along with 
disentanglement of inherited phenotypic traits vs. the ones that are acquired prior- or during addictive 
disorders.

Caveats
Overall, our results support the contribution of a hypodopaminergic trait to the pathogenesis of alcohol and 
drug use disorders, with potential implications for other non-substance-related RDS behaviors. 
Nonetheless, in addition to the aforementioned heterogeneous drug consumption patterns, several other 
caveats are usefully stated in advance, including a relatively modest sample size, lack of complementary 
psychodiagnostic assessments alongside the ASI, such as the Structured Clinical Interview for DSM-5, or the 
lack of additional psychometric assessments, such as the RDS Questionnaire or a uniform and validated 
RDS severity score index[104]. Additionally, while the results are robust, uncontrolled environmental factors 
could have affected dopamine and other monoamine metabolism and function, including storage, 
catabolism, synthesis, transport, cellular distribution and concentration, neuronal release, synaptic 
clearance, and catabolism, as well as other intracellular gene and environmental interactions.

As with the identification of substance-related diagnoses, patient characterization factors such as 
comorbidities, medications, demographics, personality traits, and overall health status could also potentially 
confound the outcomes of this sort of genetic study. For example, the presence of depression, even if it 



Page 91 Blum et al. J Transl Genet Genom. 2025;9:76-100 https://dx.doi.org/10.20517/jtgg.2024.56

occurred long before the study, may alter the brain’s reward system[105], as might the concurrent use of 
psychotropic medicines[106,107].

Given the substantial prevalence of depression[108], however, implementing this as an exclusion factor would 
likely rule out such a high percentage of patient candidates as to make clinical genetic studies unfeasible. An 
alternative way for evaluating the origin of the hyporesponsive reward system in alcohol and drug addiction 
is through examination of monozygotic twins discordant for alcohol/drug exposure or via prospective 
studies.

The ideal technique for risk stratification is still being debated. The utility of a specific test in identifying a 
risk factor within a population is often conveyed through measures such as the odds ratio or relative risk for 
complex behaviors, such as RDS, in individuals with positive versus negative test results. However, the 
ability of current tests, including the GARS panel, to predict RDS on an individual level remains limited. In 
general, odds ratios exceeding 15 to 20 are typically required to meaningfully impact individual risk 
prediction[109]. Such high odds ratios are rarely observed for individual dichotomous predictors or 
continuous covariates, even when there are significant differences between affected and unaffected groups.

A comprehensive evaluation of a risk marker or risk score requires analyzing multiple parameters that 
reflect distinct performance characteristics. Essential metrics include sensitivity, specificity, area under the 
receiver operating characteristic (ROC) curve (AUC) or C-statistic, informativeness of the criteria, clinical 
likelihood ratios, model calibration, and reclassification. Although ROC curves and AUC were initially 
developed for assessing diagnostic tests, they serve as valuable tools for determining the discriminative 
power of a risk estimator. In terms of the GARS test, we will continue our research utilizing “super controls” 
to allow for appropriately weighted genes and apply logistic regression analysis to determine odds ratios and 
ROC. However, the use of trichomization is informative and has been standard in the field of medicine as 
utilized by pencil and paper questionnaires like the ASI.

Future directions
Our findings indicate that incorporating genetic models into routine clinical practice has the potential to 
enhance the personalization of preventive, diagnostic, and therapeutic interventions. However, a significant 
challenge lies in selecting appropriate tests, validating their clinical relevance, and identifying disorders that 
can be effectively applied to real-world patients. Since patient well-being cannot be adequately addressed 
through simplistic definitions, it is crucial to define suitable targets for RDS models. These targets should 
account for factors such as environmental, lifestyle, psychological, and neuroendocrine influences. 
Conversely, the use of inappropriate methodologies could lead to counterproductive outcomes, including 
inconclusive or irrelevant results. Furthermore, expanding the GARS panel to include additional candidate 
genes, such as those involved in the P450 enzyme system[110], FGF21[111], and APOE, could significantly 
enhance its clinical relevance and broaden its applicability.

Understanding genetic testing
If early diagnosis leads to better treatment outcomes, then at what point should the proposed paradigm shift 
using genotyping be adopted? Federal and state mandates already require gene testing at birth for some 
conditions. Unlike rare diseases with limited treatment options (e.g., sickle cell anemia, Huntington’s 
disease, congenital hypothyroidism, phenylketonuria, and galactosemia), RDS has effective therapeutic 
strategies[112]. Although RDS is not instantaneously life-threatening, early genetic testing could allow for 
timely diagnosis and non-pharmacologic interventions. It may transpire that exercise, diet, psychotherapy, 
behavioral interventions, or a safe and non-stimulant nutraceutical dopaminergic agonist therapy reduces 
the gene abnormality’s impact[113]. For instance, attention deficit hyperactivity disorder (ADHD), a subtype 
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of RDS[114], is diagnosed in children and extends into adulthood. If not treated in a timely fashion, ADHD 
may constitute a risk factor for the development of substance use disorders[115]. Accordingly, even lay media 
(Bill Moyers of PBS) has suggested the heuristic value of early ADHD diagnosis for the prevention of the 
ensuing comorbid disorders. We propose that GARS be considered as a pre-diagnostic tool for early 
identification of RDS in our young people, including those with ADHD.

Limitations
A common in psychiatric genetics, including this article, is the inadequate or incomplete screening of 
controls. While our results are promising, we encourage future studies involving a larger population. If 
indeed others perform genome-wide association study (GWAS) studies directed at all addictive substance 
and non-substance behaviors (RDS), we caution that all controls are extensively screened for hidden RDS 
behaviors like gaming, overeating, hoarding, etc. The lack of employing highly screened controls free of 
RDS behaviors, in our opinion, may be a significant flaw in current and previous studies. Understanding 
this caveat could significantly reduce spurious results.

Statistical validation of GARS
The initial statistical evaluation concentrated on reward-related genes and their polymorphisms, 
predominantly associated with reduced dopamine activity within the mesolimbic brain reward circuitry. 
The GARS panel was assessed for its ability to predict risk for AUD using data from 74,566 case-control 
subjects[116]. Analysis of the identified risk alleles demonstrated significant odds ratios (OR) with 95% 
confidence intervals (CI), alongside an estimated population prevalence of alcoholism at 8%. Genes 
encoding dopamine receptors, including DRD1, DRD2, DRD3, and DRD4, as well as DAT1, COMT, 
OPRM1, and SLC6A4, exhibited significant associations with AUD risk compared to non-AUD controls, 
based on meta-analytic OR data. However, polymorphisms in GABRB3 and MAOA did not reach statistical 
significance, likely due to insufficient sample sizes.

Ongoing investigations into dopaminergic dysregulation underlying a hypothesized “pre-addiction” 
phenotype are currently under review. This research involves an extensive in silico analysis of GWAS data 
encompassing 88,788,381 samples from 1,373 studies, identifying 18 significant genes. Among these, APOE 
(P-value = 1.0E-126) was associated with pathways linked to opioid signaling, pain regulation, aging, and 
apoptosis. These findings are being integrated with the GARS test, highlighting key genes such as MAOA, 
COMT, APOE, and SLC4A6 as central components of these pathways, as identified through STRING-based 
interaction modeling. Additionally, the analysis revealed interactions with microRNAs hsa-miR-16-5p and 
hsa-miR-24-3p, while expanding the role of SLC6A4 to include interactions with 27 unique genes. 
Pharmacogenomic analyses identified 1,173 variant annotations for these genes, corroborated by 
enrichment and meta-analytic studies.

Collectively, these findings emphasize the critical role of dopaminergic pathways in linking addictive 
behaviors with depressive symptoms. They further propose RDS as a foundational “pre-addiction” 
phenotype, with pain, opioid dependency, aging, and apoptosis emerging as significant endophenotypic 
contributors.

Application of GARS in preaddiction screening
There is a critical need for the development of new therapies and reliable, safe, and effective screening 
methods for SUDs. Despite significant federal investment in research and treatment innovation over the 
past decades, treatment penetration rates remain below 25%[2]. A comparable situation occurred in the 
diabetes field, where early identification and intervention for prediabetes led to a substantial improvement 
in treatment penetration and outcomes[117,118]. The prediabetes model, which facilitates early detection and 
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timely intervention, has proven successful in slowing the progression of the disease[117,118]. Similarly, the 
emerging concept of “preaddiction” has been proposed for inclusion in the DSM. Preaddiction may reflect a 
disruption in hedonistic homeostatic regulation, such as hypodopaminergia in the mesolimbic reward 
system, and is linked to a range of neurochemical imbalances involving opioidergic, serotonergic, 
cannabinergic, GABAergic, glutaminergic, and cholinergic pathways[60,116,119]. Therefore, Genetic testing, such 
as the GARS test, could be employed to screen for individuals at risk of preaddiction, as it identifies genetic 
predispositions to addictive behaviors and has been shown to predict the severity of alcohol and drug use.

Summary
Our study found a significant association between a ten-gene panel with eleven SNPs linked to a 
hypodopaminergic trait and ASI-MV alcohol and Drug severity scores. Seven or more reward-gene-
polymorphisms were correlated with higher ASI-MV alcohol severity, while four or more were linked to 
higher ASI-MV drug severity scores. Replacing DAT 10 allele SNPs with DAT 9 allele SNPs, indicative of 
greater hypodopaminergic function, led to significant improvement. These genetic effects are additive and 
influenced by age, but gender was not a predictor of severity scores.

While the candidate gene approach may still be controversial[120], to our knowledge, this study is the first to 
correlate a panel of genes with polymorphisms reflecting the “Brain Reward Cascade”[121]. Future research 
should extend the GARS test to include more genes and polymorphisms linked to hypodopaminergic traits. 
The GARS test can be used to improve clinical interactions and decision making by reducing denial, 
validating family genetic patterns, and guiding assessment of addiction/relapse risk and treatment plans. 
Larger studies are needed for confirmation, and the inclusion of RDS “free controls” would undoubtedly 
strengthen the results and assist in determining accurate odds ratios for each allele.

Since our 1990 JAMA report linking the DRD2 Taq A1 allele to severe alcoholism, genetic candidate 
association studies, including GWAS, have proliferated. To identify individuals at risk for at least AUD, 
Blum’s group developed a GARS test, which includes ten genes and eleven associated risk alleles, as 
described herein. We validated these risk alleles by analyzing studies from 1990 until 2021 involving 74,566 
case-controls related to AUD. This analysis calculated the Hardy-Weinberg Equilibrium of each 
polymorphism in cases and controls and used Pearson’s χ2or Fisher’s exact tests for gender, genotype, and 
allele distribution. The analyses found the OR, 95%CI for OR, and a post-risk estimation of 8% for the 
population’s alcoholism prevalence revealed a significant detection. The OR results showed significance for 
DAT1, DRD2, DRD3, DRD4, COMT, OPRM1, and 5HTT at 5%. While most GARS research is derived 
from our laboratory, we encourage more independent research to confirm our findings[71,120-144].

Conclusion
This study identified a significant association between the GARS panel and the ASI-MV alcohol severity 
score, reinforcing previous findings that link dopaminergic function to alcoholism and substance abuse. The 
results also suggest that polygenic risk factors defined by GARS may be modulated by age-related 
pathophysiological and environmental factors. Future research, including GWAS, is warranted to explore 
the endophenotypes associated with RDS, which arise from a hypofunctional dopaminergic system.
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