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Abstract
Aging is associated with the development of two ubiquitous, detrimental pathologies, vascular calcification and 
amyloidosis. These pathologies are characterized by the accumulation of toxic aggregates in the vessel 
extracellular matrix (ECM) in the form of crystalline calcium and phosphate mineral or insoluble protein fibrils, 
respectively. These aggregates impact ECM integrity, drive vascular stiffening, and can also cause cell death and 
phenotypic change in the cells that interact with them. The deposition of both calcification and amyloid requires a 
nucleus that can mediate the mineralization of calcium and phosphate, or amyloid aggregation from precursor 
proteins or peptides. Emerging evidence suggests that changes in the composition of the ECM associated with 
cellular senescence, as well as extracellular vesicle (EV) release, cargo-loading, trapping, and aggregation within 
the ECM, are common and synergistic mechanisms that regulate the development of these pathologies. 
Importantly, vascular smooth muscle cells (VSMCs) orchestrate the formation of both pathologies that commonly 
co-occur in the aging vasculature. Here, we outline the commonalities and differences in what is known about the 
genesis of calcification and amyloid, and highlight key questions and areas that remain unknown and require 
further investigation. The complex relationship between senescence, EVs, and the ECM, mediated by VSMCs, 
which drives the accumulation of HA and amyloid, could be a target for therapeutic intervention.
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INTRODUCTION
Advancing age is the major risk factor for cardiovascular disease (CVD). With age, the occurrence and 
prevalence of coronary heart disease, hypertension, and atherosclerosis increase dramatically, making CVD 
the leading cause of death worldwide, representing 30% of all deaths[1]. By 2050, the incidence of CVD could 
double in conjunction with increases in life expectancy and damaging trends, such as obesity and 
smoking[2]. A significant feature of vascular aging is increased vascular stiffness, which can worsen chronic 
conditions, such as hypertension, contributing to CVD-related mortality rates[3,4]. Pulse wave velocity 
(PWV), a clinical measure of arterial stiffness, is an independent indicator of cardiovascular risk and is used 
as a marker of vascular aging[5]. Age-related diseases, such as chronic kidney disease (CKD)[6], 
atherosclerosis[7], Alzheimer’s disease (AD)[8], and dementia[9], are all associated with increased PWV, which 
is a predictor of all-cause mortality as well as cardiovascular mortality[10,11], highlighting the significance of 
vascular stiffening in age-related decline.

Vascular calcification and vascular amyloidosis are two age-related pathologies that are highly prevalent in 
patients over the age of 60 years[12-14]. These pathologies affect both the intimal and medial layers of the 
vessel wall and accelerate vascular stiffening, thus promoting significant negative outcomes[15,16]. Both 
pathologies are mediated by vascular smooth muscle cells (VSMCs) and emerging data suggest that similar 
mechanisms may contribute to their progression with age. However, despite this dramatic association with 
age, their co-occurrence and possible common and/or interacting mechanisms have not been systematically 
investigated.

Vascular calcification is characterized by the accumulation of hydroxyapatite (HA), a calcium phosphate 
mineral [Ca3(PO4)2]. There is a strong association between age and medial calcification[17], with vascular 
calcification also being closely correlated to biological aging, as younger patients with calcification have 
advanced aging of the vasculature and the survival risk of a person significantly older[18]. Previously 
considered a passive, degenerative process associated with aging, it is now recognized as an active and 
dynamic process orchestrated by VSMCs and involving the upregulation of genes associated with both 
osteogenesis and chondrogenesis, with many similarities to the formation of bone[19].

Calcification occurs at two anatomical sites in the vessel wall, the intima and the media. Intimal calcification 
is linked with atherosclerosis and is characterized by HA accumulation with lipids, macrophages, and 
VSMCs. This causes inflammation, growth, and potentially destabilization of atherosclerotic plaques 
[Figure 1][20,21]. Conversely, medial calcification has been associated with arteriosclerosis, an age-associated 
disease that is accelerated in association with metabolic disorders such as diabetes and renal failure[22,23]. 
Medial calcification is associated with structural and ECM changes in the arterial tunica media, usually 
augmenting vascular stiffness[20].

Amyloidosis is the accumulation of insoluble, fibrous amyloid, formed from the aggregation of soluble 
proteins or peptide monomers into β-sheets[24]. Vascular amyloidosis occurs in the vessel intima and media 
and several amyloids have been described in the cardiovascular system[25]. Cardiovascular amyloids are 
commonly classified as age-related and are often not associated with antecedent disease, with age being the 
only risk factor[26,27]. In the vessel wall, the most common amyloids are aortic medial amyloid (AMA), 
amyloid transthyretin (ATTR), apolipoprotein A-1, and amyloid light chain (LC)[28,29]. To date, there has 
been limited research investigating the pathological role of amyloid deposits in the vasculature. The two 
amyloids that have received the most attention are medin, the cause of AMA, which is present in the aorta 
of over 97% of Caucasian people over 50 years old[30], and Aβ, the same amyloid that causes Alzheimer’s 
Disease (AD), that accumulates in leptomeningeal vessels of the brain in cerebral amyloid angiopathy 
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Figure 1. The vessel wall is organized into 3 layers. The intimal layer is made up of one layer of endothelial cells and the internal elastic 
lamina. The medial layer of a healthy vessel consists of contractile vascular smooth muscle cells (VSMCs), the extracellular matrix 
(ECM), and elastic fibers. The adventitia is the outer layer of connective tissue. Vascular calcification can occur at the intimal and 
medial layers with different risk factors and outcomes. Intimal calcification is commonly associated with atherosclerosis and is 
characterized by formation of a plaque with a fibrous cap and accumulation of lipids and inflammatory cells. Medial calcification often 
results in arteriosclerosis and vascular stiffening. VSMCs are the main mediators of medial calcification and can undergo phenotypic 
differentiation into a more synthetic, osteoblast-like phenotype, characterized by extracellular matrix (ECM) remodeling and 
extracellular vesicle (EV) secretion. (Created with BioRender.com)

(CAA). Previous studies have suggested that medin accumulation in the vessel wall can reduce arterial 
elasticity through its interaction with elastic fibers[31], while stiffening of cerebral arteries is thought to 
accelerate Aβ accumulation in the brain[32,33]. However, more studies are required to delineate exactly the 
effects of amyloidosis in the vasculature.

A key feature of aging is the accumulation of senescent cells[34]. These cells show a number of specific 
features including exit from the cell cycle, morphology change, persistent DNA damage, and activation of 
the senescence-associated secretory phenotype (SASP), leading to the release of inflammatory mediators 
and proteases that can act remotely to accelerate cellular dysfunction and aging. In the vessel wall, senescent 
cells accumulate with age and premature senescence of VSMCs is a feature of young patients with calcified 
arteries, such as children on dialysis[18,35]. Extensive research has been conducted on the impact of 
senescence on vascular calcification[36]; however, there remains a lack of knowledge regarding the 
relationship between senescence, calcification, and amyloidosis, despite several forms of pathological 
amyloidosis being associated with aging.

Senescent VSMCs have also been shown to increase the secretion of extracellular vesicles (EVs)[37]. The role 
of EVs in calcification and amyloidosis in the vasculature is interesting as both pathologies require a nucleus 
to initiate either calcification or amyloid formation. VSMC-derived EVs and exosomes have been 
implicated in the deposition and nucleation of both HA and amyloid[38-40], but the precise mechanisms 
governing what initiates EVs to mineralize, aggregate protein, or both are unknown. However, it is clear 
that EVs are an important trigger for both pathologies and could account for their concomitant 
development in the vessel wall with age.

https://BioRender.com
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Building on these key facts, in this review, we will focus on the role of senescence and the involvement of 
EVs in driving these pathologies. The co-occurrence of calcification and amyloidosis, particularly in the 
vasculature, and their common and reciprocal mechanisms need further investigation to tease apart their 
roles in CVD and identify novel therapeutic targets to alleviate vascular stiffening.

MECHANISMS OF VASCULAR CALCIFICATION AND AMYLOID DEPOSITION: A KEY ROLE 
FOR VSMCS
Vascular calcification
VSMCs in the arterial tunica media have a contractile phenotype, providing dynamic adaptability to blood 
volume changes occurring in the vasculature. In healthy adults, VSMCs exhibit a contractile phenotype with 
low proliferation, but with aging and the occurrence of chronic inflammation and structural damage, 
VSMCs switch to a more proliferative/synthetic phenotype and migrate to the site of injury [Figure 2][41,42]. 
This synthetic characteristic provides cytokines and growth factors and induces overexpression of elastin, 
collagens, proteoglycans, and other ECM components to repair the damaged wall[43]. Synthetic VSMCs 
secrete EVs containing calcification inhibitors, β1 integrin, and ECM proteins such as fibronectin and 
collagen VI, which stimulate cell migration and invasion[44].

Calcification is a dynamic process involving VSMC osteogenic differentiation, with overexpression of pro-
osteogenic genes, enhancing the accumulation of HA [Figure 2][16,45]. During the initial stages of 
calcification, runt-related transcription factor (Runx2), which regulates osteogenic differentiation during the 
physiological formation of bones, is upregulated. In addition, other transcription factors (TF) and 
morphogens that can drive osteo/chondrogenic pathways, such as Sox9 or Msx2, which are involved in 
cartilage differentiation and bone maturation, respectively, and bone morphogenetic protein 2 (BMP2) are 
upregulated[46,47]. These TFs also regulate the expression of a number of proteins such as matrix 
metalloproteinases (MMPs), osteocalcin (OCN), collagen type 1-alpha1 (COL1α1), bone sialoprotein (BSP), 
and alkaline phosphatase (ALP) that can regulate mineral growth[48]. VSMC osteogenic differentiation is 
accompanied by downregulation of VSMC contractile genes, such as smooth muscle protein 22-α (SM22α) 
and α-smooth muscle actin (α-SMA), which also control cell motility and shape[49].

VSMCs can respond to pathological stimuli by expressing calcification inhibitors. For instance, matrix Gla 
(γ-carboxylate glutamate) protein (MGP) is a potent calcium inhibitor that inhibits BMP2. It has been 
documented that during vascular calcification, these protective mechanisms can become defective, and 
VSMCs start to release EVs, including apoptotic bodies and exosomes, which enhance calcification by 
providing an essential nucleation point for HA formation[50,51]. In the healthy vasculature, these EVs are 
loaded with mineralization inhibitors, but during calcification, these are deficient and the EVs become 
mineralization-competent, acting as a nucleation nidus [Figure 2].

Vascular amyloid
Like HA, amyloid fibril formation is a nucleation-dependent mechanism. It can be initiated by soluble, 
cleaved peptide monomers or destabilized protein structures, which are susceptible to aggregation into 
oligomers, which may induce cell death, or further aggregation into amyloid. Partial unfolding of proteins 
can occur at high temperatures or low pH[52]. Aggregation of denatured monomers or amyloidogenic 
peptides occurs slowly during the lag phase and occurs when hydrophobic regions of proteins, which are 
usually embedded in the protein structure, become exposed through cleavage or denaturation and begin to 
aggregate with other hydrophobic regions or peptides [Figure 3]. The growth of unstructured aggregates 
and amyloid seeds into mature fibrils occurs exponentially during the growth phase to more 
thermodynamically stable fibrils[53]. Amyloid plaques generally comprise several components, the fibrils 
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Figure 2. Contractile vascular smooth muscle cells (VSMCs) express high levels of contractility markers, including α-smooth muscle 
actin (α-SMA) and smooth muscle protein 22α (SM22α), to regulate vascular tone. Synthetic VSMCs have low contractility, 
proliferation and secrete extracellular vesicles (EVs) that can promote VSMC migration and invasion to drive vascular repair after 
injury. Elevated calcium and phosphate levels (Ca/P) can induce an osteogenic VSMC phenotype with bone-like markers, extracellular 
matrix (ECM) deposition, and apoptosis. Osteogenic VSMCs secrete calcifying EVs, which form a nidus for mineralization due to the 
loss of calcification inhibitors and being rich in annexins and phosphatidylserine.

Figure 3. Amyloid fibrils are formed by denaturation of a native state protein to form a denatured monomer or cleavage to form 
amyloidogenic peptides. These aggregate slowly to form amyloid seeds during the lag phase. The amyloid seeds rapidly aggregate into 
β-sheets in the exponential growth phase to form insoluble amyloid fibrils. Extracellular vesicles have been identified as mediators of 
amyloid formation as they contain several different amyloid precursor proteins or peptides. They can accelerate the aggregation of 
amyloid peptides by acting as a nucleus for aggregation and fibril growth. (Created with BioRender.com)
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from denatured protein or peptide precursor, non-fibrillar serum amyloid P component (SAP), 
glycosaminoglycans (GAGs), heparin sulfate proteoglycans (HSPGs), and apolipoprotein E (apoE). Previous 
research suggests SAP and apoE stabilize amyloid fibrils and protect them from degradation by increasing 
fibril strength and density[54].

AMA is a localized, aortic, age-related amyloid. It is a major cardiovascular amyloid, comprising a 50-amino 
acid peptide medin, produced by cleavage of milk fat globule epidermal growth factor (EGF) 8 
(MFGE8)[30,31,55]. MFGE8 is highly expressed by VSMCs and accumulates in the vessel wall with age[56], with 
its accumulation also correlating with PWV and cardiovascular risk factors in diabetic patients[57]. It 
contains a domain with an RGD peptide that binds integrins to mediate several processes in VSMCs, 
including proliferation[58], osteogenic differentiation[59], and inflammation[60]. Medin is composed of a 
fragment from the C2-like domain of MFGE8, which can bind phospholipids. Amyloid deposits in the 
medial layer of the thoracic aorta are present in over 97% of Caucasian people over 50 years old[30]. Both 
MFGE8 and medin have been shown to bind to elastin, accounting for its accumulation in large arteries[61], 
and previous studies have suggested that medin accumulation in the vessel wall can reduce arterial elasticity 
through its interaction with elastic fibers[31].

Amyloid-β (Aβ) peptides are recognized as the primary driver of AD. Their accumulation leads to the 
formation of characteristic plaques within the aging brain parenchyma. The aggregation of Aβ peptides has 
also been identified in crucial cerebral blood vessels, such as the internal carotid artery, resulting in CAA[62]. 
Aβ accumulates predominantly in the medial and adventitial layers of leptomeningeal arteries, indicating a 
role of VSMCs in its deposition[63]. Cerebral arteries play a key role in the clearance of Aβ through the 
perivascular drainage pathway, which is reduced with age and in AD, leading to Aβ deposition in the ECM 
and its uptake by VSMCs, causing disruption of the vessel wall[64,65]. Furthermore, substantial amounts of Aβ 
can be detected in the circulation and accumulate in atherosclerotic plaques in the carotid artery and 
aorta[66,67]. Interestingly, circulating Aβ levels have been shown to be predictive of cardiovascular mortality 
and vascular disease progression in patients with coronary heart disease and were significantly associated 
with arterial stiffness and atherosclerosis[68,69]. However, despite its presence in the cardiovascular system 
and association with vascular disease, its pathological role and mechanisms of accumulation have not been 
investigated.

AGING AND SENESCENCE
Cellular senescence is a hallmark of vascular aging, calcification, and amyloidosis[34]. This physiological 
process is characterized by telomere shortening, DNA damage, and arrest of the cell cycle, with cells unable 
to respond correctly to mitotic stimuli. Cellular senescence triggers several cell cycle regulators, such as p53/
p21 and p16/retinoblastoma protein tumor suppressor activation[70,71], and plays a crucial role in vascular 
aging through increased secretion of inflammatory cytokines, proteases, and growth factors, comprising the 
SASP.

Recent studies have demonstrated that VSMCs rapidly undergo osteogenic differentiation during aging[72,73], 
which could both be driven by, and contribute to, cellular senescence. VSMC senescence in vitro has been 
shown to enhance calcification and increase the expression of osteogenic genes, such as Runx2, ALP, and 
collagen 1[73]. In klotho knockout mice, a mouse model of aging, significantly upregulated expression of 
RUNX2 was shown in the calcified lesions in the aorta[74]. Interestingly, CKD patients have decreased klotho 
levels, which decline further as the disease progresses[75]. Senescent VSMCs and apoptotic bodies have also 
been detected in the medial layer of calcified arteries from children with CKD, with their vascular 
phenotype more closely resembling that of old subjects[45,76,77], highlighting the role of senescence in driving 
calcification during aging.
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VSMC senescence also contributes to calcification by the release of inflammatory cytokines and growth 
factors. In vitro replicative senescence of VSMCs shows correlations with age-related morphological 
changes and DNA damage accumulation, which can lead to the overexpression of pro-osteogenic genes and 
downregulation of calcification inhibitors[72,73]. Inflammatory cytokines, particularly interleukins (ILs), are 
highly activated during the SASP, with IL-6 promoting calcification through osteogenic gene upregulation 
(Runx2, ALP, and MMP2) via extracellular related kinase (ERK) signaling pathways[78].

There is strong evidence showing the accumulation of senescent VSMCs in atherosclerotic plaques. VSMC 
senescence in atherosclerosis is thought to be induced by replication, resulting in telomere shortening, or 
stress-induced premature senescence (SIPS), caused by DNA damage and oxidative stress[79,80]. While it is 
not clear what role senescence-induced calcification has in plaque formation and stability, it has been shown 
to be closely correlated with cardiovascular events, providing further evidence for the importance of VSMC 
senescence in both the intima and media of the vessel wall[81,82].

Extracellular proteases are also components of the SASP. MMPs play an important role in both bone and 
vascular tissue remodeling[83]. Several studies have identified MMPs as promoters of vascular 
calcification[84,85]. MMPs degrade several key ECM components that are important in maintaining integrity 
of the vessel wall, such as elastin, fibronectin, and laminin. Previous research showed that the degradation of 
elastin preceded VSMC loss and vascular calcification in a model of CKD[86]. Therefore, enhanced matrix 
degradation, induced by SASP, could contribute to vascular calcification. In addition to matrix degradation, 
MMP2 and MMP9 have been shown to enhance vascular calcification through upregulation of BMP2[85].

To date, there is limited understanding of the contribution of senescence to amyloidosis, particularly in the 
cardiovascular system. Although AMA is an extremely prevalent and age-associated form of amyloidosis, 
the role of cellular aging in its development is under-researched. Accumulation of medin in the medial layer 
of human aortas has been strongly correlated with age[56], and a recent study showed VSMC senescence 
increased the production and secretion of medin in sEVs[37]. This resulted in increased accumulation of 
medin in the ECM, promoting its aggregation into amyloid fibrils, indicating a role of senescence in 
triggering AMA development.

Senescent cells have been detected in the vasculature in both AD patients and AD mouse models and are 
thought to contribute to increased permeability and loss of integrity of the blood-brain barrier[87]. VSMC 
senescence has not yet been investigated thoroughly in CAA, which overlaps significantly with AD. Cellular 
senescence plays a role in AD, although its precise mechanisms are not fully understood[88]. Various cell 
types, such as astrocytes, neurons, and endothelial cells, express senescence-associated proteins in AD 
brains, indicating a link between senescence and Aβ pathophysiology[89,90].

EXTRACELLULAR VESICLES
An important mechanism of vascular calcification is the secretion and deposition of EVs from VSMCs. EVs 
have also been linked to amyloid-related diseases in both physiological and pathological contexts, including 
AD[91,92] and AMA[37,93].

EVs are key mediators of intercellular communication, acting as vehicles for transporting proteins, lipids, 
and RNA[94]. Importantly, EVs comprise different subtypes of vesicles, often categorized by size, biogenesis, 
or isolation technique. Microvesicles (200-1,000 nm) outwardly bud off directly from the plasma membrane 



Page 8 of Whitehead et al. J Cardiovasc Aging 2024;4:12 https://dx.doi.org/10.20517/jca.2023.4924

of cells, while small EVs (sEVs) or exosomes (10-200 nm) are formed within endosomes [Figure 4]. 
Apoptotic bodies (1-5 μm) are formed from cell fragments during apoptosis.

Early endosomes are formed from inward budding of the cell membrane, forming clathrin-coated vesicles 
(CCVs), or from vesicles from the Golgi apparatus. Intraluminal vesicles (ILVs) are small, lipid bilayer-
bound vesicles, which inwardly bud from the early endosomal membrane[95]. This becomes a multivesicular 
endosome (MVE) and the ILVs are released as exosomes, sometimes described as sEVs, when the MVEs 
fuse with the plasma membrane[96]. Alternatively, the ILVs are degraded by the fusion of the MVEs with 
lysosomes[96]. Exosomes are released from a variety of cell types, including blood cells, endothelial cells, and 
VSMCs and can interact with recipient cells through three different mechanisms: direct interaction between 
exosome transmembrane proteins and target cell receptors; fusion with the target plasma membrane, 
followed by the release of the contents into the cytosol; and internalization of exosomes into the cell[97]. 
Internalized exosomes can merge into endosomes, be released again into neighboring cells, or mature into 
lysosomes, leading to degradation[98].

Exosomes and sEVs consist of a lipid bilayer with several membrane proteins: major histocompatibility 
complexes (MHC), which are involved in antigen presentation; integrins and tetraspanins, for cell targeting 
and adhesion; annexins and flotillin, for membrane trafficking; and lipid rafts, which influence membrane 
fluidity and membrane protein and receptor trafficking[96]. They are loaded with a variety of proteins both 
on the surface and within the lumen, such as adhesion molecules and matrix-degrading enzymes, 
cytoskeletal proteins and enzymes, mRNA, and microRNAs.

Microvesicles are formed from direct budding of the plasma membrane and comprise a heterogeneous 
population of vesicles, differing based on cell type and function. The plasma membrane may undergo 
remodeling, meaning the composition of microvesicles can appear distinct from the parent cell[99]. 
Microvesicles can be packed with miRNAs, mRNAs, and proteins and, like exosomes or sEVs, can act as a 
mechanism for the transport of bioactive molecules and signaling.

Apoptotic bodies are formed during the disassembly and fragmentation of apoptotic cells. During apoptosis, 
cells shrink, and the intracellular contents become more densely packed. The plasma membrane then 
undergoes blebbing, forming apoptotic bodies, which contain components of the apoptotic cells, such as 
cytoplasm, organelles, chromatin, and other nuclear remnants[100]. The cargo of apoptotic bodies is very 
heterogeneous as contents are randomly packed into the vesicles.

EVs in vascular calcification
The change of VSMCs to a synthetic phenotype is a characteristic of vascular repair in calcifying conditions 
and aging and is associated with increased EV secretion[38]. Specifically, EV production and contents change 
with disease and stress, highlighting their roles in both normal, physiological, and pathological processes[101].

A previous study on vascular calcification demonstrated how calcium phosphate deposition in the medial 
layer of major arteries was mediated by exosomes. During HA deposition, there was a decreased 
concentration of calcification inhibitors and a disruption of vascular homeostasis[4]. Interestingly, VSMC-
derived exosomes contain key calcification inhibitors, such as MGP and fetuin-A[102-104]. In chronic kidney 
disease, high concentrations of calcium and phosphate induce mineral stress, which causes a reduction of 
calcification inhibitors secreted by exosomes[39].
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Figure 4. Blebbing of the plasma membrane causes the formation of microvesicles or medium extracellular vesicles (EVs). Exosomes or 
small EVs are formed in early endosomes from clathrin-coated vesicles or Golgi apparatus, where budding of the membrane to create 
intraluminal vesicles results in maturation into a multivesicular endosome (MVE). The MVE either fuses with lysosomes to be degraded 
or fuses with the plasma membrane to release the intraluminal vesicles as exosomes. Exosomes or small EVs contain a myriad of 
proteins and molecules, including microRNAs (miRNAs), extracellular matrix components, matrix metalloproteinases (MMPs), 
annexins, and several different amyloid proteins. (Created with BioRender.com)

Elevated levels of calcium induced sphingomyelin phosphodiesterase 3 (SMPD3) expression and secretion 
of VSMC-derived exosomes, while chemical inhibition of SMPD3 inhibited the calcification process[39]. 
Exosomes contain calcium and are rich in calcium-binding annexins [Table 1], so during calcification, 
exosomes act as nucleation sites for the formation of HA deposits through binding of two exosomal 
membrane proteins: annexin A6 and phosphatidylserine (PS)[38]. Aggregation of EVs, through annexins on 
their surface, and their tethering to ECM components actively enhance their mineralization capacity[105,106]. 
Recently, senescence has been implicated in promoting the nucleation of EVs as a study showed EVs from 
senescent cells were high in calcium and contained increased levels of annexin A2, annexin A6, and 
BMP2[12,107].

In addition to exosomes, other types of EVs have been shown to be involved in calcification; PS in apoptotic 
bodies helped the formation of calcium phosphate, providing a nucleation site for mineral growth[51]. In 
addition, a study found microvesicles extracted from the plasma of a group of elderly people had higher 
concentrations of annexin (which may act as possible nucleation sites), promoting vascular calcification; 
this correlated with high concentrations of calcium and increased quantities of bone-related proteins[107].

https://BioRender.com
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Table 1. Role of EVs and their cargo in calcification, amyloidosis and ECM aging

Role of EVs EV cargo Ref.

Vascular 
calcification

Nucleus for mineral growth Annexin A1, annexin 2, annexin A5, annexin A6, BMP2, TNAP, 
phosphatidylserine, hydroxyapatite, Grp78, collagen I  

[38,39,105
-108]

Amyloidosis Cleavage of amyloid proteins 
 
Secretion of amyloidogenic proteins 
and peptides  
 
Promotion and acceleration of 
amyloid aggregation  
 
Facilitating uptake of amyloid seeds 
by neighboring cells  

APP, PSEN1, BACE1 
 
Medin, MFGE8, amyloid-β, tau, prion protein, α-synuclein, PMEL,  
SOD1 
 
Apolipoprotein E, HSPG2, cellular prion protein, cholesterol, 
glycosphingolipids 
 
Phosphatidylserine

[91,109] 
 
[37,110-113] 

  

 
[37,114-116]
  

 
[116] 
 

ECM aging Degradation of ECM components  
 
Collagen crosslinking  

MMP2, MMP14, ADAM9, ADAM10, ADAMTS5 
 
LOXL2, PLOD1, PLOD2, PLOD3, P3H1, TGM2 

[117-119] 
 
 
[119,120]

EVs: Extracellular vesicles; BMP2: bone morphogenetic protein 2; TNAP: tissue non-specific alkaline phosphatase; APP: amyloid precursor protein; 
PSEN1: presenilin 1; BACE1: beta-secretase 1; MFGE8: milk fat globule EGF-factor 8; PMEL: premelanosome protein; SOD1: superoxide dismutase 1; 
HSPG2: heparan sulfate proteoglycan 2; MMP: matrix metalloproteinase; ADAM: a disintegrin and metalloproteinase; ADAMTS5: a disintigrin 
and metalloproteinase with thrombospondin motifs 5; LOXL2: lysyl oxidase homolog 2; PLOD: procollagen-lysine,2-oxoglutarate 5-dioxygenase; 
P3H1: prolyl 3-hydroxylase 1; TGM2: transglutaminase 2.

EVs may also contain miRNAs, small endogenous molecules that regulate mRNA transcription repression 
through binding to the UTR[121,122]. Altered levels of pro-calcific miRNAs contained in VSMC-derived 
calcified exosomes in the extracellular space have been shown to contribute to the pro-osteogenic 
phenotype of VSMCs[123]. Furthermore, many miRNAs identified in exosomes can regulate Runx2 and 
Smad1 gene expression[124]. Together, these studies demonstrate a key role for EVs in vascular calcification 
through several distinct mechanisms.

EVs in amyloidosis
Recently, there has been growing interest in the cargo of EVs, particularly in the context of amyloid-related 
pathologies. Exosomes, sEVs, and MVEs have also been identified as mediators in physiological and age-
related pathological amyloid metabolism[40,125-129]. Several amyloid proteins have been identified in EVs, 
including Aβ, medin, tau, and α-synuclein [Table 1]. To date, research has focussed mainly on the role of 
EVs in neurodegenerative diseases. For example, prion proteins (PrP), which cause transmissible 
spongiform encephalopathies, have been associated with exosomes from neurons, epithelial cells, and 
neuroglial cells, and increased exosome secretion was shown to increase the infectiousness of abnormal 
prion proteins (PrPSc)[110,114,130]. Exosomes from neurons and cerebral spinal fluid can also contain α-
synuclein, a component of Lewy bodies, which is a characteristic of Parkinson’s disease and dementia with 
Lewy bodies[111,131].

Recent research has shown that VSMC-derived sEVs drive aggregation and accumulation of medin 
amyloid[37]. sEVs were shown to deposit small medin aggregates into the ECM and accelerate the 
aggregation of medin into amyloid fibrils by acting as a nucleus for fibril growth. Senescent VSMCs secreted 
more sEVs and increased deposition of medin in the ECM and inhibition of sEV secretion with 3-OMS 
treatment attenuated this. Interestingly, while 3-OMS decreased the overall amount of medin in the 
senescent ECM, it could not prevent the accumulation of medin in a fibril-like form. Furthermore, super-
resolution microscopy showed sEVs from senescent VSMCs were coated with large fibril-like medin seeds, 
suggesting senescent sEVs may be a sufficient trigger for fibril formation.
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Not all amyloids are pathological, as there have been some amyloids identified that are thought to have 
physiological roles[132]. Exosomes have been shown to play a pivotal role in the formation of amyloid fibrils 
from fragments of the premelanosomal protein (PMEL) in melanocytes[133]. These fibrils act as a scaffold for 
the polymerization of melanin, which protects cells from UV and oxidative stress. Cleavage of PMEL into 
amyloidogenic fragments occurs in MVEs by β-secretase 2 (BACE2) and their aggregation into fibrils is 
nucleated by ILVs, which are formed in MVEs prior to secretion as exosomes[129,133].

A similar mechanism to PMEL processing is observed during the accumulation of Aβ in the brain in AD. 
Numerous in vivo studies have shown that circulating exosomes in AD mouse models and AD patient body 
fluids, including blood and CSF, contain the C-terminal fragments of amyloid precursor protein (APP)[109] 
and soluble Aβ42[134,135]. Processing of APP resulting in amyloid production occurs predominantly in the 
endosomal pathway, while non-amyloidogenic APP processing occurs at the cell surface membrane[125]. Aβ 
peptides are formed from cleavage of the membrane APP by β-secretase 1 (BACE1) in MVEs, followed by 
cleavage of the membrane-anchored C-terminal fragment by γ-secretase. The optimum activity of BACE1 is 
at acidic pH[136], explaining its dominant localization at the endosomal membrane, as endosomal 
compartments have acidic pH (6.1-6.8)[137]. Aβ peptides are sorted in MVEs and are loaded into the ILVs, 
which are then released as exosomes[92]. Following secretion, exosomes could function as a nucleation site 
for amyloid plaque formation[92,138]. The release of Aβ into the extracellular space could also infect 
neighboring cells and act as amyloid seeds to accelerate the progression of disease[138,139]. Interestingly, 
increasing exosome secretion from neuronal cells has also been described as beneficial, with a study 
showing Aβ-laden exosomes from neurons were taken up by microglia for degradation. Despite exosomes 
significantly promoting amyloidosis, there may also be a role for them in Aβ clearance which is a method 
for AD treatment that needs further investigation[116].

EVs in senescence
Cellular senescence triggers changes in EV secretion and cargo loading, which can propagate aging 
processes through paracrine and endocrine signaling, driving inflammation, gene expression, and metabolic 
changes in recipient cells[140]. Senescent cell-derived EVs can carry nuclear and mitochondrial DNA which 
activate immune signaling, such as the cyclin GMP-AMP synthase (cGAS)-stimulator of interferon genes 
(STING) pathway, or toll-like receptor 9 (TLR9) mediated inflammatory response[141]. EV secretion was 
increased from senescent VSMCs and senescent VSMC-derived sEVs accelerated medin aggregation into 
fibrils through changes in sEV cargo and altered binding to HSPG2 in the ECM[37,93]. Senescent endothelial 
cell-derived EVs are enriched in annexins A2 and A6, BMP2, and calcium and can promote calcification of 
VSMCs[107]. Just as "senescent EVs" induce an aging phenotype and enhance both calcification and 
amyloidosis, EVs from young cells can improve an aging phenotype. EVs from young cardiac progenitor 
cells reversed cell senescence in vitro and in vivo through telomere elongation, inhibition of the DNA 
damage response, and reduced inflammation in cultured human fibroblasts and cartilage-derived stem/
progenitor cells in a naturally aged rat model[142]. Previous studies have also demonstrated the role of several 
miRNAs, including miR-34a and miR-126b, in mediating the effects of young EVs and highlighted the 
potential of EVs as a novel treatment for aging pathologies[143,144].

EVs have been shown to regulate vascular calcification, amyloidosis, and cellular senescence, indicating a 
possible link between these aging pathologies and their contribution to vascular stiffening and CVD. The 
role of EV cargo, their interaction with the extracellular environment, and mechanisms regulating their 
secretion and accumulation need clarification.
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EXTRACELLULAR MATRIX AGING AND EVS
Both calcification and amyloidosis accumulate in the extracellular space in the vessel wall, regulated in part 
by the secretion of EVs. The ECM is a key component of the vascular wall and is essential for the 
maintenance of cellular homeostasis, acting as a scaffold and supporting cellular organization in many 
tissues and organs. It is comprised of several families of proteins, such as collagens, proteoglycans (PGs), 
and MMPs, which can influence its adherent, morphological, and phenotypical characteristics. The ratio of 
collagens, PGs, and elastin is essential to preserve its mechanical properties. The ECM is considered actively 
dynamic since it frequently undergoes remodeling by proteases, in both physiological and pathological 
events. The remodeling process is predominantly controlled by MMPs and their inhibitors, which regulate 
the balance between matrix degradation and production[145]. Dysregulation of this balance is typical of aging 
pathologies, such as fibrosis[146], and therefore, might be implicated in cerebrovascular amyloidosis and 
calcification. EVs directly impact the ECM and contribute to deposition and remodeling in both 
physiological and pathological environments. Through their surface-bound enzymes, which include several 
MMPs, elastases, and collagen crosslinking enzymes, EVs can actively degrade the ECM, resulting in the 
turnover of matrix components [Table 1][117,119].

Vascular aging is strongly associated with ECM aging, as matrix stiffness is the result of a series of processes 
occurring with age, with major changes to the mechanical forces affecting cellular function. For instance, 
when elastin starts to lose its elasticity, the mechanical force stress is transferred to collagen and fibronectin 
which is less elastic, hindering the function of the ECM, reducing its stability, and affecting cell interactions. 
Hence, this process appears deleterious, because when matrix begins to stiffen, it also activates downstream 
molecular pathways, which enhance apoptosis[147]. A recent study showed VSMC senescence to be a key 
regulator of increased ECM stiffness, through the TF Sox9[119]. Changes in the composition and stiffness of 
the senescent ECM were able to induce a senescent phenotype in young VSMCs, including cell cycle arrest 
and DNA damage, causing a positive feedback loop. An interesting aspect of this study was the role of EVs, 
as there was an accumulation of EVs in the ECM from senescent or Sox9 overexpressing VSMCs, compared 
to the young or control VSMCs, respectively. The EVs were loaded with procollagen-lysine, 2-oxoglutarate 
5-dioxygenase 3 (PLOD3), an enzyme that caused increased ECM stiffness through collagen crosslinking. 
Previous studies into lung diseases, such as chronic obstructive pulmonary disease (COPD), identified 
subsets of EVs that drive ECM-specific proteolysis by MMPs and elastases, severe enough to cause loss of 
alveolar units[148,149]. EVs from subjects with COPD were also a sufficient stimulus to cause a COPD 
phenotype in mice primarily through surface-bound neutrophil elastase[149], further demonstrating an 
important relationship between the ECM and EVs with aging and disease.

Several pathological mechanisms occur during ECM aging. Collagen crosslinking, the formation of 
advanced glycation end products (AGEs), and the deposition of lipids and calcium are the most studied. 
Interestingly, these modifications have also been detected during both arterial calcification[150-153] and 
amyloidosis[154,155].

ECM is known to have a role in bone formation and remodeling[83] beyond its crucial signaling function[156]. 
Interestingly, elastin degradation by matrix proteolytic enzymes during aging and CKD leads to vascular 
calcification and VSMCs switch to a synthetic phenotype[86]. MMPs, such as MMP2 and MMP9, are 
considered calcification enhancers during senescence. Indeed, those enzymes upregulate BMP2, promoting 
VSMC calcification and degradation of other key ECM components of the vascular tunica media such as 
elastin, fibronectin, and collagens[84,85].
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Changes in VSMC-derived ECM and basement membrane components caused by senescence have been 
described in AMA, where senescence increased HSPG2 expression and extracellular deposition, increasing 
medin accumulation and aggregation[37]. Knock-down of HSPG2 in the senescent ECM attenuated medin 
fibril formation and deposition. Interestingly, in this study, decreasing sEV secretion decreased the 
accumulation of medin in the senescent ECM, but did not decrease the deposition of medin in a fibrillar 
form. Additionally, sEVs from senescent VSMCs contained larger medin fibril seeds and preferentially 
bound to HSPG2 in the ECM, indicating a complex relationship between cellular senescence, sEV secretion, 
and changes in ECM composition.

Changes in ECM composition have also been described in many neurodegenerative diseases, such as AD 
and CAA. Thickening and delamination of ECM and basement membrane have been shown to be present 
with greater severity in the AD brain[157]. Data suggest that a change in ECM composition of aged brains 
creates an amyloidogenic environment as ECM proteins, such as collagen IV and fibronectin, are increased 
in AD brains, with fibronectin shown to bind Aβ and augment amyloid deposition in vivo[158].

TOXICITY OF CALCIFICATION AND AMYLOID
Both calcification and amyloid have been shown to have toxic effects on the vasculature. Previous studies 
have described the toxicity of HA nanoparticles on VSMCs, which reduced cell viability through disruption 
of cell membranes, increased reactive oxygen species production, and mitochondrial dysfunction, resulting 
in cell necrosis[159]. Uptake of HA particles by VSMCs was also shown to induce expression of osteogenic 
genes, such as BMP2, Runx2, and ALP, and induced cell death, causing accumulation of apoptotic bodies, 
indicating a positive feedback cycle where calcification exacerbates calcification. HA crystals in the vessel 
can also be taken up by macrophages, causing the secretion of several proinflammatory cytokines, including 
TNFα, IL-1β, and IL-8, mediated by protein kinase C alpha (PKCα)[160,161]. Inflammation is a hallmark of 
atherosclerosis, intimal and medial calcification and can promote VSMC apoptosis or osteogenic 
differentiation, again demonstrating how HA accumulation can exacerbate calcification.

The formation of amyloid fibrils from oligomeric aggregates has previously been discussed as a protective 
mechanism[24,162,163]. Small, pre-fibrillar aggregates are toxic to cells, whereas mature amyloid fibrils, the 
precursor protein or monomeric form may not[164]. A possible mechanism for this is the exposure of 
residues normally embedded inside the protein being exposed to and interacting with cell membranes, 
intracellular and extracellular components[24,165,166]. In Aβ pathology, the accumulation of intracellular or 
extracellular oligomeric aggregates precedes the formation of extracellular plaques and contributes to the 
main pathological effects of AD[167]. Similarly, previous research into the effects of medin showed that medin 
aggregates induced several pathological effects, such as endothelial dysfunction, vascular inflammation, and 
VSMC death[168,169]. Acceleration of medin fibril formation by heparin decreased the toxic effects of medin, 
suggesting the formation of mature, benign amyloid fibrils in AMA could be a protective mechanism 
against the toxic nature of smaller medin aggregates[170].

Both calcification and amyloidosis can contribute to ECM stiffening. HA accumulation and ECM 
remodeling during calcification both directly impact arterial stiffening, through increased turnover of 
collagen and degradation of elastin, causing weakening of the ECM[171,172]. In addition, medial calcification is 
associated with increased PWV and increased pulse pressure, which are linked to the accelerated 
development of CVD[22]. The pathological nature of amyloid is more complex as research has shown that 
fibrous amyloid deposits can contribute to reduced elasticity of vessels[65]. However, a previous study 
showing AMA was associated with weakening of the aortic wall in the development of thoracic aortic 
aneurysm, demonstrated the main pathological effects of medin can be attributed to toxic pre-fibrillar 
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aggregates[169]. This suggests that toxic aggregates could contribute to vascular pathologies, which may then 
be exacerbated by diminished elasticity and vessel wall weakening by amyloid fibrils.

CO-OCCURRENCE OF CALCIFICATION AND AMYLOID
Even though vascular calcification and amyloidosis are age-related pathologies occurring in patients over 
the age of 60, there have been few systematic studies investigating their co-occurrence[12-14]. In other disease 
contexts, localized amyloid deposits have been associated with calcification in skin, larynx, and lungs, 
forming calcified tumoral amyloids, known as calcified amyloidomas[173-175].

Amyloid deposits in the cardiovascular system have been observed in calcified regions of the coronary 
artery and aortic valves and have been associated with aortic stenosis and calcific aortic valve disease 
(CAVD)[176]. Recent studies have suggested that amyloid deposition might play a direct role in the 
pathogenesis of CAVD. Analysis of the morphology of calcified valves described circular cavities within 
mineralized structures, filled with fibrous protein, which exhibited birefringence, indicating the presence of 
amyloid at the core[177]. A study showed 88% of aortic valves from CAVD patients had amyloid 
accumulation, with all the patients over 50 years having amyloid deposition[178]. Interestingly, only one-third 
of subjects under 30 years had amyloid deposits, indicating a potential link with aging, CAVD, and amyloid. 
Immunohistochemical staining was used to try to identify the amyloid protein involved, with apoA-I being 
detected in the mineralized areas of the valves. In vitro treatment of valve interstitial cells with amyloid 
extracts from calcified valves enhanced mineralization and apoptosis[177]. These studies highlighted the 
potential effect of apoA-I amyloid as an "interface" between the organic and mineral phases in CAVD. A 
previous study identified sEVs, described as matrix vesicles (MVs), as involved in CAVD, with annexin-rich 
MVs detected in calcified human aortic valves[179]. An interesting aspect of CAVD to investigate further 
would be the mechanisms regulating the accumulation of both mineral and amyloid in the valve to identify 
common features, such as EVs, and identify novel therapeutic targets.

In the early 1960s, Ratinov first used ex vivo radiography and microscopic analysis to reveal the presence of 
intracranial arterial calcification (IAC) in the extradural region of human internal carotid arteries[180]. IAC 
has been documented in many Caucasian and Asian populations and was shown to be a major element of 
cerebral atherosclerosis[181-183]. Recently, IAC has gained scientific interest as it is thought to be a significant 
cause of ischemic stroke[184]. IAC shares some common risk factors with amyloidosis and other 
cardiovascular diseases. Aging appears to be a major risk factor for IAC; an early study on the pathology did 
not observe any sign of IAC in patients who were 20 to 30 years old. Moreover, further research has 
demonstrated that IAC clinical outcomes worsen in concomitance with increasing age[181,182,185]. In addition, 
the imbalance of calcium and phosphate levels can be considered a risk factor as a high percentage of IAC 
cases have been recorded in patients with CKD[186-188].

Recent investigations have brought to light a significant association between a hereditary variant of CAA, 
known as the Dutch type, and IAC[189]. Studies have revealed a connection between osteopontin (OPN), and 
the TGFβ1/phospho-SMAD2/3 signaling pathway in calcified arteries affected by hereditary CAA[190,191]. 
Interestingly, the researchers observed a correlation between the pro-calcific accumulation of collagen 1, 
OPN, and the activation of the pSMAD2/3 pathway with the severity of CAA. This observation underscored 
the vital role of the ECM in calcified vessels impacted by hereditary CAA[189]. Based on their findings and the 
spatial relationship between vascular calcification and the deposition of Aβ in the brain vessel medial layer, 
the researchers proposed that calcification is more likely a characteristic of advanced-stage CAA rather than 
a cause of amyloid deposition.
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Investigations into hereditary CAA cases evidenced a consistent involvement of basal ganglia vessels in 
IAC[192]. The calcification patterns observed in vessels affected by hereditary CAA are categorized as a 
subtype of microvasculopathies associated with CAA, presenting as a secondary manifestation of the 
disease[189]. Nonetheless, unraveling the underlying mechanisms that underpin the calcification of certain 
vessels in the context of CAA remains a mystery that warrants further exploration.

COMMON AND RECIPROCAL MECHANISMS OF CALCIFICATION AND AMYLOIDOSIS
The role of EVs in calcification and amyloidosis in the vasculature is interesting, as VSMC-derived sEVs 
and exosomes have been implicated in the deposition and nucleation of both HA and amyloid. The precise 
mechanisms governing what initiates EVs to mineralize, aggregate protein, or both are unknown, but it is 
clear that EVs are an important trigger for both pathologies and could account for their concomitant 
development in the vessel wall with age.

As for the reciprocal effects of calcification and amyloid, evidence suggests amyloid could enhance vascular 
calcification through different mechanisms. Oligomers can disrupt cell membranes and create pores, which 
can cause mineral ion imbalance, and oligomeric forms of medin have been shown to be toxic to cells and 
able to upregulate the activity of MMP2[168,169]. Apoptosis can induce vascular calcification by the formation 
of apoptotic bodies, which can act as nucleation sites for mineral formation[51]. Previous research has shown 
that MMPs can also enhance vascular calcification through upregulation of BMP2 and ECM 
degradation[85,86,193]. Therefore, extracellular deposition of medin aggregates, which are increased with aging, 
could exacerbate vascular calcification.

Amyloid fibrils display distinct stereochemical properties, for example, the presence of charged residues 
along the fibril surface, which could enhance its capacity for binding calcium and phosphate and nucleating 
mineral growth[176]. This is demonstrated in cases such as mineralization of tooth enamel, where amyloid-
like structures of amelogenin form a nidus for mineralization of calcium-phosphate mineral[194]. HSPGs, 
including HSPG2, are common components of amyloid plaques and have been shown to directly enhance 
the aggregation of amyloid proteins, such as medin[37]. HSPGs are also known to bind calcium, providing 
another scaffold for mineralization with amyloid deposits.

Conversely, while evidence suggests conditions that promote calcification, such as mineral stress, could also 
promote amyloid formation through ECM changes and EV secretion, no studies have described a direct 
effect of mineralization on amyloidosis. Both amyloid and HA formation are nucleation-dependent 
mechanisms, with evidence showing amyloid could nucleate mineral growth, yet any effect of HA or 
mineral deposits on enhancing amyloid growth has not been discussed.

FUTURE DIRECTIONS FOR VASCULAR AGING RESEARCH
There are many questions remaining regarding the accumulation of HA and amyloid with age and if there 
are connections between the processes. While there is strong evidence for an association between 
pathologies, direct causal links, particularly in the vasculature, are not understood. From studies into 
CAVD, IAC, and tooth enamel formation, it could be suggested that amyloid acts as a scaffold for mineral 
growth. In the aorta, medin amyloid and HA accumulate extracellularly with age, both regulated by VSMC-
derived sEVs and exosomes; however, to date, there has been no research into a causal relationship. 
Therefore, investigating whether medin and other vascular amyloid proteins, such as Aβ, can nucleate 
minerals to drive calcification or vice versa would be valuable. Along with being a physical template for 
mineralization, there is evidence to indicate that amyloid could enhance vascular calcification through 
cellular pathways, such as oxidative stress, membrane pore formation, and ECM remodeling through 
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Figure 5. Young, healthy vascular smooth muscle cells (VSMCs) have a contractile phenotype and a healthy extracellular matrix 
(ECM), which undergoes turnover and remodeling to maintain its compliance and regulate vascular tone and integrity. VSMCs 
undergoing senescence alter the composition and stiffness of the ECM, increasing collagen and fibronectin deposition and decreasing 
elastin. Senescent VSMCs secrete more small extracellular vesicles (sEVs), which promote both calcification and amyloid aggregation 
and deposition. There is increased endosomal activity and formation of multivesicular endosomes (MVE) which contain sEVs that are 
degraded by lysosomes or released by binding to the membrane. sEVs from senescent VSMCs contain more medin in a fibrillar form 
and can accelerate its accumulation as fibrils in the ECM. Senescent sEVs also contain more calcium and annexins, which enhance 
mineralization. What triggers sEVs to either mineralize or aggregate amyloid is unknown. (Created with BioRender.com)

increased MMP secretion. However, there is currently a lack of consensus as to what form of amyloid 
contributes to vascular dysfunction, as studies have discussed pathological outcomes of both oligomeric and 
fibrillar amyloid species. Previous studies have discussed whether aggregation of toxic oligomers into 
“benign” fibrils is a protective mechanism, in which case therapies to prevent amyloid formation may be 
detrimental to vascular function. Further investigation is therefore needed to understand the contribution of 
different amyloid species during vascular aging and in vascular calcification.

Identification of therapeutic targets of amyloidosis and calcification could attenuate vascular stiffening with 
age, which is known to contribute to CVD morbidity and mortality. In recent years, there has been a huge 
push towards high throughput screening (HTS) as a platform to test thousands of drugs in an in vitro 
setting. To date, there has been limited use of HTS to identify novel drugs and targets for calcification. 
However, HTS has been used to identify compounds that affect amyloid formation, particularly Aβ, α-
synuclein, and TTR[195]. In the past, small compounds that could block Aβ aggregation could be 
counteracted by the presence of a lipid membrane, but a recent study identified compounds that were 
effective with vesicles present to confirm inhibition of amyloid formation at the membrane interface[196]. 
Additionally, as previously discussed, the effects of blocking amyloid fibril formation may also result in 
cellular dysfunction caused by small aggregates. These are two important aspects of HTS that should be 
considered in the future for identification of potential therapies for amyloidosis.

VSMC senescence has been implicated in calcification and vascular amyloidosis and drugs that induce 
apoptosis of senescent cells, senolytics, have been shown to be effective in AD mouse models, with Aβ or tau 
pathology[88,197]. There is less known about the efficacy of senolytics in calcification, although one study 
showed that treatment with Dasatinib + Quercetin caused clearance of senescent cells in the medial layer 
and reduced aortic calcification in both aged and hypercholesterolaemic mice[198]. This was associated with a 
reduction in osteogenic gene expression and significantly improved vasomotor function. Therefore, 
senolytics may be a potential therapeutic intervention for both vascular calcification and amyloidosis.

https://BioRender.com


Page 17 of Whitehead et al. J Cardiovasc Aging 2024;4:12 https://dx.doi.org/10.20517/jca.2023.49 24

In conjunction with senescence, sEVs are mediators and potential initial triggers for both HA and amyloid 
accumulation in the vasculature. There has been some research into targeting EV secretion to alleviate both 
pathologies in both in vitro and in vivo studies. In a mouse model of CKD, inhibition of sEV secretion with 
a neutral sphingomyelinase inhibitor, GW4869, resulted in reduced aortic calcification and osteogenic 
differentiation of VSMCs[123]. Blocking sEV secretion also attenuated the calcification of human and mouse 
VSMCs in vitro, under calcifying or diabetic conditions[199]. In AD mouse models, GW4869 significantly 
reduced Aβ plaque load in the brain[135,200]. These studies highlight not only the therapeutic potential of 
targeting sEV secretion but also the importance of sEVs in the initiation and development of calcification 
and amyloidosis.

CONCLUSION
This review has highlighted that amyloid and HA deposition in the vasculature share mechanistic processes 
and display synergies, which may account for their co-localization in the vessel wall [Figure 5]. Mineral 
stress and cellular senescence can increase EV production and promote osteogenic changes in VSMCs, 
which could also promote amyloid deposition, while amyloid in both oligomeric and fibrillar forms could 
nucleate minerals and enhance calcification. Importantly, there is evidence showing EV secretion, 
senescence, and ECM modifications can enhance both pathologies, suggesting therapies that target these 
common mechanisms may alleviate age-associated vascular stiffening.
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