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Abstract
In the last few years, the pollution of microplastics in freshwater environments such as rivers, lakes, and reservoirs 
has aroused widespread concerns. In this review, rich and appropriate data on microplastics, in the freshwater 
ecosystem of China, was collected. Following this microplastics in surface waters, sediments, and biota, of the 
freshwater system, were thoroughly analyzed. The results show that microplastics are widespread in the 
freshwater environment of China. At the same time, the abundance of microplastics is positively correlated with 
both intensive human activities and urbanization. The risk index of microplastics is relatively high in the water of 
Yellow River (654 items/L), Yangtze River (9.20 × 105 items/km2), and Pearl River regions (7571 items/m3). The 
prevalent shapes of microplastics, in water and sediments, are fragments and fibers. Moreover, the particle size of 
microplastics is mainly less than 2 mm. In fact, PP and PE are found to be the main polymer types in the freshwater 
environment of China. Bivalves and freshwater fish are the main research objects of microplastics pollution in 
China. In parallel to that, the abundance of microplastics, in each aquatic organism, varied from a few to a dozen. 
Additionally, the characteristics of microplastics in organisms are mainly fibers smaller than 1 mm. Fundamentally, 
the key two sources of microplastics, in the freshwater environment of China, are wastewater discharge and 
surface runoff. It is noteworthy that microplastics, in a freshwater environment, does not only cause environmental 
pollution but harms aquatic organisms, too. Finally, microplastics can reach the human body, through the food 
chain, causing potential health issues.
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INTRODUCTION
Plastic has been widely used in industry due to its unique properties such as low price, lightweight, high 
strength, and durability[1]. Since the 1950s, more than 8.3 billion metric tons of plastic have been 
manufactured, which makes it world-recognized garbage and pollutant. Statistically, the global plastic 
production was 368 million tons in 2019, and China occupied 31% of the total production[2]. Every year, 
more than 8 million tons of plastic waste enter the freshwater and marine environment worldwide[3].

Large pieces of plastic would break down into microplastics which are emerging pollutants. Microplastics, 
defined as plastic debris with a particle size of less than 5 mm, can be divided into primary and secondary 
microplastics according to the origin of microplastics[4]. Basically, primary microplastics are manufactured 
into small-size plastics (e.g., microbeads, plastic pellets, and microfibers), while secondary microplastics are 
originated from large plastics through physical, chemical, and biological degradation[5]. Microplastics, as a 
global pollutant, are widely presented in aquatic, terrestrial, and atmospheric ecosystems, even they were 
discovered in remote Antarctic and Arctic regions[6,7]. Meanwhile, the microplastics that were detected in 
the environment include various types [e.g., polypropylene (PP), polyethylene (PE), polystyrene (PS), 
polyvinyl chloride (PVC), and polyethylene terephthalate (PET)], shapes (e.g., fiber, fragment, pellet, film, 
and foam), and colors (e.g., black, colored, and white)[4,8].

Microplastics have a large specific surface area and hydrophobic properties, therefore can adsorb persistent 
organic pollutants (e.g., PCBs, PAHs, and PBDEs) and heavy metals, enhancing their transportation in 
terrestrial and aquatic ecosystems[9]. Recently, many studies have studied microplastic pollution in aquatic 
ecosystems. Microplastics are easily ingested by aquatic organisms like zooplankton, fish, and bivalves 
causing a decreased reproduction rate, mechanical injuries, and low growth rate of these aquatic 
organisms[10]. Moreover, plasticizers or toxic additives, released from microplastics, are transferred to water, 
sediments, and biota which aggravate the pollution of the freshwater environment[9]. Meanwhile, 
microplastics carrying toxic pollutants may be transferred to higher nutritional levels, through the food 
chain, reaching the human body and causing various health issues[11].

The majority of early microplastics research focused on their abundance and pollution in the marine 
environment, including seawater, seabed sediments, and marine biota[12]. Unlike the ocean, freshwater (e.g., 
river, lake, and reservoir) is a vital resource for human life. Simultaneously, it is essential for human 
reproduction providing drinking water source, food production water, permitting freshwater aquaculture, 
and playing an important role in sanitation, purification, and stabilization of the coastline[13]. Consequently, 
more researchers gradually started to investigate the microplastic pollution in the freshwater ecosystem in 
developed and developing countries. For example, Eriksen et al.[14] (2013) showed that the average 
abundance of microplastics was approximately 43,000 particles/km2 in the surface water of the Laurentian 
Great Lakes in the United States. At the same time, He et al.[15] (2020) demonstrated that the microplastics 
varied between 0.18 and 129.20 mg kg-1 in Brisbane River sediments, Australia. Similarly, Buwono et al.[16] 
(2021) found that the abundance of microplastics, in the water of the Brantas River in Indonesia, ranged 
from 133 to 5467 particles/m3.

Obviously, China, as one of the largest countries, are regarded as the largest plastic producer and consumer 
in the world[10]. Every year, a huge number of microplastics enters the freshwater environment of China 
through surface runoff, rainfall, and sewage discharge, causing serious microplastics pollution in surface 
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water, sediments, and biota of the freshwater environment[5,17,18]. Hence, there have been progressively more 
studies investigating the distribution and abundance of microplastics in the freshwater environment (e.g., 
water, sediments, and biota) of China in the recent years[5,8,19]. For example, Huang et al.[19] (2020) and 
Pan et al.[20] (2020) clearly described the abundance, shape, chemical composition, and size distribution of 
microplastics in the Zhangjiang River and West River. Wang et al.[5] (2020) not only evaluated the 
microplastics in Beijiang surface water but also detected microplastics in fish samples. In parallel to that, 
Li et al.[21] (2021) and Mao et al.[22] (2020) studied microplastic pollution in both the Yulin River and Chishui 
River.

Thus far, the microplastics pollution in the freshwater environment has attracted a great attention. 
Although, the current research generally focuses on the abundance, sources, and characteristics of 
microplastics in rivers and lakes in a single region. It ignores the freshwater environment, especially the 
microplastics pollution in China, which is not conducive to follow-up research and policy research for 
controlling the microplastic pollution. Hence, the main purpose of this review is twofold: (1) to summarize 
the abundance and characteristics of microplastics in freshwater environments (e.g., rivers, lakes, sediments, 
and biota) of China; and (2) to introduce the source and impact of microplastics in freshwater ecosystems of 
China.

DATA COLLECTION
Since 2017, the issue of microplastics, in the freshwater environment of China, has gradually attracted more 
attention. Hence, this review focuses on the research papers that were published between 2017 and 2021. 
Several combination of keywords such as “microplastics”, “freshwater”, “China”, “lakes”, and “rivers” were 
used to initiate search queries for the articles in the database of Web of Science and Science Direct. 
Following this procedure, 62 articles were initially selected. In this review, we mainly focus on the major 
freshwater environments of China including rivers, lakes, and reservoirs which are closely related to human 
community. After the final screening, based on the distribution of major rivers, lakes and reservoirs in 
China, a total of 29 (water = 24, sediment = 13, and biota = 11) research articles were carefully chosen.

MICROPLASTIC POLLUTION IN THE FRESHWATER OF CHINA
In the last few years, risk assessment of microplastic, in the freshwater environment of China, has become a 
hotspot. We counted 29 studies to analyze the presence of microplastics in freshwater, sediments, and biota. 
Moreover, the following attributes such as the abundance, size, shape, type, and identification of 
microplastics were also described in Tables 1-3.

Water
The location of the study water samples is shown in Figure 1. The existing literature, about the microplastic 
pollution in the freshwater of China reveals that trawl nets, pumps, and water collectors were the main 
sampling methods for collecting the microplastics as indicated in Table 1. On the other hand, these 
dissimilar sampling methods led to the variances in the expression of microplastic abundance. For surface 
water of river or lake sampled by trawl, noting that the commonly used unit is “items/ km2”. By contrast, the 
unit for pump sampling or bulk volume sampling is “items/L” or “items/m3”. The abundance range of 
microplastics in Chinese freshwater (e.g., river, lake, and reservoir) is 0.03 × 105-81.2 × 105 items/km2 in the 
trawl samples as can be seen from Table 1. According to the volume sampling method, the abundance range 
of microplastics in Chinese freshwater is 16.67 to 24798 items/m3 and 1.7 to 1392 items/L as detailed in 
Table 1. The expression methods of different units may not be conducive to the subsequent evaluation and 
research of microplastics. For a better evaluation, it is recommended to unify the units of measure in future 
research. Although the sampling methods are different, the main shapes of the microplastics in the 
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Table 1. The abundance and characteristics of microplastics in water

Water Location Abundance 
(average) Size Sampling Shape Color Polymer types Identification Ref.

Beijiang River 400-8400 items/m3 
(3183 items/m3)

< 0.5 mm 
(77%)

Trap - White (49%), yellow (16%), blue 
(10%), black (9%), red (8%), green 
(8%)

Microscope

The Pearl River 2400-18200 
items/m3  
(7571 items/m3)

< 0.5 mm 
(86%) 
2-4 mm (3%)

Trap Fragment (67%), Fiber (21%), film 
(3%), spheres (9%)

White (49%), yellow (16%), blue 
(10%), black (9%), red (8%), green 
(8%)

-

Microscope

[5]

Dafeng River 
(rainy season)

3 × 10-4-2.5 × 10-3 
items/L 
7 × 10-4-0.12 
items/m2

Trawl net Microscope; FTIR

Dafeng River 
(dry season)

4 × 10-5-9 × 10-4 
items/L 
2 × 10-3-2.8 × 10-2 
items/m2

1-5 mm 
(dominant)

Trawl net

Fiber (dominant) - PET (dominant)

Microscope; FTIR 

[8]

West River 
(lower)

2.99-9.87 items/L < 0.5 mm 
(dominant)

Stainless steel 
drum

Fiber (dominant), pellet, fragment 
and film

- PP (40%), PE (29%), PS 
(20%)

Microscope; FTIR [19]

Zhangjiang 
River

50-725 items/m3 
(246 items/m3)

0.3-0.5 mm 
(20.6%) 
0.5-1 mm 
(32.8%) 
1-2.5 mm 
(31%) 
2.5-5 mm 
(15.7)

Steel bucket Fragment (42.9%), fiber (18.5%), 
pellet (17.6%), line (13.8%), film 
(4.1%), and foam (3.1%).

White (55.5%), black (14.4%), yellow 
(14.0%), grey (6.2%), clear (5.3%), and 
blue (3.4%)

PP (51.7%), PE (23.1%), 
PE-PP (7.0%), PES 
(6.7%), PS (6.1%), PET 
(5.3%)

Microscope; Raman [20]

Chishui River 1.77-14.33 items/L 500-1000 
μm (63.9%)

Stainless-steel 
bucket

Fiber (59.4%) White (including transparent) (41.3%) 
and polychromatic (44.1%)

PE (36%), PP (31%), PS 
(25%), PVC(2%)

Microscope; FTIR [21]

Yulin River 0.70 × 10-2-1.70 × 
10-2 items/L 
(1.3 × 10-2 items/L)

< 250 μm 
(dominant)

Teflon pump Line/fiber, pellet/foam (dominant) - PE (39%), PP (31%), PS 
(23%)

Microscope; SEM; 
Raman

[22]

Minjiang River 
(Chengdu)

6.11-44.08 items/L 
(15.88 ± 3.13 
items/L)

< 300 μm 
(44.1%) 
300-1000 
μm (46.55) 
> 1000 μm 
(9.5%)

Iron drum Particle (10.3%), 
fragment(44.8%), fiber (44.9%)

- PP (26%), PE (15%), RA 
(20%), PA, PS, PP-PE, 
PVC 

Microscope; FTIR [23]

Taihu Lake 
(lake water)

1.7-8.5 items/L 
(5.67 ± 1.92 items/L)

< 0.1 mm 
(28%) 
0.1-0.2 mm 
(42%)

Pump Fragment (58%), fiber (25%), film 
(12%), pellet (4%) and piece

PVC and PE (dominant), 
PS, PP

Microscope; FTIR; 
SEM

Taihu Lake (6.31 ± 4.36 items/L < 0.1 mm Fragment (58%), fiber (25%), film PVC and PE (dominant), Microscope; FTIR; Pump

- [24]
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(river water) inflow) 
(4.05 ± 1.06 items/L 
outflow)

(28%) 
0.1-0.2 mm 
(42%)

(12%), pellet (4%) and piece PS, PP SEM

Yangtze River (1.62 ± 0.61) × 105-
(4.25 ± 3.87) × 106 
items/km2 
(9.20 × 105 
items/km2)

300 μm-1 
mm (69.6%) 
1-2.8 mm 
(19.8%) 
2.8-5 mm 
(10.6%).

Trawling 
sample

Fragment (47.9%), fiber (32.1%), 
foam (17.4%), pellet (2.6%)

Transparent (36.1%), white (34.6%), 
red (6.6%), blue (6.3%), yellow (5.4%), 
green (4.9%), black (0.9%) and others 
(5.2%)

PP (43%), PE (29%), PS 
(14%)

Microscope; FTIR

(800.0 ± 300.0)-
(3088.9 ± 330.6) 
items/m3 
(1635 items/m3)

< 0.5 mm 
(47.4%) 
0.5-1 mm 
(27.5%) 
1-2 mm 
(9.0%) 
2-3 mm 
(8.3%) 
3-4 mm 
(4.9%) 
4-5 mm 
(2.9%)

Stainless steel 
bucket

Fiber (63.4%), fragment (29.4%), 
pellet (4.6%), foam (2.6%)

Transparent (21.5%), blue (15.4%), 
green (14.8%), red (13.9%), white 
(13.4%), yellow (8.0%), black (1.9%) 
and others (11.0%)

PP (54.8%), PE (35.5%), 
PS (3.2%)

Microscope; FTIR

[25]

Yellow River 
(lower)

380-582 items/L 
(wet) 
(430 items/L) 
623-1392 items/L 
(dry) 
(654 items/L)

< 200 μm 
(87.9%)

Stainless steel 
bucket

Fiber, fragment particles 
(dominant)

- PP, PE, PS Microscope; FTIR [26]

Qiantang River 50-3233 items/m3 
(dry) 
(1607 items/m3) 
221-6517 items/m3 

(wet) 
(889 items/m3)

< 5 mm Stainless steel 
bucket

Fiber (53.2%), fragment (29.5%), 
granule (8.4%), film (8.5%), foam 
(0.4%)

White (45%), black (23.4%), 
transparent (14.6%)

PET, PA, PES (dominant) Microscope; FTIR [27]

Qinghai-Tibet 
Plateau

247-2686 items/m3 20 μm-5 mm Water 
collector

- - - Microscope; Raman [30]

Poyang Lake (289 ± 40-1064 ± 
90 items/m3)

< 2 mm 
(dominant)

Stainless-steel 
bucket

Fiber (dominant), film, foam, 
fragment

- PP, PVC, PE, PS Microscope; FTIR; 
SEM

[31]

Qinghai Lake 
(lake water)

0.05 × 105-7.58 × 
105 items/km2

0.1-0.5 mm 
(dominant)

Trawl net

Qinghai Lake 
(river water)

0.03 × 105-0.31 × 
105 items/km2

0.1-0.5 mm 
(dominant)

Trawl net

Fiber and sheet (dominant), 
fragment, foam

- PP and PE (dominant), 
PS, PET

Microscope; Raman [32]

Dongting Lake 900-2800 items/m3 
(1191.7 items/m3)

< 2 mm 
(dominant)

Teflon pump Fiber (dominant), granule, film Colored (71.3%), transparent (28.7%) PP and PE (dominant), 
PS, PVC

Microscope; SEM; 
Raman

1250-4650 
items/m3 

Hong Lake < 2 mm 
(dominant)

Teflon pump Fiber (dominant), granule, film Colored (77.9%), transparent (22.1%) PP and PE (dominant), 
PS, PVC

Microscope SEM  
Raman

[33]
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(2282.5 items/m3)

Danjiangkou 
Reservoir

530-24798 
items/m3 
(7205 items/m3)

75-200 μm 
(10%) 
200-500 μm 
(61.4%) 
500-1000 
μm (20.7%) 
1000-5000 
μm (7.9%)

Stainless-steel 
water sampler

Fragment (dominant), fiber, film, 
pellet, microbead

Transparent (42.8%), brown (40.9%), 
black (5.9%), green (3.7%), gray (3.3%)

PA (24.8%), PE (24%), 
PP (17.1%)

Microscope; Raman [36]

Three Gorges 
Reservoir

1597-12611 items/m3 
(4703 ± 2816 
items/m3)

< 0.5 mm 
(dominant)

Teflon pump Fiber (dominant), fragment, pellet, 
film, and Styrofoam

Transparent (dominant) PS (38.5%), PP (29.4%), 
PE (21%), PC, PVC

Microscope; 
Raman; SEM

[37]

16.67-611.11 
items/m3

1-5 mm 
(80.3%)

Teflon pump Fiber (88%), sheet and fragment White, black, green, and blue(dominant)

0.1-5.6 items/m3 1-5 mm 
(84.4%)

75 μm 
plankton nets

Fiber (49.6%), line, sheet, 
fragment, and foam

White, black, green, and blue(dominant)

Qin River 
(lower)

0.1-4.6 items/m3 1-5 mm 
(88.9%)

300 μm 
plankton nets

Fiber (38.2%), line, sheet, 
fragment, and foam

White, black, green, and blue 
(dominant)

PP (39%), PE (28%), 
PET, PS

Microscope; FTIR [79]

(67.5 ± 65.6 
items/m3)

0.3-1 mm 
(dominant)

Teflon pump Flake and fiber (dominant), film Blue, red, green, and white (dominant)

(0.15 ± 0.15 
items/m3)

1-5 mm 
(dominant)

75 μm 
plankton net

Flake and fiber (dominant), film, 
granule, line, string, and foam

Blue, red, green, and white (dominant)

Lijiang River

(0.67 ± 0.41 
items/m3)

1-5 mm 
(dominant)

300 μm 
plankton net

Flake and fiber (dominant), film, 
granule, line, string, and foam

Blue, red, green, and white (dominant)

PP/PE (37.6%), PE 
(32.2%), PP (19.1%), 
PVC, PS, PET, PA, PES

Microscope; FTIR [80]

Wei River 3.67-10.7 items/L < 0.5 mm 
(dominant)

Pump Fiber and film (dominant) - - Microscope; SEM [81]

Tuojiang River 911.57 ± 199.73-
3395.27 ± 707.22 
items/m3

0.5-1 mm 
(dominant)

Steel sampler Fiber (dominant), film, fragment, 
foam

White and multicolor (dominant) PP (34%), PE (29%), PS 
(23%)

Microscope; FTIR [82]

freshwater of China are similar, mostly fibers and fragments that account for more than 60% of the total microplastics. The main source of fiber and fragments 
is the decomposition of plastic containers such as plastic bags, fishing nets, and lines[22-24]. At the same time, the size of most of the microplastics, in the 
freshwater of China, is smaller than 1 mm as shown in Table 1. Furthermore, transparent, white, black, and colored (e.g., red, blue, green, and gray) 
microplastics were detected in the freshwater of China. In general, white and transparent account for the majority. In addition, the main types of polymers 
detected in surface water of China are PP, PE, PS, and PET. In parallel to this, the PP and PE microplastics account for the most proportion as described 
Table 1.
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Table 2. The abundance and characteristics of microplastics in sediments

Sediment Location Abundance Size Sampling Shape Color Polymer types Identification Ref.

Dafeng River 9.4-50.3 items/kg (dry 
weight) 0.0-21.3 items/kg

< 1 mm 
(dominant)

Van Veen grab Fiber (dominant) - PET (dominant) Microscope; FTIR [8]

West River 
(lower)

2560-10,240 items/kg < 0.5 mm 
(dominant)

Grab bucket Fiber (dominant), pellet, 
fragment, and film

- PP (38%), PE (27%), PS 
(16%), PET (4%), PVC 
(6%)

Microscope; FTIR [19]

Minjiang River 
(Chengdu)

573.84-2878.97 items/kg < 5 mm CN-200 piston 
column mud

Particle (5.1%), fragment 
(65.7%) and fiber (29.3%)

- PP (26%), PE (21%), RA 
(16%)

Microscope; FTIR [23]

Taihu Lake 460-1380 items/kg < 100 μm 
(70%)

Peterson grab - - PVC and PE (dominant), 
PS, PP

Microscope; FTIR; 
SEM

[24]

Poyang Lake (821 ± 100-1936 ± 121 
items/kg)

< 5 mm Stainless-steel 
shovel

Fragment (dominant), fiber, 
film, foam

- PP, PVC, PE, PS, and PVA Microscope; FTIR; 
SEM

[31]

Qinghai Lake 50-1292 items/m2 < 5 mm Stainless-steel 
shovel

Fiber, sheet - PP, PE (dominant), EVA, 
PVC, PC

Microscope; 
Raman

[32]

Danjiangkou 
Reservoir

708-3237 items/kg < 200 μm 
(21.7%) 
200-500 μm 
(35.2%) 
500-1000 μm 
(23.4%) 
> 1000 μm 
(19.6%)

Van Veen grab Fiber (52.8%), fragment 
(42.3%), film (3.87%), pellet 
(1.2%),

Transparent (51.4%) and brown 
(33.0%)

- Microscope; 
Raman

[36]

Three Gorges 
Reservoir

25-300 items/kg 0.5-5 mm Van Veen grab Fiber (dominant), fragment, 
pellet, film and foam

Transparent (dominant) - Microscope; 
Raman; SEM

[37]

Pearl River 80-9597 items/kg 0.02-1 mm 
(65.3%) 
1-2 mm 
(29.5%) 
2-3 mm (7.6%) 
3-4 mm (3.3%) 
4-5 mm (1.6%)

Van Veen grab Fiber (54.7%), fragment 
(43.3%)

White (65.5%), red, black, blue, 
yellow, green, and transparent

PE (47.6%) and PP 
(26.2%)

Microscope; FTIR [42]

Yongfeng River 5-72 items/kg, (26 ± 23 
items/kg)

< 1 mm 
(dominant)

Peterson gravity 
sampler

Film (64.4%), fiber (33.9%) Transparent and green 
(dominant)

PP (24%), PE (61%), PET 
(8%)

FTIR; SEM [56]

Qin River 0-97 items/kg 1-5 mm (76%) Grab dredge Fiber (30.9%), sheets 
(62.8%), fragment (6.3%)

White (30%), blue (27.6%), 
green (18.3%), red (18.5%), 
black (1.5%), 

PP (55.3%), PET (21.3%), 
and PE (17.0%)

Microscope; FTIR [79]

Wei River 360-1320 items/kg < 0.5 mm 
(dominant)

Garb Fiber and film (dominant) - - Microscope; SEM [81]

Fuhe River 212 ± 14-1049 ± 212 
items/kg

0.1-1 mm 
(dominant)

Columnar 
sampler

Fragment and fiber 
(dominant), film,pellet

Transparent (dominant) PET, PP, PE, PA Microscope; FTIR [83]
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In this review, we counted the microplastic pollution in 13 rivers including the Yangtze River, the Yellow 
River, the Pearl River, and the Qiantang River. In the river of China, the main shapes of microplastics are 
fibers and fragments, and the size of most microplastics is less than 1 mm. The main polymer types of 
microplastics are found to be PP and PE. This could be the case because of the excellent yield and wide 
utilization of PP and PE in our daily lives, such as plastic bottles, bags, films, lids, and containers[2]. Though 
transparent and white colors are the main colors of the detected microplastics in Chinese rivers. As shown 
in Table 1, the abundance of microplastics in the Yellow River, Yangtze River, and Pearl River Delta, which 
are the three main rivers in China, is significantly higher than the abundance of the Qiantang River, 
Minjiang River, and other rivers[5,23,25-27]. The surrounding population of these three rivers is dense, and the 
degree of urbanization and economic development is higher than other regions of China, indicating the 
microplastic pollution could be closely related to the society and economy of the freshwater neighborhood. 
Similarly, Eo et al.[28] (2019) and Alam et al.[29] (2019) found that microplastic pollution in densely populated 
areas is equally serious. Besides this, microplastics were also found in the surface waters of the Chinese 
remote Qinghai-Tibet Plateau, such as the Yarlung Zangbo River, Tongtian River, and Nu River. This 
indicates that the microplastics have become the ubiquitous pollutant[30]. Similarly, microplastics were 
detected in the freshwater of the Antarctic Special Reserve[6]. These findings disclose that microplastic 
pollution has spread all over the world, and in the absence of monitoring, microplastics may transfer and 
spread under the impact of monsoons, runoffs, and other factors.

To study lakes, we selected the four largest lakes in China (e.g., Poyang Lake, Taihu Lake, Dongting Lake, 
and Qinghai Lake) and Honghu Lake[24,31-33]. In conclusion, the particle size of microplastics in Chinese lakes 
is mainly less than 2 mm as demonstrated in Table 1. Similar to rivers, fibers and fragments are found to be 
the main shapes of microplastics in lakes. At the same time, PP and PE are the main polymer types as shown 
in Table 1. The reason behind this phenomenon could be linked to the transportation of microplastics to 
lakes along with rivers[24]. The examination of the lake flowing through the river found that the abundance 
of microplastics in the inflow river is, generally, lower compared to the one found in the outflow river[24]. 
Among all lakes, Honghu Lake (2282.5 items/m3) has the highest abundance of microplastics, followed by 
Dongting Lake (1191.7 items/m3), and Poyang Lake (289 ± 40-1064 ± 90 items/m3)[31,33]. There is also a high 
abundance of microplastics in Qinghai Lake (0.05 × 105-7.58 × 105 items/km2) and Taihu Lake 
(5.67 ± 1.92 items/L)[24,32]. Hong Lake is adjacent to Dongting Lake. However, compared with Dongting 
Lake, Hong Lake is more closed and has a smaller water surface area. Consequently, these could be the 
reasons for its high abundance[33]. On the other hand, Qinghai Lake is different from other lakes, there is no 
industry in the Qinghai Lake basin, and the population is also low. However, it has a plenty of tourism 
resources, which are the primary cause of the observed high abundance of microplastics[32]. At the same 
time, large amounts of microplastics have been found in lakes in other countries, such as Red Hills Lake in 
India (5900 items/m3) and three subalpine lakes in Italy (43,000 items/km2)[34,35].

In China, microplastics are not just detected in rivers and lakes but also in reservoirs. The Three Gorges 
Reservoir and Danjiangkou Reservoir are the main reservoirs in China. The characteristics of the 
microplastics in these two reservoirs are like other freshwater environments, mainly transparent fibers and 
fragments. The particle size of most microplastics is less than 1 mm as shown in Table 1. Considering the 
function of the reservoir, the reservoir may be a potential area for the accumulation of microplastics. The 
abundance of microplastics in the Three Gorges Reservoir (4703 ± 2816 items/m3) and Danjiangkou 
Reservoir (7205 items/m3) is much higher than Poyang Lake (289 ± 40-1064 ± 90 items/m3), Hong Lake 
(2282.5 items/m3), and Dongting Lake (1191.7 items/m3)[31,33,36,37]. Meanwhile, the amount of microplastics in 
the Three Gorges Reservoir is one hundred thousand times that in the Feilaixia Reservoir 
(0.56 ± 0.45 items/m3). It might be because the larger the total intake capacity of the reservoir, the higher the 
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Table 3. The abundance and characteristics of microplastics in biota

Biota Location Identification Average abundance (range) Size Shape Ref.

Wild Freshwater 
fish

Beijiang River Microscope 1.0-15.0 items/individual 
(average 5.6)

< 0.5 mm 
(> 50%)

Fragment and fiber 
(> 90%)

Wild Freshwater 
fish

Pearl River Delta Microscope 1.0-14.0 items/individual 
(average 4.8)

< 0.5 mm 
(> 50%)

Fragment and fiber 
(> 90%)

[5]

Wild fishes Dafeng river Microscope 
FTIR

8 × 103-5.7 × 104 items/kg (0.3-
6.7 items/individual digestive 
tract) 
2 × 103-1.7 × 104 items/kg 
(0.1-3.0 items/individual gill)

0.5-5 mm 
(dominant)

Fiber (dominant) [8]

Gymnocypris 
przewalskii

Qinghai Lake Raman 2-15 items/individual - Fiber, sheet [32]

Asian clam 
(Corbicula 
fluminea)

Middle-Lower 
Yangtze River

FTIR 0.4-5.0 items/individual 
(0.3-4.9 items/g)

0.021-4.83 
mm 
0.25-1 mm 
(dominant)

Fiber (60%-100%) [43]

Wild crucians 
(Carassius auratus)

Poyang Lake Microscope; 
Raman

0-18 items/ individual > 0.5 mm 
(82.1%)

Fiber (dominant) [46]

Wild fishes (4 
species)

Lijiang River FTIR 0.6 ± 0.6 items/individual > 1 mm (60%-
100%)

Fiber (dominant) [80]

Wild organisms Liaohe Estuary Stereomicroscope 
FTIR

0.83 ± 0.99-3.87 ± 2.18 
items/individual

< 1 mm 
(dominant)

Fiber (dominant), 
fragment, pellet

[82]

Reed Dongting Lake Microscope 
FTIR

0-14 items/individual < 0.5 mm 
(56%-68%) 
0.5-1 mm 
(24%) 
1-3 mm (10%) 
3-5 mm (3%)

Fiber (59%-100%) 
(average value of 
89%)

[84]

Tilapia North and west rivers 
of Guangdong 
province

Microscope 0-18.0 items/individual 
(0-0.116 items/g)

< 1 mm 
(> 72.5%)

Fragment and fiber 
(dominant)

Mud carp North and west rivers 
of Guangdong 
province

Microscope 0-14.0 items/individual 
(0-0.385 items/g)

< 1 mm 
(> 72.5%)

Fragment and fiber 
(dominant)

[85]

opportunities to collect microplastics[38].

The freshwater resources of rivers, reservoirs, and lakes are generally used to regulate water supply, 
agricultural irrigation, and aquaculture[5]. Water with a high abundance of microplastics, used for 
agricultural irrigation, might aggravate the microplastics pollution in soil and cause potential harm to 
crops[39]. In parallel to that, aquaculture in waters, containing a high abundance of microplastics, does not 
only affect the growth and development of aquatic organisms extremely, but also allows the microplastics to 
reach the human body, through the food chain, causing various health issues[40].

Sediments
Sediment is an important accumulation pool of microplastics in rivers, lakes, and reservoirs[41]. According to 
the findings of many previous studies, a lot of microplastics were accumulated in the sediment of rivers, 
lakes, and reservoirs. Basically, sediment sampling is generally carried out with grab buckets, stainless steel 
shovels, and cylindrical samplers to take the upper layer (usually 0 to 20 cm) sediment as demonstrated in 
Table 2. The average abundance of microplastics in the sediment of freshwater were ranging between 460 
and 10240 items/kg or 0 to 1292 items/m2 as can be seen from Table 2. More severe microplastics pollution 
levels were found in the sediments of West River, Pearl River, Danjiangkou Reservoir, and Minjiang 
(Chengdu)[19,23,36,42]. Similar to water, the main shapes of microplastics in sediments are fragments and fibers 
as shown in Table 2. On the other hand, the main shape of microplastics in the sediment of Qin River is 
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Figure 1. Distribution map of study locations.

sheet. Additionally, the main types of microplastics in sediments of the freshwater environment in China 
are PP and PE. Among all sediments of freshwater in China, the pollution of microplastics in the sediments 
of the Pearl River system is the most critical one as depicted in Table 2. The abundance of microplastics in 
the downstream sediments in the West River, which is the longest river in the Pearl River Basin, is much 
higher compared to other water bodies. The high abundance of microplastics observed in West River, was 
likely due to two reasons, the first downstream industries being well developed and the other sampling areas 
including commercial and industrial areas, which are significantly affected by humans[19]. Meanwhile, the 
abundance of microplastics in the sediments of Danjiangkou Reservoir is higher compared to other water 
bodies (except the Pearl River Basin). This might be due to the low flow velocity of Danjiangkou Reservoir 
which reduces the loss of microplastics[36]. Generally, the microplastics in the sediments can be ingested by 
benthic organisms and affect their physiological activity and metabolism[43]. Furthermore, it can be 
transported to high-trophic organisms along the food chain. The status of microplastics in the sediments of 
the freshwater environment in China is similar to other countries. For example, Mani et al.[44] (2019) found 
that the range of microplastics in the sediments of the Rhine River in Germany was 260 ± 10 to 11,070 ± 
600 items/kg. On contrary, the range of microplastics in Ciwalengke River sediments in Indonesia is only 
30.3 ± 15.9 items/kg[29].
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Biota
Microplastics in water bodies and sediments can easily reach aquatic organisms. Therefore, aquatic 
organisms can be used as an indicator to the level of microplastic pollution in the region[45]. Previous 
biological studies were mostly concentrating on the tropical and subtropical regions of southern China. At 
the same time, all biota samples were directly from sampling or purchasing. Studies reported that some 
aquatic plants, bivalves (e.g., Asian clams) and fish (e.g., Oreochromis niloticus, Cirrhinus molitorella, and 
Carassius auratus) all contained microplastics. The abundance range of microplastics in aquatic organisms 
was 0 to 18 items/individual, with the highest concentrations in Poyang Lake and north and west rivers of 
Guangdong province. Among them all, the abundance of microplastics in wild fish, in the Lijiang River, was 
significantly lower than others. It is an indication that the Lijiang River was less polluted by microplastics. 
Basically, the characteristics of microplastics in aquatic organisms are like the ones in water and sediments. 
The shape of the microplastics in the aquatic organisms is mainly fiber, and the particle size of most 
microplastics is less than 1 mm as shown in Table 3. This might be so because fish ingesting microplastic 
fibers as plant fibers. The researchers found that the type of fish, feeding pattern, and habitat all can affect 
the level of microplastic enrichment. For example, fish may accumulate microplastics in the different tissues 
through diverse feeding methods such as swallowing, sucking, and filter feeding[46,47]. In Beijiang and Pearl 
River Deltas of China, the microplastic abundances of carnivorous fish were 3.5 and 3 items/individual, 
respectively. Similarly, the microplastic abundances of omnivorous fish were 6.8 and 6.2 items/individual, 
respectively[5]. The result revealed that omnivorous fish are more likely to accumulate microplastics than 
carnivorous fish. In parallel to this, Zheng et al.[48] (2019) found that benthic fish, generally, accumulate 
more microplastics than other fishes in the water. The contamination status of microplastics in freshwater 
organisms, in China, is consistent with those of other countries. In Bangladesh, the abundance range of 
microplastics for fish is 2 to 6 items/individual[49]. At the same time, the abundance range of microplastics in 
freshwater fishes, in southwestern Germany, is 1 to 4 items/individual[50]. Although, the abundance and type 
of microplastics in biota of freshwater environments, in China, have been investigated in recent years, more 
studies should be carried to comprehensively evaluate the MP pollution in freshwater ecosystem of China.

MICROPLASTICS SOURCE IN THE FRESHWATER ENVIRONMENT
Microplastic pollution of the freshwater environment is associated with geographical location, human 
activities, and other factors[5]. Exploring the source of microplastics can help us reduce the pollution of 
microplastics in the freshwater environment. Essentially, the distribution of microplastics is closely related 
to population, industry, and the degree of urbanization. For example, in the densely populated and 
economically developed Pearl River Delta, the middle, and lower reaches of the Yangtze River, microplastics 
pollution is more severe compared to other regions[5,25].

Chinese freshwater environment is mainly polluted by microplastics through the following channels: 
domestic wastewater, surface runoff, atmospheric transportation, and aquaculture[51]. Domestic wastewater 
is the main source of microplastics in the water body, near the urban regions. In the city, sewage treatment 
plants are concentrated areas for the collection and treatment of domestic sewage. Although the sewage 
treatment plant can process up to 99% of microplastics, a considerable amount of microplastics passes 
through this system and is discharged into the water body along with the sewage[52-54]. Although the four 
sewage treatment plants in Guilin, Guangxi have high removal efficiency, each sewage treatment plant 
discharges 2 to 78 million items of microplastics into the receiving water body every day[52]. In the 
underdeveloped countryside of China, sanitary sewage is discharged directly into the water environment 
with simple or no treatment causing serious microplastics pollution. Likewise, landfills transport 
microplastics to the environment through the leaching of landfill leachate[54]. Meanwhile, rainwater runoff 
(especially during periods of heavy rainfall) is also an essential way for the terrestrial ecosystem to transport 
microplastics to the aquatic ecosystem. On the banks of the river, lake, and reservoir, there are plastic 



Page 12 of Zhao et al. Water Emerg Contam Nanoplastics 2022;1:5 https://dx.doi.org/10.20517/wecn.2021.0517

containers (e.g., plastic bags), fishing nets, and lines that are randomly discarded which increase the risk of 
microplastic pollution when these plastics are weathered[51]. Furthermore, Li et al.[55] (2020) indicated that 
inappropriate management of these waste plastics is the principal reason behind the microplastic pollution 
in the water of the Yangtze River Estuary. At the same time, some agricultural activities produce 
microplastics in the soil then transfer them to the water environment by means of surface runoff[56]. 
Additionally, rainfall and atmospheric deposition are one of the primary sources of microplastics in some 
remote areas[57]. Either, in cities or rural areas, aquaculture is one of the core sources of microplastics for 
lakes[58,59]. Moreover, tourism is also a fundamental source of microplastics in some areas, such as Qinghai 
and the Qinghai-Tibet Plateau[32,60].

IMPACTS OF MICROPLASTICS ON THE FRESHWATER ENVIRONMENT
The impact of microplastics on the freshwater ecosystem can be divided into physical and chemical impacts, 
with the chemical one being the dominant. Basically, the physical impact, of microplastics on the 
environment, primarily depends on particle characteristics. There are two main reasons for the chemical 
pollution of microplastics to the freshwater environment. First, the additives released from microplastics 
that aggravate the pollution of the water environment and second the toxic pollutants adsorbed in 
microplastics that increase its harm to organisms. Plastics usually contain various additives, such as 
plasticizers, heat stabilizers, colorants, foaming agents, and heavy metals[61]. It is considered to be 
carcinogenic and can damage the endocrine system. Once these additives leached from microplastics do not 
only pollute the water environment but cause potential harm to aquatic organisms[62]. For example, lead 
(Pb) released from PVC affects the gene expression in zebrafish[63]. Moreover, microplastics would adsorb 
persistent organic pollutants (e.g., PCBs, PAHs, DDTs, and PBDEs) and heavy metals (e.g., Cr, Cu, Ni, Pb, 
Cd, and Zn) due to their larger specific surface area and hydrophobicity[64-67] thus increasing the toxicity of 
microplastics. At the same time, persistent organic pollutants and heavy metals can cause secretion 
disorders, mutations, and cancer in organisms. Later, these pollutants can reach high-nutrient organisms 
through the food chain[68].

In addition to indirectly affecting aquatic organisms by affecting the water environment, microplastics can 
directly cause physical and chemical damage to organisms through ingestion[69]. The ingestion of 
microplastics, by fish and benthic organisms, may cause abrasions, ulcers, and blockages of the digestive 
tract. This, in turn, affects the growth and metabolism of these organisms[10,70]. Fish ingesting microplastics 
might cause liver poisoning and inflammation[71]. Furthermore, Jin et al.[72] (2018) and Park et al.[73] (2022) 
indicated that the PE microplastics could cause inflammation of zebrafish, damage to the liver, and 
microbiota to crucian carp. Microplastics do not only affect the development of fish embryos but also 
influence their gene expression[74]. For example, Umamaheswari et al.[75] (2020) found that PE microplastics 
affect genes (e.g., cat, sod1, gpx1a, gstp1, hsp70l, ptgs2a, and ache) expression in zebrafish. Moreover, 
microplastics could change the natural habitat, disturb the bacterial community, disrupt the development of 
species, and adversely affect the ecological functions of the aquatic ecosystem[76]. For example, the existence 
of microplastics reduced the chlorophyll content of algae, thereby decreasing the efficiency of 
photosynthesis and inhibiting the growth of algae[77]. Inhibition of algae growth represents a decrease in 
primary consumers in the environment, which may have an impact on the nutrient cycle in the aquatic 
ecosystem[78].

PROSPECTIVE AND SUGGESTIONS
Microplastic pollution, in the freshwater environment of China, is associated with both natural and human 
factors. Different regions have different distribution characteristics of microplastics and even the same 
freshwater area showed different results, of the microplastics abundance, due to different sampling methods, 
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extraction methods, identification methods and units expression. These factors are not conducive to the 
follow-up evaluation and treatment of microplastics pollution. Therefore, in the future, a unified standard 
unit representation, sampling, and detecting methods are suggested to better measure and evaluate the 
status of microplastics.

Furthermore, the sources of microplastics in water are extremely wide, and the control methods are also 
diverse. Domestic wastewater is one of the principal sources of microplastics in freshwater, thus improving 
the treatment efficiency of microplastics in wastewater treatment plants can help to effectively control the 
input of microplastics. Meanwhile, increasing the recovery of the discarded plastics, effectively disposing 
them in agricultural activity, raising the public awareness of microplastics, and reducing the random discard 
of plastic products are all of a great significance. In addition to that, tourism is considered the main source 
of microplastics in remote regions such as Qinghai and Qinghai-Tibet Plateau. Consequently, strengthening 
supervision and management in this area are one of the key methods to reduce microplastic pollution.

Although some experiments have been done to explore the harm of different microplastics and particle size 
to organisms of freshwater environment, the comprehensive impact of microplastics on organisms, in the 
ecosystem, is still unknown. Therefore, exploring microplastics fate in the freshwater environment and 
evaluating the impact of microplastics on the biota, especially their potential harm to human health, should 
be brought to the forefront.

CONCLUSION
Microplastic pollution in the freshwater environment of China has become widespread. The abundance of 
microplastics in areas with intensive human activity (e.g., Pearl River Region) is much higher compared to 
remote areas (e.g., the Qinghai-Tibet Plateau). The shape of microplastics in the freshwater environment is 
mainly fragments and fibers, and the types are essentially PP and PE. At the same time, the key sources of 
microplastics are sewage discharge, surface runoff, and aquaculture. The aquatic organisms, in the 
freshwater of China, are also polluted by microplastics, especially the bivalves and fishes, which aggravate 
the accumulation of microplastics in the human body. Although microplastics have been attracting more 
attention and turned into a trending topic in the last few years, there is still a lack of in-depth research on 
the sources of microplastics and the harm to the human body. To prevent microplastic pollution, 
governments, of all countries, should issue relevant policies and regulations, as soon as possible, to reduce 
their pollution.
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