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ABSTRACT
Aim: Alzheimer’s disease is characterized by pathological protein aggregates and microglia-driven chronic 
neuroinflammation. Cathepsin B has been proposed as the potential target for inhibiting adverse activation of 
microglia and slowing down this neurodegenerative disease. Currently available inhibitors of cathepsin B enzymatic 
activity are non-selective; therefore, the design and synthesis of novel specific inhibitors could facilitate the 
development of a new class of anti-Alzheimer medications targeting the neuroinflammatory component of this 
disease. 

Methods: We describe molecular design strategies, which were used to create specific cathepsin B inhibitors based 
on the structure of the gold-containing drug auranofin (Ridaura), and its covalent binding to the cysteine residue of 
the active site of cathepsins. 

Results: This in silico  study investigated the structure-activity relationship of a series of newly designed derivatives 
of auranofin with regard to their cathepsin B inhibitory activity. An exhaustive molecular screening model was 
designed and validated by using a set of known cathepsin B inhibitors. Its validity was further tested during 
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the preliminary stage of the biological screening of newly designed inhibitors. Based on the structure-function 
relationships discovered by recording the empirical score values generated for the screening model, a series of 
subsequent in silico  predictions of compound inhibitory activity were generated, which led to new structures with 
increased inhibitory activity and selectivity towards cathepsin B. 

Conclusion: The described molecular modeling strategy could be employed to design novel inhibitors of cathepsin B 
enzymatic activity, which could be used to slow down neuroinflammation in neurodegenerative disorders including 
Alzheimer’s disease.

Keywords: Anti-inflammatory drugs, auranofin, cathepsins, drug design, fragment-based docking, neuroinflammation, 
microglia

INTRODUCTION
Alzheimer’s disease is the most common cause of dementia. It is characterized by abnormal brain protein 
deposits including amyloid ß (Aß)-containing plaques and neurofibrillary tangles. In addition, chronic 
neuroinflammation, driven by adverse activation of non-neuronal microglial cells, is believed to contrib-
ute to the pathogenesis of this neurodegenerative disease. Microglial immune functions can be regulated 
by various cathepsin enzymes, many of which are the components of lysosomes[1,2]. Cathepsins belong to 
the papain superfamily and are synthesized as inactive pro-enzymes[3]. Cathepsin B, a cysteine protease, 
is expressed and can be secreted by activated microglia[4-7]. Cathepsin B has been proposed as a potential 
therapeutic target to reduce neuroinflammation in Alzheimer’s disease[8] based on observations showing this 
protein upregulated in brain tissues, serum and cerebrospinal fluid of Alzheimer’s patients[9-13]. Such high 
levels of cathepsin B also correlate with decreased cognition, which could be caused by adverse microglia 
activation[11,14].

A series of pre-clinical studies support using cathepsin B inhibitors to slow the progression of Alzheimer’s 
disease. Reduced Aß plaque load and improved memory were reported in a transgenic Alzheimer mice mod-
el after deleting the cathepsin B gene[15]. In vitro studies showed that cathepsin B inhibitors downregulated 
pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-18[16-18]. Cathepsin 
B has been linked to specific microglial functions including their secretion of cytokines, neurotoxicity, and 
Aß degradation[5,17,19]. Currently available cathepsin B inhibitors are not specific since they inhibit enzymatic 
activity of other cysteine proteases including calpains, as well as cathepsins S and L[3,20-23]. Therefore, novel 
highly selective cathepsin B inhibitors should be developed and tested for their ability to ameliorate neuroin-
flammation in neurodegenerative diseases. 

Cathepsin B enzymatic activity is inhibited by alpha-macroglobulin from the cystatin family of inhibitors of 
papain-like cysteine peptidases, and by representatives of the equistatin family[24]. There are three additional 
groups of naturally occurring cathepsin B inhibitors: the aziridinyl peptides, peptide epoxysuccinyls, and 
peptide aldehydes[25,26]. Known synthetic cathepsin B inhibitors can be divided into groups of compounds, 
which contain either flavonoids, cyclic sulfates, or nitriles[27,28]. Cathepsins B and K are inhibited with rea-
sonable potency by gold(I)-based compounds such as auranofin (Ridaura), which is clinically used as an 
anti-rheumatic agent, and its analogs[29]. Structure-activity relationship (SAR) studies revealed that replace-
ment of ethyl substituent with a voluminous aryl substituent in auranofin, which is a clinically approved 
triethylphosphine (PEt3) gold-containing drug, significantly increased its anti-inflammatory activity[30]. A 
triphenylphosphine gold compound was shown to be a more effective cathepsin B inhibitor (IC50 = 337 nmol/L) 
than its parent compound auranofin (IC50 > 250 µmol/L)[30]. Further studies confirmed that compounds with 
more than one aryl group (e.g., triarylphosphines) were much stronger cathepsin B inhibitors than trieth-
ylphosphine Au(I)-containing derivatives[31]. 
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In this study, we describe an in silico model developed for identification of pharmacophores capable of in-
creasing the biological activity of Au(I)-based drug-like compounds. Previously, it was shown that changes 
in steric and electronic properties of phosphine derivatives led to increased affinity of these compounds 
toward cathepsin B[31]. The aim of the present study was to develop and test novel structural modifications 
of cathepsin B inhibitors, which could be used for synthesis of new, potentially more effective anti-neuro-
inflammatory drugs. To achieve this goal, we first developed an in silico docking model of the cathepsin 
B enzymatic pocket. Subsequently, a series of novel cathepsin B inhibitors were designed and synthesized, 
based on their calculated binding affinity to the enzymatic pocket and docking scores. An in vitro testing of 
selected compounds as possible cathepsin B inhibitors was also performed.

METHODS
In silico modeling
All manipulations with protein-ligand structures and generation of structural models of cathepsin-ligand 
complexes were performed with Sybyl-X software (Tripos Inc., St. Louis, MO, USA). The three-dimensional 
structure of the triethylphosphine was generated by the CONCORD version 3.0 software (CONCORD, St 
Louis, MO, USA). Ligand topologies for molecular dynamics (MD) studies were calculated using the ante-
chamber module of AmberTools version 12[32]. The protein structures of cathepsins B and K (Protein Data 
Bank Identifiers (PDB IDs): 1HUC and 2ATO) were obtained from the Research Collaboratory for Structural 
Bioinformatics (RCSB, www.rcsb.org)[33]. Structures of the complexes formed by cathepsin B interacting with 
triethylphosphine, as well as cathepsin K with myochrysine (Au-thiomalate), were modeled in the experi-
ment. The subsequent steps of the relaxation strategy for the structural optimization of active site geometry 
were carried out with Gromacs (version 4.5) software with implementation of Amber99 force field[34]. 

Due to the absence of defined atom-type and coordination bonding parameters for Au in both MD and 
docking software, we utilized fragment-based docking methods for the model development. Replacement 
of the Au atom with a CF3 group, which has four heavy atoms, allowed us to preserve both geometry and 
distances between the ligand and C-alpha of the catalytic residue Cys29 (C29) in the cathepsin B molecule 
[Figure 1]. As a result of this manipulation, a “joint-like” metal-based binding of Au was replaced with the 
“anchor-like” binding mode of CF3. Additional mutation of the catalytic cysteine (C29) to alanine (C29A) 
provided more flexibility for the CF3-containing ligands and avoided artificial interaction between the sulfur 
atom of C29 and the CF3 group.

In order to remove any unfavorable steric clashes between the proteases and the inhibitor molecules, 1000 
steps of steepest descent and 5000 steps of conjugate-gradient energy minimization were employed. The 
complex between cathepsin B and triethylphosphine was solvated with a 12 Å radius water box centered at 
the C29A. A center of mass (COM) pulling mode was applied during all steps of MD calculations to improve 
the geometry of the P-CF3-C-alpha (CA, of alanine) bridge. The optimized and equilibrated system was 
used as the starting configuration for MD simulations spanning 500 ps. Such fast molecular dynamics was 
enough to stabilize the group of constrained P-CF3-CA atoms. Average root-mean-square deviation (RMSD) 
values for the whole structure, including the active site and ligand atoms, were calculated from each of the 
five picoseconds frames of the simulation. RMSD values, together with the structure alignment, confirmed 
that conformation of the ligand and the active site of protein had not changed dramatically and were consid-
ered stable enough to continue modeling.

For the docking procedure, a specific binding site representation (namely Protomol) was generated based on 
the relaxed protein-ligand complex. Protomol is an interaction map, implemented in the Surflex-Dock mod-
ule, which is based on the probing method used[35]. Protomol model is very sensitive to input parameters; 
therefore, to avoid mistakes in predictions, it was parameterized based on scores obtained through valida-
tion docking procedures. To keep the amino acid environment flexible during each docking run, the most 
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reliable positions of the reference PEt3 were retained with the number of starting conformations per ligand 
higher than ten. The new compounds were designed based on the shape of the binding pocket and its hydro-
phobic/hydrophilic areas.

A set of reference compounds was compiled from publicly available structures and contained the trieth-
ylphosphine molecule and its modifications. Structures of these reference compounds and their correspond-
ing IC50 values as cathepsin B inhibitors have been previously published[36]. Predictions from the docking 
studies were made based on correlations between docking scores and known enzymatic activity of the 
reference compounds. Surflex-Dock scores (total score expressed in: -log10(Kd) units) represented the bind-
ing affinities. Four different calculated parameters were used as the most important indicators in docking 
analysis: “total score”, “crash value” (the degree of inappropriate penetration by the ligand into the protein; 
values close to zero are favorable), “internal ligand strain” and “complex absolute energy”. In addition, the 
root-mean-square (RMS) distance between the docked ligand and the reported fragment RMSD (FragRMSD) 
was calculated to provide the correct orientation of the ligand in the binding site.

In vitro testing
Cathepsin B enzymatic activity was measured as described by Hulkower et al.[37] (2000) with modifications. 
A fluorometric assay was used in which cathepsin B (from bovine spleen) cleaved its substrate, Z-Arg-Arg-
AMC (both from Sigma Aldrich, Oakville, ON, Canada), causing the cleaved product to fluoresce. The reac-
tion was performed in Hanks’ balanced salt solution containing 0.6 mmol/L CaCl2, 0.6 mmol/L MgCl2, 2 mmol/L 
L-cysteine, and 25 mmol/L PIPES, pH 7.0. The assay was performed in a 96-well plate, and the POLARstar 
Omega plate reader (BMG Labtech, Durham, NC, USA) with an excitation wavelength of 355 nm and an 
emission wavelength of 460 nm was used to measure the velocity of the reaction (relative fluorescence units 
per min) at 37 °C. Au-containing substances were dissolved in dimethyl sulfoxide (DMSO) and added to the 
reaction mixture at 10 nM to 500 μmol/L concentration range. The final concentration of the solvent in the 
reaction mixture did not exceed 0.5%. The solutions containing cathepsin B (200 μg/mL) and the inhibitors 
were allowed to incubate for 30 min at 37 °C. Subsequently Z-Arg-Arg-AMC (from a 600 μmol/L stock solu-
tion) was added to the wells to reach the final concentration of 30 μmol/L in a total well volume of 180 μL. 
The 96-well plate was then positioned into the plate reader and fluorescence measurements from each well 
were recorded. The plate reader was set to acquire 64 measurements over a 52-min time frame. The maxi-
mum slope values of the samples containing inhibitors were calculated as percentages of maximum slope 
values of the control samples containing DMSO vehicle solution only, and IC50 values for each inhibitor determined.

Figure 1. A schematic representation of the mutual orientation and disposition of P-CF3 part of triethylphosphine and C-alpha (CA) atom of the 
Cys29 residue of cathepsin B (A). Active site of cathepsin В with the CF3 group (F atoms are colored green) (B). Cys29 is replaced with Ala29 (the 
surface of Cys29 is shown in mesh)

A B
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RESULTS
Proper selections of binding sites, together with a good understanding of the mechanism of enzymatic ac-
tivity of cathepsins, are the key factors for designing effective new inhibitors; however, currently available 
inhibitors of cathepsin B are only 2-to 8-fold more selective towards this enzyme compared to two other 
cathepsins S or L[3,22]. It was previously shown that cathepsin B is reversibly and competitively inhibited by 
linear Au(I)-containing complexes[29]. A hit-to-lead optimization of the organic ligands used to create new 
auranofin analogs, particularly the phosphine ligands, could significantly increase the potency of these com-
pounds as cathepsin B inhibitors. Phosphine ligand interaction with cathepsin B was modeled based on the 
myochrysine (Au-thiomalate) binding to cathepsin K[31]. The crystal structure of the 339 amino acid-long 
human liver cathepsin B has been published at a 1.9 Å resolution (PDB ID: 1GYM)[38].

Access to the active site of cathepsin B is provided by an 18 amino acid long insertion (Pro107Asp124), 
termed the occluding loop, which possesses two His residues for binding of the carboxyl group of the sub-
strate. Three-dimensional alignment of the crystal structures of cathepsins B, S, K and L demonstrated a 
considerable degree of homology, especially in the region of substrate binding. Our molecular modeling 
identified that the potential binding site on the surface of cathepsins is represented by a long hydrophobic 
pocket, which is necessary for the peptide binding and excision. Figure 2 shows that the structures of ca-
thepsins K and B are very similar, including their cleavage sites containing several “hot-spot” amino acids 
conserved among all types of cathepsins, along with Cys29, which forms a coordination bond with PEt3.

Despite the great variety of protein modeling tools and techniques available, there is no simple approach 
to study interactions between Au-containing compounds and proteins without the time-consuming quan-

Figure 2. Cathepsin K (A) with co-crystalized and cathepsin B (B) with superimposed myochrysine (Au-thiomalate) are represented in mesh 
surface and colored ribbon style. Au atom is shown as a blue sphere. A secondary structure color scheme (suggests different colors for different 
secondary structures) was used for ribbon representation. A schematic representation of ligand binding mode and the geometry of the Au atom 
and the sulfur bridge in cathepsins K (C) and B (D). Ionic bond length and angle between the terminal sulfur of Cys25 of cathepsin K are indicated. 
The same view of CF3-substituted triethylphosphine in the active site of cathepsin B with mutated Cys29 to Ala29 is shown in (D)

A B

C D
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tum mechanics (QM) calculations. The absence of Au or any cognate element and its bond parameters in 
most force field and docking protocols compelled us to implement several alternative techniques, known 
as steered molecular dynamics and fragment-based docking approach, as suitable models for docking 
and subsequent lead optimization. A structure preparation tool from SybylX suite was used to model 
the complex between cathepsin B and Au-containing ligand. A crystal structure of cathepsin B (PDB ID: 
1HUC) was superimposed on the cathepsin K structure (PDB ID:2ATO) and coordinates of co-crystalized 
myochrysine (Au-thiomalate) and cathepsin B were saved for subsequent analyses. The highly conserved 
cysteine, histidine and asparagine residues from the active site of cathepsins B and K were used for structure 
superposition. 

The measured essentially important linear angle between the atoms in the S-Au-S triad (sulfur of C25, Au(I) 
and sulfur of thiomalate) of the complex between cathepsin K and Au-thiomalate was 173.1o. Subsequently, 
the gold atom in Au-thiomalate was replaced with a CF3 group. CF3 is a directional and rigid group, which 
has a binding mode similar to the gold atom. The CF3 possesses four tetrahedral heavy atoms, which are nec-
essary for accurate geometric constraints as well as the bond-like rotation during molecular dynamics and 
docking. In addition, the Cys25 residue in the enzymatic pocket of cathepsins B and K was replaced with 
alanine to eliminate a steric clash and electrostatic interactions with the CF3 group of thiomalate. In order 
to validate the docking procedure, a model of cathepsin K was developed based on its complex with CF3-
containing Au-thiomalate. Subsequently, CF3-containing Au-thiomalate in this complex was replaced with 
CF3-substituted triethylphosphine.

The fast molecular dynamics simulation, spanning 500 ps, generated parameters of trajectories, which were 
analyzed and clustered by RMSD to identify the most stable conformation of the complexes. The docking 
model of cathepsin B was developed based on this structure. Figure 3 shows the resulting modified com-
pound CF3-PEt3 positioned in the mutated (C29A) enzymatic pocket of cathepsin B, with preserved original 
geometry (position and orientation) of the PEt3 group. This structure maintained all the distances and co-
linear characteristics of the complex between CF3-substituted triethylphosphine and cathepsin B. The vol-
ume of the cathepsin B active site was defined with a Protomol generation tool.

Next, to provide ligand dislocation similar to that in the CF3-substituted complex between triethylphosphine 
and cathepsin B, we applied both the distance and position constraints. The Patom-CF3 fragment was assigned 
as a constraint in Surflex-Dock, to match the correct position and orientation of the ligands in the enzymatic 
pocket. After several test dockings we chose an appropriate value for “cpen” function (penalty for deviating 
from fragment), which determines how closely compounds could be positioned to the source coordinates 
of the template P-CF3 group of six different CF3-substituted auranofin derivatives. Reference compounds 

Figure 3. Orientations of the most potent reference enzymatic activity inhibitors P(CH2CH3)3 (A), P(CH2CH3)(C6H5)2 (B), and P(C6H5)3, 
P(C6H4NH3+)(C6H5)2 (C) in the active site of cathepsin B 

A B C
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from an open source database and previous publications were selected for validation of the MD model[36,39]. 
Through the design of novel compounds, we aimed to improve their cathepsin B binding affinities. The 
three-dimensional structure of the new compounds was generated by the CONCORD (see Methods section). 
We chose a triphenylphosphine (PPh3) as the initial structure for design, since previous studies[29] confirmed 
its significant in vitro activity as an inhibitor of cathepsin B enzymatic activity. The validation step of the 
fragment-based docking defined optimal software settings, which provided the best correlation between the 
enzymatic activity inhibition data and the docking score [Table 1].

Table 1 lists a set of compounds with known IC50 values in cathepsin B enzymatic assays. This table also 
includes the previously reported compound triethylphosphine (P(CH2CH3)3) and its analogs with sub-
stituted methyl groups on phenyl rings[31]. Table 1 likewise includes examples of newly synthesized com-
pounds (Cmpd 1-6). These novel derivatives were created by replacing the triethylphosphine ligand of the 
auranofin molecule with other phosphines carrying various aromatic and heteroaromatic substituents. 
Table 1 is divided into seven columns and the most practical parameter for the docking analysis outcome 
is the summarized score (total score), which is an empirical affinity value developed to predict the potency 
of the inhibitors. This value is calculated based on the other parameters shown in this table. The upper part 
of the table illustrates correlations between scores obtained from in silico modeling and in vitro testing de-
scribed in published studies and patents[31,36,40]. The lower part of the table shows predicted affinities and the 
measured cathepsin B inhibitor activities for the newly synthesized compounds. The validation step was 
complete after confirmation of a relationship between the calculated and biochemically determined values 
for known inhibitors. These two parameters are listed in Table 1 and compounds are sorted in order of as-
cending IC50 values in cathepsin B enzymatic activity assay, which correlate inversely (negative correlation 
coefficient of -0.71) with the calculated total score values.

In addition, we repeated all docking procedures with cathepsin K, exactly as they were described for cathep-
sin B above, by applying match constraining to CF3. In this way, we compared the results of our MD model-
ing for both proteins, which showed different docking scores for the interactions between the substituted 
triethylphosphine derivatives and cathepsin K [Table 2]. These data indicate a certain degree of selectivity 
towards a specific cathepsin isoform for these compounds.

Three-dimensional alignments of docked reference inhibitors in the active site of cathepsin B are presented 
in Figure 3. RMSD values for the compounds used to estimate the three-dimensional matching of the refer-
ence arylphosphine derivatives to substituted triethylphosphine are listed in Table 1. After the initial lead 

Table 1. Scoring values of ligands docked in the active site of cathepsin B

Sample Total score Crash score Internal strain₸ Complex energy FragRMSD# IC50 (µmol/L)
CF3P(CH2CH3)3 Triethylphosphine 1.325 -0.211 0.073 482.7 0.745 ~250

CF3P(C6H5)2(CH2C6H5) 3.602 -0.600 0.252 626.0 0.970 ~64

CF3P(CH2CH3)(C6H5)2 4.051 -0.952 5.485 560.0 0.737 18.0

*Cmpd 4 4.201 -1.505 2.500 658.5 0.97 8.67

Cmpd 2 3.991 -0.003 2.449 594.1 1.123 1.00

Cmpd 5 6.560 -1.080 2.201 660.0 0.85 0.71

Cmpd 3 4.059 -0.919 0.918 624.4 0.997 0.46

Cmpd 1 4.747 -0.937 0.157 575.0 0.617 0.34

CF3P(C6H5)3 4.353 -1.150 2.001 607.6 0.840 0.33

CF3P(C6H4-C6H5)(C6H5)2 4.401 -1.301 0.452 613.1 0.861 0.29

CF3P(C6H4NH3
+)(C6H5)2 6.940 -1.130 3.157 731.2 1.002 0.20

Cmpd 6 6.938 -1.640 0.4503 703.6 0.80 0.17

*Cmpd 1-6: the newly synthesized compounds 1-6; ₸Internal strain: nominal ligand strain relative to the nearby local minimum in units of pKd; 
#fragment root-mean-square deviation
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compound optimization and docking, a limited set of seven substituted phosphines were synthesized from a 
total of 15 designed structures and used for in vitro studies. The best way of comparing the overall calculated 
binding affinities of ligands is a comparison of their total score values. However, all other scoring functions 
can be useful in specific cases. For example, as can be seen from Table 1, the best experimental and docking 
results were obtained for P(C6H4NH3

+)(C6H5)2 compound. It is evident that high total scores and low internal 
strain scores are preferable for the newly developed compounds. Therefore, these parameters were used for 
the further design of the improved novel drug-like compounds. Further optimization and improvement of 
each drug-like compound were based on their spatial location in the enzymatic pocket of cathepsin B and 
compliance to the physical features of the active site, including anchoring with the CF3 group and localiza-
tion of phosphine groups in the hydrophobic/hydrophilic regions of the enzymatic pocket.

DISCUSSION
Our data show that the described docking model is a practical tool for identification and optimization of 
novel compounds, which have been designed based on their phosphine core structure. We also focused 
our attention on the shape features of the cathepsin B binding site and achieved a good trend in selectivity 
of the inhibitors towards this enzyme, by avoiding their binding to cathepsin K. The inverse correlation 
(-0.71) between docking scores of compounds and their IC50 values as well as significant selectivity towards 
cathepsin B and not cathepsin K [Tables 1 and 2] supported subsequent docking analysis and selection of 
compounds for in vitro testing. Thus, by using the molecular modeling described in this study we were 
able to design and create structurally novel derivatives of the clinically available anti-rheumatic drug 
auranofin, which inhibited the enzymatic activity of cathepsin B more effectively than their parent drug. 
It has been established that the clinical anti-inf lammatory activity of auranofin depends on its ability 
to affect multiple cellular and molecular targets[41]. Even though clinical effectiveness of auranofin in 
neurodegenerative disorders has not been studied, its anti-inf lammatory activity may be beneficial for 
slowing down neuroinf lammation accompanying such pathologies as Alzheimer’s disease, Parkinson’s 
disease and amyotrophic lateral sclerosis[42]. Optimizing the activity and selectivity of auranofin molecule as 
an inhibitor of cathepsin B through structural modifications may lead to additional benefits of such novel 
compounds in Alzheimer’s disease in particular[43]. Further in vivo studies will be required to determine the 
pharmacokinetics and pharmacodynamics of these novel derivatives of auranofin, as well as their clinical 
suitability as anti-neuroinflammatory drugs and cathepsin B inhibitors.
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