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Abstract
Aim: Currently, the obesity epidemic is one of the biggest problems for human health. Obesity is impacted on 
survival in patients with breast cancer. However, key biomarkers of obesity-related breast cancer risk are still not 
well known. Thus, using machine learning to identify the most appropriate features in obesity-associated breast 
cancer patients may improve the predictive accuracy and interpretability of regression models.

Methods: In the present study, we identified 23 differentially expressed genes (DEGs) from the GSE24185 
transcriptome dataset. Seed genes were identified from DEGs, the co-expression network genes and hub genes of 
the protein-protein interaction network. Pathway enrichment analysis was performed for DEGs. The Ridge penalty 
regression model was executed by using P-values of enriched pathways and seed gene pathway association score 
to obtain the most relevant molecular signatures. The model was performed using 10-fold cross-validation to fit the 
penalized models.

Results: Angiotensin II receptor type 1 (AGTR1), cyclin D1 (CCND1), glutamate ionotropic receptor AMPA type 
subunit 2 (GRIA2), interleukin-6 cytokine family signal transducer (IL6ST), matrix metallopeptidase 9 (MMP9), 
and protein kinase CAMP-dependent type II regulatory subunit beta (PRKAR2B) were considered as candidate 
molecular signatures of obese patients with breast cancer. In addition, RAF-independent MAPK1/3 activation, 
collagen degradation, bladder cancer, drug metabolism-cytochrome P450, and signaling by Hedgehog pathways in 
cancer were primarily associated with obesity-associated breast cancer.
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Conclusion: These genes may be used for risk analysis of the disease progression of obese patients with breast 
cancer. Corresponding genes and pathways should be validated via experimental studies.

Keywords: Obesity, breast cancer, machine learning, penalty regression models

INTRODUCTION
Breast cancer is the second largest cause of mortality from cancer among women; however, detection at an 
early stage and treatment could significantly improve outcomes[1]. The World Health Organization (WHO) 
stated that last year breast cancer was diagnosed in 2.3 million women worldwide and resulted in 685,000 
deaths[2]. It has a complex etiology that involves various genetic, physiological, and lifestyle-related risk 
factors (alcohol/smoking, excessive body weight, etc.)[3,4]. Particularly, several studies have demonstrated the 
association between obesity status and breast cancer, highlighting the potential of an increase in personal 
health behaviors to reduce the burden of disease[4]. In the WHO report, overweight and obesity are 
determined as a surplus fat aggregation that may harm to health. Body mass index (BMI) is a basic height-
weight index mostly used to categorize overweight and obesity in adults (BMI > 30 kg/m2). According to the 
most recent WHO case report, currently, more than 1.9 billion adults and 650 million people worldwide can 
be categorized as overweight or obese, respectively, and these rates are predicted to increase more rapidly in 
the coming decades[2].

Numerous studies have examined the association between obesity and cancer development in various 
cancer types, such as esophagus, pancreas, prostate, colorectal, and breast cancer[5]. Although there is 
substantial evidence indicating a high BMI is linked to a growing risk of breast cancer in postmenopausal 
women and poorer clinical outcomes in people of all ages, the specific nature of the exposure is unknown.

This uncertainty is mirrored in the variety of methodologies used in the research to characterize or define 
body composition: BMI, body weight, body composition, metabolic state, and nutritional condition[6].

Obesity is linked to a higher incidence of postmenopausal estrogen receptor-positive breast cancer and 
poorer cancer-associated results across the board[7]. The obesity-cancer relationship is thought to be 
influenced by significant quantities of circulating and local estrogens, changed concentrations of 
adipokines[8] (adiponectin and leptin), disrupted insulin/IGF signaling, changes in the microbiome, and 
local and systemic inflammatory effects (e.g., WAT)[7]. The latest studies indicate that obesity-associated 
insulin/insulin-like growth factor-1 axis, adipokines, inflammatory cytokines and leptin, sex hormones[9], 
adiponectin[8], ORPS[10], and HER2[11] proteins play a significant role in breast cancer-related pathways. On 
the other hand, CD68 immunohistochemistry (CD68 + CLS-B) expression has been related to insulin 
resistance and negative prognosis in obesity-associated breast cancer[12]. According to another study, 
vitamin D supplementation may have varied impacts on gene expression in breast and adipose tissue during 
weight loss[13].

Obesity affects various aspects of breast cancer treatment, including surgery, chemotherapy, endocrine 
therapy, and radiotherapy. In addition, breast cancer risk and recurrence are affected by anti-inflammatory 
drugs, metformin, diet, and physical activity[7,14]. Surgery, radiation, and chemotherapy problems are more 
common in obesity-associated breast cancer patients. Furthermore, obese patients have a higher chance of 
local recurrence than women of normal weight. Mechanistically driven approaches, involving biomarker 
development, are essential for the prevention and treatment of obesity-related malignancies, much as they 
are for tumor-directed pharmacologic therapy in oncology[14].
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Although various studies are being conducted to gain a better understanding of the association between 
obesity and breast cancer, integrative analysis is needed to detect novel molecular signatures and pathways 
to determine the obesity related breast cancer risk biomarkers.

In the present study, a gene expression dataset was analyzed to compare obesity-associated breast cancer 
samples and non-obesity-associated with breast cancer samples. The co-expression network and protein-
protein interaction (PPI) network of differentially expressed genes (DEGs) were determined. Seed genes, 
common DEGs, were then identified from the co-expression gene network and hub genes of the PPI 
network. Next, to examine the molecular mechanisms of obesity-associated breast cancer, statistically 
significant pathways were determined. The Ridge penalty regression model was executed by using p-values 
of enriched pathways and seed gene pathway association score to determine the potential to be a molecular 
signature of seed genes in obese patients with breast cancer to obtain the most relevant molecular 
signatures. Finally, we identified several candidate genes and pathways in obese patients with breast cancer.

METHODS
Gene expression datasets and identification of differentially expressed genes
To characterize gene expression profiles of obesity in breast cancer, raw data of the obesity-related high-
throughput gene expression dataset GSE24185[15] in breast cancer were obtained from the Gene Expression 
Omnibus[16]. In total, 74 samples were analyzed, including those from 36 historically normal (BMI ≤ 24.9) 
breast cancer patients as a control sample and 38 obese patients with breast cancer (BMI ≥ 30). The affy 
package of the R/Bioconductor platform (version 3.6) was used. Normalization for each dataset was 
performed with robust multiarray[17] techniques. Normalized log-expression values, which were calculated 
using multiple test options of linear models for microarray data[18] to define DEGs, were used in the 
statistical analysis of each dataset to contrast obese vs. non-obese breast cancer patients. For DEGs 
identification, they were selected according to computed P-values greater than the significance level (P value 
< 0.05) with the fold change of 1.5 used as statistical threshold parameters.

Construction of co-expression networks in breast cancer and obese states
By separating the expression profiles of non-obesity-associated and obesity-associated breast cancer 
samples, two new data subsets were generated using the expression profiles of resultant DEGs. The co-
expression network of DEGs was reconstructed by calculating the Pearson correlation coefficients of the 
mean expression values of DEGs in samples from obese patients with breast cancer and non-obese patients 
with breast cancer. To specify the statistical meaning of binary gene correlations, the obtained correlation 
coefficients were normally distributed (P-value < 0.05), and positive and negative correlation cutoff 
significance levels (cutoffs > 0.47 and ≤ 0.47) were selected, respectively. An obesity-associated breast 
cancer-specific co-expression network was reconstructed, including 15 nodes and 17 edges, by using 
significant pairwise gene correlations.

PPI network reconstruction and identification of seed genes
The physical protein-protein interaction information was obtained from the BioGRID[19] database, which 
includes 43,219 physical interactions associated with proteins. Resultant DEGs of PPI networks were 
reconstructed using Cytoscape[20]. Seed genes were obtained from the intersection of DEGs, co-expressed 
genes, and hub genes of the PPI network.

Gene set overrepresentation analyses
Overrepresentation analyses were built using the ConsensusPathDB[21] bioinformatics tool to determine 
biological processes, molecular functions, metabolic pathways, and signaling information crucially 
associated with DEGs of obese patients with breast cancer and seed genes. The Kyoto Encyclopedia of 
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Genes and Genomes[22] (KEGG) and Reactome[23] were used as a pathway database for the analyses. 
Statistically significant values (P < 0.05) representing the significance of enrichment analysis were obtained 
by Fisher’s exact test.

Performance evaluation of the seed genes with a classification algorithm
The Ridge regression approach was used to understand the importance of seed genes in obese patients with 
breast cancer. This method is modeled as a linear weighted sum of biomarkers, performing a regularization 
punishment to limit the enormity of the regression coefficients. This gives rise to a sparse set of genes (i.e., 
biomarkers) that predict disease. This method limits the estimates of the regression coefficients towards no 
correlation to the maximum likelihood estimates. Ridge regression employs a penalization term to reduce 
overfitting. However, instead of using the sum of the absolute values, it uses the sum of the squares of the 
coefficients. As a result, under Ridge regression, the coefficients are not zero. The Ridge function is:

The machine learning algorithm was used to check the path validity of the identified common seed genes. 
To execute the regression algorithm, the NumPy[24] and Pandas[25] packages of the Python[26] platform were 
used. Furthermore, to overcome the difficulty of insufficient data on obese patients with breast cancer with 
genotypes to train a high-performance model of risk prediction for obese patients with breast cancer, we 
interpret our recommended method at 10 replicates of five-fold cross-validation. Mathematically, Ridge 
regression can be defined by using a single penalty function “α”[27]. A penalty parameter α = 0.1077 was used 
in the Ridge algorithm. A high value for the penalty parameter (α) will result in a heavy penalty, leading to 
the selection of fewer variables. In addition, test size and random state were taken as 0.25 and 42, 
respectively.

RESULTS
Transcriptome profiling of obese patients with breast cancer
The statistical analyses of the gene expression dataset resulted in the identification of up- and 
downregulated DEGs with P < 0.05 and FC > 1.5 or FC < 0.67. Nineteen downregulated and four 
upregulated genes were identified. 4-Aminobutyrate aminotransferase (ABAT), beta polypeptide (ADH1B), 
angiotensin II receptor type 1 (AGTR1), cyclin D1 (CCND1), dual specificity phosphatase 4 (DUSP4), flavin 
containing dimethylaniline monoxygenase 2 (FMO2), FRY microtubule binding protein (FRY), polypeptide 
n-acetylgalactosaminyltransferase 7 (GALNT7), glutamate ionotropic receptor AMPA type subunit 2 
(GRIA2), glycogenin 2 (GYG2), interleukin-6 cytokine family signal transducer (IL6ST), keratin 6B 
(KRT6B), mesoderm specific transcript (MEST), matrix metallopeptidase 12 (MMP12), matrix 
metallopeptidase 9 (MMP9), phospholamban (PLN), protein kinase CAMP-dependent type II regulatory 
subunit beta (PRKAR2B), ribonuclease a family member 4 (RNASE4), S100 calcium binding protein A2 
(S100A2), signal peptide, CUB domain and EGF-like domain containing 2 (SCUBE2), semaphorin 3C 
(SEMA3C), tissue factor pathway inhibitor (TFPI), and transforming growth factor beta receptor 3 
(TGFBR3) were identified as DEGs. A small number of DEGs may have been obtained due to the study of 
the effect of obesity on tumor tissues.

Biological and clinical features of seed genes
Co-expression network analyses were performed, which identified 23 DEGs of obese patients with breast 
cancer samples obtained from the GSE24185 dataset [Figure 1]. Co-expressed genes were identified as 
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Figure 1. Co-expression network of the differentially expressed genes. Mutual differentially expressed genes (DEGs) that were 
significantly correlated are depicted as nodes, and statistically significant correlations between DEGs are represented as edges. Blue and 
red color edges represent positive and negative correlations, respectively.

ABAT, alcohol dehydrogenase 1B (Class I), ADH1B, AGTR1, CCND1, FMO2, GRIA2, GYG2, IL6ST, 
MMP12, MMP9, PRKAR2B, S100A2, SCUBE2, TFPI, and TGFBR3.

The first neighbor enriched PPI network was constructed by using DEGs [Figure 2]. Hub proteins with 
degree score ≥ 2 were determined as CCND1, PRKAR2B, IL6ST, PLN, GRIA2, S100A2, DUSP4, KRT6B, 
MMP9, AGTR1, and GYG2. Seed genes were also identified as common DEGs among co-expressed genes 
and hub genes of the PPI network [Figure 3A]. AGTR1, CCND1, GRIA2, GYG2, IL6ST, and PRKAR2B 
were downregulated while S100A2 and MMP9 were upregulated seed genes [Figure 3B]. The biological 
importance of the seed genes was described according to GeneCard[28] in Table 1. The protein product of 
AGTR1 is a vasopressor hormone that affects the narrowing of blood arteries. CCND1 functions as a 
regulator of CDK kinases. Another seed gene, IL6ST, is a signal transducer and part of the cytokine receptor 
complex. GRIA2 and S100A2 are related to physiological processes, while GYG2 and PRKAR2B are 
metabolism-related genes. It has been reported that MMP9 is a metastasis-associated gene.

To identify important signaling pathways to the obesity-related carcinogenesis mechanism, pathway 
enrichment analysis was performed via KEGG and Reactome databases [Table 2]. Especially tumor-
associated signaling pathways were obtained. RAF-independent MAPK1/3 activation, collagen degradation, 
bladder cancer, drug metabolism-cytochrome P450, and signaling by Hedgehog pathways in cancer were 
determined as significant pathways (P value < 0.01).
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Table 1. Biological features of seed genes

AGTR1 It is a considerable effector in the cardiovascular system that controls blood pressure and volume

CCND1 It is associated with the cyclin family and their regulatory CDK kinases

GRIA2 It is activated in a variety of ordered neurophysiological processes

GYG2 The gene is associated with initiation reactions of glycogen biosynthesis and involved in blood glucose homeostasis

IL6ST The activation of this protein is dependent on the binding of cytokines to their receptors

MMP9 Its family is concerned with the breakdown of the extracellular matrix in regular physiological processes (embryonic development, 
tissue remodeling, etc.) and disease processes such as metastasis

PRKAR2B PKA is related to the organizing of lipid and glucose metabolism

S100A2 It may act as a calcium sensor and modulator, indirectly playing a role in various physiological processes

Table 2. Significant enrichment analyses results

Pathways P-value DEGs

RAF-independent MAPK1/3 activation 0.0006 DUSP4, IL6ST

Collagen degradation 0.0013 MMP12, MMP9

Bladder cancer 0.0018 CCND1, MMP9

Drug metabolism-cytochrome P450 0.0051 FMO2, ADH1B

Signaling by Hedgehog 0.0068 SCUBE2, PRKAR2B

Pathways in cancer 0.0077 CCND1, AGTR1, IL6ST, MMP9

Prostate cancer 0.0096 CCND1, MMP9

AGE-RAGE signaling pathway in diabetic complications 0.0100 CCND1, AGTR1

Degradation of the extracellular matrix 0.0112 MMP12, MMP9

Phase I functionalization of compounds 0.0116 FMO2, ADH1B

Thyroid hormone signaling pathway 0.0135 CCND1, PLN

Apelin signaling pathway 0.0185 CCND1, AGTR1

Adrenergic signaling in cardiomyocytes 0.0203 PLN, AGTR1

Hepatitis B 0.0203 CCND1, MMP9

Cushing syndrome 0.0231 CCND1, AGTR1

JAK-STAT signaling pathway 0.0253 CCND1, IL6ST

cGMP-PKG signaling pathway 0.0256 PLN, AGTR1

Calcium signaling pathway 0.0324 PLN, AGTR1

Kaposi sarcoma-associated herpesvirus infection 0.0327 CCND1, IL6ST

cAMP signaling pathway 0.0370 GRIA2, PLN

Proteoglycans in cancer 0.0377 CCND1, MMP9

Viral carcinogenesis 0.0377 CCND1, IL6ST

MAPK1/MAPK3 signaling 0.0380 DUSP4, IL6ST

Transmission across chemical synapses 0.0455 GRIA2, ABAT

Biological oxidations 0.0466 FMO2, ADH1B

DEGs: Differentially expressed genes.

Gene and pathway relationships were established, and Ridge regression machine learning analysis was 
performed [Figure 4]. CCND1, GRIA2, IL6ST, MMP9, and PRKAR2B were determined as molecular 
signatures of obese breast cancer patients according to Ridge regression results.

DISCUSSION
The obesity epidemic is recognized as one of the most serious health issues affecting public health 
worldwide today. Numerous observational studies have shown that it is associated with obesity and poor 



Page 90Comertpay et al. J Transl Genet Genom 2022;6:84-94 https://dx.doi.org/10.20517/jtgg.2021.44

Figure 2. The protein-protein interaction (PPI) network analysis of differentially expressed genes (DEGs). The network was constructed 
by Cytoscape based on the PPI correlations from the BioGRID database.

Figure 3. The distribution of hub genes. (A) The Venn diagram represents the common seed genes. Seed genes were identified as 
common DEGs among co-expressed genes and hub genes of PPI network. (B) Gene expression profiles of seed genes are shown as the 
FC distribution of each seed genes. FC < 1 represents downregulation, while FC > 1 represents upregulation. PPI: protein-protein 
interaction.
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Figure 4. Ridge machine learning analysis results. Each curve represents a penalty estimate score in the model.

survival in patients with breast cancer. On the other hand, key biomarkers of obesity-associated breast 
cancer risk are still lacking. The present study employed a gene co-expression network analysis to decipher 
the crucial genes and pathways of obese patients with breast cancer. We identified 23 DEGs from the 
GSE24185 transcriptome dataset. The seed genes were identified from common DEGs in the co-expression 
network genes and hub genes of the PPI network. The pathway enrichment analysis was conducted for the 
seed genes and DEGs. The validity of the identified seed genes was checked by ridge regression.

The putative molecular markers of obese women with breast cancer were identified as CCND1, GRIA2, 
IL6ST, MMP9, and PRKAR2B. In the literature, recent studies supported the analysis results. It was 
reported that CCND1 deficiency has a crucial impact on obesity/diabetes-associated liver tumors[29]. In 
another study, it was concluded that obesity may enhance asthma and associated mechanisms via CCND1 
gene activity[30]. IL6ST appears to be a positive prognostic factor that is linked to estrogen receptor status in 
breast cancer[31]. In addition, interleukin-6 actions in the hypothalamus protect against obesity and play a 
role in the regulation of neurogenesis[32]. It was found that upregulated gene expression of MMP9 is linked it 
visceral obesity in esophageal adenocarcinoma tumor biopsies[33]. In addition, MMP9 could be regulated by 
DNA methylation in breast cancer[34]. According to single-nucleotide polymorphisms analysis results, 
PRKAR2B may play a role in antipsychotic-induced weight increase in schizophrenia patients[35]. There is 
limited literature on GRIA2, and no obesity-related research was found. It is important to conduct more 
experimental studies to evaluate all these results together.

Mutual risk factors were examined for similar subtypes of obesity and basal subtypes in breast cancer and 
bladder cancer[36]. Obesity has been linked to the development of advanced prostate cancer. In the presence 
of obesity, tumor-associated neutrophils and B cells may promote prostate cancer[37].

Cancer-associated pathways including RAF-independent MAPK1/3 activation, collagen degradation, 
bladder cancer, drug metabolism-cytochrome P450, and signaling by Hedgehog were determined as 
significant pathways. Cytochrome P450 is a hemoprotein that plays a role in drug metabolism. Drug-
metabolizing enzyme activity body composition, dietary consumption, and nutritional status all affect 
cytochrome P450. This link could lead to drug toxicity or reduced therapeutic efficacy, as well as a change in 
the cost-effectiveness of medical care[38]. The Hedgehog signaling pathway is critical for breast cancer 
growth and metastasis[39], and inhibiting Hedgehog signaling reprograms the breast cancer immune 
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microenvironment[40]. Moreover, the Indian Hedgehog signaling system has been linked to the development 
of hepatocellular cancer in obese mice[41], and downregulation of Sonic Hedgehog signaling in the 
hippocampus leads to neuronal death in mice fed a high-fat diet[42].

In conclusion, this unique approach provides a generic paradigm for mapping complex genetic networks 
underlying human disease from gene expression data, and the understanding of the reciprocal interplay 
between obesity and cancer elucidated can begin to affect clinical practice. Therefore, response to 
conventional and targeted therapies is an essential issue to investigate in experimental and computational 
studies. As with the development of personalized oncology approaches, there is a need to evaluate new 
diagnostic and therapeutic strategies to understand the obesity and cancer interplay. In the present study, it 
was represented that CCND1, GRIA2, IL6ST, MMP9, and PRKAR2B, as well as pathways associated with 
these genes, may be molecular signatures in obese patients with breast cancer. These genes may be used for 
risk analysis of the disease progression of obese patients with breast cancer. Further experimental studies 
should be conducted and large sample studies should be carried out.
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