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Abstract
Testicular cancer is often overshadowed by other cancers despite being the most common cancer in men aged 15 
to 34 years. This systematic review focuses on the potential of machine learning and deep learning techniques in 
the areas of testicular cancer imaging and histopathology, where artificial intelligence (AI) could assist in diagnosis, 
evaluation, and prognostication. Various studies have highlighted AI’s ability to accurately distinguish between 
benign and malignant lesions and characterisation within malignant lesions using magnetic resonance imaging 
(MRI) radiomics. Models have also been used in predicting histopathological findings to allow for greater accuracy 
and reproducibility. Further work is required to explore AI implementation in ultrasound imaging, which is the 
cheapest and most used modality.
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INTRODUCTION
The term “artificial intelligence” (AI) was first coined for the Dartmouth Summer Workshop in 1956, where 
it was broadly referred to as “thinking machines”[1]. Artificial intelligence can be categorised into machine 
learning (ML) and deep learning (DL). Machine learning utilises statistical models to generate algorithms to 
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assess data and variables, referred to as “features”, to predict outcomes. With further data input, machine 
learning can improve its own performance over time.

The application of AI is vast and expanding rapidly in oncology[2] with the use of machine learning and deep 
learning. Interestingly, research as early as 1995 used deep learning neural networks to quantitate primary 
tumour to determine if more accurate staging could be achieved, which showed promising results[3]. Since 
then, early adoption of AI in urology has been beneficial, with a particular focus on renal, bladder, and 
prostate cancer[4,5]. However, testicular cancer is often overshadowed by the three aforementioned cancers, 
despite being the most common cancer in men aged 15 to 34 years[6], with annual incidence estimated to 
reach 23,000 in Europe by 2025, an increase of 24% from 2004[7,8].

Testicular cancer
The WHO classification of testicular cancer broadly distinguishes between germ cell neoplasia in situ 
(GCNIS; 95%) and non-GCNIS (5%), with the former further subdivided into seminomas and 
non-seminomas[6]. There are various important diagnostic values in diagnosing testicular cancer. 
Ultrasonography (US) is the most common first-line imaging modality in patients with suspected testicular 
cancer[7], but it is not able to confidently distinguish between benign and malignant testicular masses[9-11]. 
Computed tomography (CT) imaging plays a crucial role in the initial staging of disease prior to 
orchidectomy[12]. Magnetic resonance imaging (MRI) also provides greater resolution and diagnostic power 
over ultrasound[13,14] and can be combined with advanced image processing techniques to extract a large 
number of quantitative features and assist both prediction and diagnosis[15].

In conjunction with imaging, three important blood serum tumour markers carry diagnostic value at initial 
diagnosis and after orchidectomy - serum alpha-fetoprotein (AFP), beta subunit of human chorionic 
gonadotropin (beta-HCG), and lactate dehydrogenase (LDH). Elevation of these three tumour markers has 
been seen in up to 60% of patients[7]. Post-orchidectomy tumours markers, staging CT scan results, and 
histopathological results are used to classify patients in TMN (tumour, metastasis, and lymph node 
involvement) classification and their prognosis. Patients with lymphovascular invasion, typically involving 
retroperitoneal lymph nodes, have a higher risk of recurrence of cancer[16]. These are central to the use of AI 
in testicular cancer.

Machine learning and deep learning
Machine learning predominantly uses either supervised or unsupervised learning. Supervised learning is 
frequently employed by research teams when there is a clearly defined outcome, often of a binary nature, 
such as distinguishing between malignant and benign cases. The data requires meticulous annotation, a 
labour-intensive pre-processing endeavour, which prepares the dataset for the algorithm. Commonly used 
supervised learning ML algorithms include, but are not confined to, linear regression, random forest, and 
support vector machines (SVM). The concept of train-test split is fundamental to supervised machine 
learning; 70%-80% of the dataset is allocated to a training set and the remaining 20%-30% is used to validate 
the performance of the training model. In addition, cross-validation can be used and is most useful in 
smaller datasets and mitigates overfitting (an issue whereby machine learning does well in the training 
cohort but less well in unseen data in the testing cohort)[17,18].

On the other hand, unsupervised learning does not involve labelled output data and is used to identify 
commonalities of “features” within the dataset. In clinical practice, this type of learning is useful in 
identifying unrecognised patterns, clusters, or feature subsets, and commonly used algorithms include 
K-means (clustering) and principal component analysis[17]. Further to this, deep learning is a subset of 
machine learning that uses units called artificial neural networks (ANNs) with multiple layers that mimic 
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the human brain. The neural networks apply weights to different inputs, and pass these through a simple 
mathematical algorithm called an activation function. Output values are generated when data is filtered 
through these layers of networks. One commonly used DL model is convolutional neural network 
(CNN)[4,17,19].

METHODS
This review was designed and performed in accordance with the recommendations of the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.

Inclusion criteria
- Original research full articles relevant to artificial intelligence including machine learning and deep 
learning in testicular cancer, seminomas, or germ cell tumours. 
- Live human study participants

Exclusion criteria
- Grey literature 
- Abstracts from conferences 
- Non-peer-reviewed articles 
- Non-English articles 
- Animal studies 
- Paediatric studies

Literature search and study selection
A systematic search of Cochrane CENTRAL database, MEDLINE, EMBASE, NHS NICE healthcare 
databases advanced search interface was executed by two authors (Chuluunbaatar Y and Bansal S). The last 
search was conducted on the 28th of June 2023. Medical subject headings (MeSH) terms were used - 
“artificial intelligence testicular cancer”, “machine learning testicular cancer”, and “artificial learning 
seminoma germ cell tumour”. Two independent screeners performed a title and abstract review, with a 
third screener to resolve any disagreements (Brodie A).

Data collection
For each study included in this systematic review, the following data was extracted: the application, imaging 
technique where applicable, cancer type, sample size, training cohort size, validation cohort size, machine 
learning or deep learning AI algorithm, accuracy, sensitivity, specificity, and/or area under curve (AUC). 
Data extraction was performed independently by two authors (Chuluunbaatar Y, Bansal S), and 
disagreements were resolved by discussion and consensus. If no agreement could be reached, a third author 
(Brodie A) was consulted to act as an arbitrator. Studies with missing data were excluded from the 
systematic review.

Assessment for risk of bias
Two authors (Chuluunbaatar Y, Bansal S) critically appraised the methodological quality of the included
studies. Discrepancies were resolved by reviewer discussion, and if they remained unsolved, a third 
investigator was consulted (Brodie A).

Search result: 102 citations were identified. Following screening and assessment, 9 studies were included in 
the review [Figure 1].
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Figure 1. PRISMA flow diagram showing search strategy and search selection. PRISMA: Preferred Reporting Items for Systematic 
reviews and Meta-Analyses.

RESULTS
AI in testicular cancer imaging
Different imaging modalities are important in the diagnostic work-up and initial staging of testicular cancer. 
While ultrasound is essential in diagnosis, it cannot differentiate benign from malignant types[20], and thus, 
limited work on AI and ultrasound has been carried out.

Recent studies involving MRI have been promising. Fan et al. developed a supervised machine learning-
based approach to distinguish malignant and benign testicular masses using diffusion weight imaging 
(DWI) MRI “radiomic” signatures based on appearance diffusion coefficient (ADC) maps[21]. Radiomics 
refers to a widely used method of extracting quantitative features or data from digital medical images into 
high-dimensional mineable data[22]. In 97 patients with 101 testicular lesions, 851 distinct radiomic features 
were extracted from ADC maps. A predictive model was trained using a subset (71 lesions) and included 
272 features, of which six were statistically significant and input into the AI algorithm. These performed 
well in a separate validation cohort [30 lesions and area under the curve (AUC) = 0.868] and, therefore, 
were able to distinguish malignant vs. benign masses well. The study also analysed blood tests, which 
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showed that levels of serum markers (AFP, hCG, and LDH) were increased in 67% of testicular 
malignancies in their training and validation cohorts. Further statistical analysis showed that it was not an 
independent factor for testicular malignancy.

Furthermore, Zhang et al. used minimum-redundancy maximum-relevance (mRMR) together with least 
absolute shrinkage and selection operator (LASSO), supervised machine learning algorithms, to design a 
classifier for seminomas and non-seminomas in 39 patients with germ-cell tumours using their T2-weighted 
MRI images prior to radical orchiectomy[15]. As a labelled dataset, 19 patients were known to have 
seminomas and the remainder with non-seminomas. From these MRI images of 39 patients, a total of 851 
radiomic features were extracted, of which features were ranked using the mRMR method according to 
their relevance-redundancy scores. Following this and 5-fold cross-validation, five features were included in 
the radiomic signature. The algorithms were able to statistically distinguish between seminomas and 
non-seminomas in this dataset (P < 0.01) and an AUC (area under the curve) of 0.979. While most germ cell 
tumours are managed with an orchiectomy, the distinguishment via AI between seminoma and 
non-seminoma could provide clinicians further guidance with regard to adjunct treatment.

Similarly, Feliciani et al. investigated the role of radiomics in 42 patients with histology-proven testicular 
neoplasms to differentiate between germ-cell tumours and non-germ cell tumours and between seminomas 
and non-seminomas within germ-cell tumours using T2-weighted MRI images prior to surgery[20]. From 42 
patients, 44 lesions were identified, and 487 features extracted. LASSO algorithm was applied and identified 
three radiomic features for the discrimination of germ-cell vs. non-germ cell tumours and four radiomic 
features for discrimination of seminoma vs. non-seminoma. These radiomic features were applied to a 
linear support vector machine (SVM) algorithm, a supervised machine learning algorithm. They showed 
that the model produced a true positive rate (TPR) of 94% and 74% in predicting germ-cell tumours and 
non-germ cell tumours, respectively. The F-score for germ-cell tumours is 0.92 and 0.78 for non-germ cell 
tumours, which is a score that provides a balanced measure of the model’s precision and recall. Within 
germ-cell tumours, the model was able to predict seminomas and non-seminomas with a TPR of 86% and 
87%, respectively.

In addition to MRI, CT imaging has also been implemented in AI algorithms. Baessler et al. explored the
potential for CT imaging to distinguish between benign and malignant lymph node involvement in 80 
patients with metastatic non-seminomas who underwent post-chemotherapy retroperitoneal lymph node 
dissection (PC-RPLND)[23]. They used gradient boost tree (GBT), a supervised machine learning algorithm, 
to develop a radiomics-based predictive model that achieved a classification accuracy of 0.81 compared to 
histological assessment. This study further solidified research carried out by Lewin et al. in which they used 
CT radiomics from 77 patients with PC-RPLND to distinguish residual masses as either malignant or 
benign (fibrotic) using supervised machine learning SVM[24]. Ten radiomics features were identified and the 
algorithm performed well with an AUC of 0.80 compared with pathological reports.

These studies highlight the potential role AI can play in assisting diagnosis and classification via imaging. 
Further investigation is required to explore AI implementation in ultrasound imaging, the cheapest and 
commonly used modality.

AI in testicular cancer histopathology
Histological assessment by pathologists is prone to inter- and intra-observer bias. AI within histopathology 
has advanced exponentially and allows for greater accuracy and more reproducible results[25,26].
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Tumour-infiltrating lymphocytes (TILs) have prognostic significance in testicular germ cell tumours such 
that their presence often indicates poorer prognosis[27,28], which are typically quantified histologically 
following haematoxylin and eosin (H&E) staining. Linder et al. utilised deep learning algorithms 
(commercially available but not specified) to assist in the detection of TILs in testicular germ cells in 259 
specimens obtained retrospectively from 118 patients[29]. The algorithm initially trained with 129 specimens, 
with the remaining 130 specimens reserved for testing, where the model performed with a sensitivity of 89% 
and F-score of 0.88 compared to manually annotated TILs. This showed high detection levels with good 
accuracy and precision.

In a similar fashion, Ghosh et al. carried out research on lymphovascular invasion (LVI) in 29 germ-cell 
testicular cancer patients retrospectively by using 184 whole slide images from primary management with 
orchidectomy retrospectively[30]. The expertly annotated images were input into “Visiopham” AI module, 
which utilises deep learning convolutional neural network (CNN) for training. The model was applied to a 
test data set of 43 slides. The model demonstrated that it was able to identify lymphovascular invasion with 
an accuracy of 0.56. However, a few foci that the AI model identified as non-LVI were re-reviewed by an 
expert and determined to be in fact LVI. Although these models are not perfectly precise, they set the 
foundation for future work and highlight the importance of larger datasets required for stronger training 
and validation of AI models. It is particularly important as LVI is considered an important prognostic 
marker in non-seminomas, with a relapse rate of 50% if present[31].

AI in testicular cancer outcomes
A plethora of machine learning techniques have been devised to prognosticate patient outcomes, such as 
“DeepSurv”[32], “DeepHit”[33], and recently “Deep Survival Machine” models[34]. However, these methods of 
estimating the survival distribution fail to provide insight into post-prognosis surveillance. To bridge this 
gap, Eminaga et al. used data from “Surveillance, Epidemiology and End Results (SEER) program” 
encompassing a vast cohort of cancer patients (penile, testicular, prostate, bladder, ureter, and kidney) to 
construct a machine learning model capable of dynamic risk-stratification for patient survival and 
follow-up[35]. With a training set of 1.7 million patients, their model yielded a remarkable concordance index 
of 0.80 on the validation set (190,000 patients). Their results have also recommended at least five years of 
follow-up post-diagnosis for testicular cancer patients, and up to 8 years for localised cancer or 9 years for 
metastatic cases, thereby demonstrating the potential of AI in predicting survival and surveillance 
management. Additionally, they elucidated that the highest probability for a stabilised risk profile in 
testicular cancer with distant metastases is during the 5th and 7th year, emphasising the crucial role of AI in 
guiding surveillance management.

A small proportion of patients develop advanced disease stages characterised by metastases, typically to the 
lung followed by the liver[36]. In a concerted effort to unravel the underlying risk factors and predict which 
patients are more susceptible to metastasis, machine learning algorithms are being harnessed. Recently, a 
study leveraged five supervised machine learning algorithms (linear regression, extreme gradient boosting, 
light gradient boosting, random forest, and k-nearest neighbours) and one deep learning algorithm 
(multilayer protection) to accurately prognosticate metastatic disease (M1B progression) in patients with 
GCTC. The study employed 4,300 patients from the SEER program database and evaluated various 
potential factors through statistical analysis[37]. The results of the study revealed that T-stage, N-stage, lung 
metastases and distant lymph node metastases exerted the most statistically significant impact on M1B 
progression and therefore incorporated into the machine learning algorithm. XGBoost was identified as the 
most effective algorithm for forecasting metastatic risk, demonstrating an AUC of 0.957. Serum markers 
(AFP, LDH, and hCG) were also identified as not being a predictor of progression to metastatic stage. 
Despite the results, it is essential to note that immunohistochemistry findings were not factored into the 
algorithm, thereby leaving room for further valuable input into identifying risk factors.
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DISCUSSION
This review has summarised recent novel research in the utilisation of AI in testicular cancer, as 
summarised in Table 1. As testicular cancer accounts for approximately 1% of all new cancer diagnoses in 
the world[6], it is an uncommon cancer, and therefore, this is reflected in the small sample sizes of the vast 
majority of studies carried out. Consequently, many studies conducted feature small sample sizes. As a 
corollary, several studies lack a validation or testing cohort to test their algorithm [Table 1], and thus rely 
heavily on cross-validation. Multiple authors have acknowledged this as a common limitation, emphasizing 
the need for larger datasets to generate accurate predictions. This is particularly crucial in non-seminoma 
tumours, which are characterised by greater heterogeneity than seminomas, necessitating a greater number 
of samples to enable deep learning to assimilate a broader range of patterns.

The use of CT and MRI imaging radiomics is an emerging field in testicular cancer. One study used 
diffusion-weighted imaging MRI modality, while others used the commonly used T2-weighted MRI 
modality. Diffusion-weighted images are quantitatively assessed by calculating the ADC maps and scores, 
which offer information regarding cellular structure and organisation of tissues and, therefore, delineate 
between conditions, such that tissues with higher cell density, i.e., cancers, tend to have lower ADC values 
and vice versa[38]. DWI, however, suffers from certain limitations such as geometric distortion and signal 
intensity dropout on tissue-air boundaries, such as thyroid gland, scrotum and prostate[15]. Nevertheless, 
studies have demonstrated that DWI alone confers powerful diagnostic performance in testicular masse, 
with one study reporting sensitivity of 90% and specificity of 88%[39]. Moreover, the amalgamation of ADC 
and conventional T2-weighed MRI has further improved diagnostics[40,41]. The combination of the two has 
yet to be explored in AI algorithms and thereby an open scope for further investigation in this direction.

Despite a focus on CT and MRI radiomics, no current literature exists pertaining to the role of AI in 
ultrasound in testicular cancer, which is the first-line imaging modality. The use of AI in ultrasound has 
been predominantly explored in thyroid and breast, followed by cardiac, vascular, obstetrics and 
gynaecology, and musculoskeletal system[42]. For instance, in the context of thyroid nodules, AI has been 
used to aid in the diagnosis of malignant and benign nodules, classify malignant modules, and prognosticate 
outcomes[43]. In a study by Liu et al., a novel deep-learning CNN computer-aided model was employed to 
detect and classify thyroid nodules in ultrasound images[44]. The deep learning model surpassed the 
diagnostic capabilities of radiologists as observed in sensitivity (0.964 vs. 0.928), specificity (0.780 vs. 0.366), 
and accuracy (0.928 vs. 0.816). Given both thyroid and testicular masses are investigated first line using 
ultrasound, these studies demonstrate the possible applications of US in testicular cancer. As such, this 
constitutes a critical area of investigation for future research.

Additionally, serum markers play a pivotal role in the diagnosis and prognostication of testicular, albeit as a 
non-independent marker[7,37]. The emerging field of serum biomarkers and proteomics with machine 
learning is an exciting advancement and has been demonstrated in the prediction and prognosis of 
hepatocellular carcinoma (HCC)[45]. Lee et al. demonstrated the use of machine learning with cell-free DNA 
(cfDNA), specifically AFP expression, detection system to establish a platform for HCC diagnosis and 
prognosis[46]. Their approach showed improved accuracy in determining pathological features of HCC using 
a composite cfDNA score (which integrated total plasma cfDNA and cfAFP-DNA expression into a single 
score). Similar strategies could potentially be employed in the realm of testicular cancer with AFP, LDH, 
and hCG markers. Further research is warranted to explore the possibility of this.
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Table 1. Summary of the studies involved in AI and testicular cancer

Study Application Study summary Study type & dates Sample Limitations Algorithm/Model Accuracy 
%

Sensi-
tivity 
%

Speci-
ficity 
%

AUC

Fan et al., 
2022[21]

Detection Develop machine learning-
based radiomics to 
discriminate between benign 
and malignant testicular 
masses 
 
DWI MRI images

Retrospective single-site 
study from February 2014 to 
April 2021

97 patients with 101 
testicular masses 
 
Extracted = 851 
radiomics 
272 statistically 
different 
 
6 features used 
 
Training cohort = 71 
 
Validation cohort = 30

Small training and 
validation cohorts

Supervised machine 
learning 
 
Did not explicitly mention

NR 0.905 0.667 0.868

Zhang 
et al., 
2019[15]

Imaging T2-weighted image-based 
radiomics for differentiating 
between seminoma and non-
seminoma

Retrospective single-site 
study from February 2014 to 
March 2019

39 patients  
Pathologically identified 
lesions 
 
Five features selected as 
radiomic signatures

There is no training or 
validation cohort due to 
the small sample size. 
Instead, they used cross-
validation

Supervised machine 
learning 
 
mRMR 
LASSO

NR 90 100 0.979

Feliciani 
et al., 
2021[20]

Imaging Using MRI (T2-weighted) 
based radiomics to distinguish 
between germ-cell tumours 
vs. non-germ cell tumours 
 
To distinguish between 
seminoma and non-seminoma 
cancers 
 
Against known histological 
findings

Retrospective single-site 
study between January 
2006 and February 2019

42 patients 
 
44 lesions 
 
487 features extracted 
 
3 radiomic features used 
in germ-cell vs. non-
germ cell tumours 
 
4 radiomic features 
used in seminoma vs. 
non-seminoma

No training or validation 
cohort due to the small 
sample size. Cross-
validation used to mitigate 
this 
 
Retrospective

Supervised machine 
learning 
 
Linear model 
SVM

89% NR NR NR

80 patients with 204 
lymph nodes 
 
97 radiomics features 
per lymph node. 5 
features used in AI 
algorithm 
 
Training dataset = 120 
LNs 
 

Baessler 
et al., 
2020[23]

Imaging CT radiomics-based machine 
learning to predict 
histopathology of LN after 
dissection in metastatic non-
seminoma 
 
Compared against 
histopathological findings

Retrospective single-site 
study between 2008 and 
2017

Various CT scanners used 
 
Did not include clinical 
variables in the AI 
algorithm

Supervised machine 
learning 
 
GBT

0.81 88 72 NR

Testing dataset = 23 
LNs 
 
Validation dataset = 61 
LNs
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Lewin 
et al., 
2018[24]

Imaging Contrast CT radiomics in 
predicting post-chemotherapy 
residual mass and compared 
with pathological reports

Retrospective single-site 
study between January

77 patients 
 
183 radiomics 
 
10 statistical

No validation or training 
datasets

Supervised machine 
learning 
 
Support vector machine

72 56 82 0.80

Ghosh 
et al., 
2021[30]

Histopathology Detection of lymphovascular 
invasion in testicular cancer

Retrospective single-site 
study from January 2019 to 
July 2020

29 patients  
302 whole haematoxylin 
and eosin slides 
 
Training set = 184 whole 
slides from 19 patients. 
Validation set = 118 
whole slides from 10 
patients

Small number of cases Deep learning 
 
Convolutional neural 
network

0.68 NR NR NR

Linder 
et al., 
2019[29]

Histopathology Detecting tumour-infiltrating 
lymphocytes from H&E slides

Retrospective single-site 
study between 2005 and 
2016

89 patients 
 
28 whole slide H&E 
tissue samples 
 
259 images created 
 
Training = 129 images 
 
Testing = 130 images

Small sample size Deep learning 
 
Commercially available 
image analysis software 
WebMicroscope

NR 89 NR F-score = 
0.88

Eminaga 
et al., 
2022[35]

Outcomes Prognostic and follow-up 
recommendations

Retrospective study utilising 
a US SEER National 
database with 1.9 million 
patients with urological 
cancers between 1975 and 
2017

1.9 million patients 
 
Training set = 1.7 million 
patients 
 
Test set = 194,000 
patients

SEER database does not 
include detailed treatment 
information and has 
evolving standard-of-care 
treatment

Deep learning 
 
Recurrent neural network

0.8 NR NR NR

Ding et al., 
2022[37]

Outcomes Predicting the risk of 
developing metastatic disease 
with germ-cell testicular 
cancer

Retrospective study US 
SEER national database

SEER database 
 
Total 4,323 patients

Lack of immuno-
histochemistry results and
patients with underlying
disease and

Supervised machine 
learning 
 
Multiple

NR NR NR 0.816 
with 
random 
forest

AI: Artificial intelligence; AUC: area under curve; CT: computed tomography; DWI: diffusion weighted imaging; GBT: gradient boosting tree; H&E: haematoxylin and eosin; LASSO: least absolute shrinkage and
selection operator; LNs: lymph nodes; NR: not reported; MRI: magnetic resonance imaging; SEER: Surveillance, Epidemiology and End Results; SVM: support vector machine; US: ultrasonography.
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There are several limitations of the papers and data included worth noting. Primarily, these limitations stem 
from the novelty of using AI algorithms within research such that the studies incorporated in this systematic 
review carried out their work retrospectively. This subsequently means that primarily internal validation 
processes are employed. However, for a more comprehensive assessment of these AI algorithms, external 
validation is imperative following testing with larger datasets to enable a better understanding of their 
performance in real-world scenarios with unseen data in prospective patients. Additionally, the 
retrospective nature of the studies often necessitated the resampling of images in order to address the 
heterogeneity of images to create a more uniform dataset. However, it is worth noting that this process may 
not perfectly mirror the diverse range of imaging equipment used across different clinical centres.

In essence, while these limitations are inherent to the current state of AI research and its vastly developing 
field, they provide invaluable insights into the challenges and opportunities for further development and 
validation of promising AI technologies within a clinical context.

CONCLUSION
The diverse array of studies employing AI techniques to address various aspects of testicular cancer 
underscores the extensive scope and versatility of AI in facilitating diagnosis, classification, and 
prognostication, ultimately impacting patient care. However, it is worth noting that a significant challenge 
associated with machine learning is its dependence on large-scale training and testing datasets to ensure the 
creation of robust and generalisable models.
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