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Abstract
In response to the changing availability of nutrients and oxygen in the bone marrow microenvironment, acute 
myeloid leukemia (AML) cells continuously adjust their metabolic state. To meet the biochemical demands of their 
increased proliferation, AML cells strongly depend on mitochondrial oxidative phosphorylation (OXPHOS). Recent 
data indicate that a subset of AML cells remains quiescent and survives through metabolic activation of fatty acid 
oxidation (FAO), which causes uncoupling of mitochondrial OXPHOS and facilitates chemoresistance. For 
targeting these metabolic vulnerabilities of AML cells, inhibitors of OXPHOS and FAO have been developed and 
investigated for their therapeutic potential. Recent experimental and clinical evidence has revealed that drug-
resistant AML cells and leukemic stem cells rewire metabolic pathways through interaction with BM stromal cells, 
enabling them to acquire resistance against OXPHOS and FAO inhibitors. These acquired resistance mechanisms 
compensate for the metabolic targeting by inhibitors. Several chemotherapy/targeted therapy regimens in 
combination with OXPHOS and FAO inhibitors are under development to target these compensatory pathways.
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INTRODUCTION
Acute myeloid leukemia (AML) comprises a highly aggressive, biologically heterogeneous group of 
hematopoietic disorders involving one or more cytogenetically or molecularly abnormal cell clones. It is 
primarily a disease of older adults. The standard of care for relapsed and refractory AML has progressed 
minimally in the past 30 years, with survival rates of less than 12% for patients over 65 years old[1]. Thus, 
novel therapeutic strategies that are more effective and carry a lower risk of organ damage than current 
treatments are urgently needed.

AML cells always face two major metabolic challenges: their high rate of proliferation imposes increased 
bioenergetic demands, and fluctuations in the availability of external nutrients and oxygen in the bone 
marrow (BM) microenvironment threaten cellular survival. In the BM, AML cells constantly modulate their 
metabolic state to adapt to this fluctuating microenvironment, shifting between quiescent, proliferative, and 
differentiated states[2-4]. Highly proliferative AML cells, drug-resistant AML cells, and leukemia stem cells 
(LSCs) that remain quiescent have been shown to depend on oxidative phosphorylation (OXPHOS). LSCs 
differ from bulk leukemia cells in that they possess stem cell characteristics including abnormal self-renewal 
capacity and drug resistance. Persistence of LSCs in the BM microenvironment after chemotherapy is 
considered an important factor in AML relapse[5]. Both quiescent AML cells and LSCs survive through 
metabolic activation of fatty acid oxidation (FAO) along with OXPHOS in their mitochondria. Hence, the 
reprogramming of energy metabolism processes in AML cells is recognized as a potential therapeutic target. 
Inhibition of OXPHOS and FAO can disrupt metabolic homeostasis, increase reactive oxygen species (ROS) 
production, and cause apoptosis in AML cells[2,6,7]. However, inhibition of this altered energy metabolism 
triggers various adaptive mechanisms in AML cells through their interaction with BM stromal cells. Thus, 
the BM microenvironment provides a setting in which secondary resistance to OXPHOS inhibition can 
develop, thereby contributing to the survival of AML cells. Therefore, strategies combining chemotherapy 
and specific molecular targeted therapy may have promise for eliminating BM-resident AML cells and 
LSCs.

In this review, we summarize the current state of knowledge about mitochondrial OXPHOS and fatty acid 
metabolism in residual AML cells in the BM microenvironment. We further describe the molecular 
mechanism by which AML cells acquire resistance to OXPHOS and FAO inhibitors. Finally, we evaluate 
potential therapeutic regimens combining OXPHOS and FAO inhibitors to target the metabolic 
vulnerabilities of BM-resident chemoresistant leukemia cells and LSCs.

MAIN TEXT
The BM microenvironment reprograms OXPHOS in AML cells
AML cells’ dependence on OXPHOS in the BM microenvironment
Whereas circulating AML cells are effectively eliminated by drug treatment, AML cells residing in the BM 
acquire resistance to chemotherapy. The BM microenvironment provides growth factors for leukemic cells, 
promotes immunosuppression, and supports leukemic cell survival. In response, leukemia cells adapt their 
metabolic state to this constantly changing environment[7-9].

Energy metabolism encompasses the molecular pathways whose products are involved in cellular energy 
production in the form of ATP. In leukemic cells, energy metabolism relies on OXPHOS and associated 



Tabe et al. Cancer Drug Resist 2023;6:138-50 https://dx.doi.org/10.20517/cdr.2022.133                                               Page 140

catabolic pathways, including glycolysis and fatty acid metabolism. The energy required for ATP production 
is produced by the mitochondrial potential, which causes protons to reenter the mitochondria through 
complex V. Fatty acid metabolism also supplies acetyl-CoA to the tricarboxylic acid (TCA) cycle through 
FAO [Figure 1].

Recently, the molecular mechanisms by which AML cells undergo metabolic reprogramming and those 
underlying the antileukemic efficacy of OXPHOS inhibitors have been demonstrated[7,10]. Actively 
proliferating AML cells respond to their increased energy and substrate demands via upregulation of 
OXPHOS, glycolysis, and related biochemical pathways. In turn, their bioenergetic efficacy strongly 
depends on extrinsic signals from the microenvironment[11].

The leukemic BM microenvironment is generally hypoxic; during disease progression, hypoxic areas in the 
BM expand[12-14]. Indeed, AML cells so strongly depend on OXPHOS for metabolism that they might cause 
hypoxia in the BM environment. These hypoxic niches are expanded, in part, through activation of the 
transcription factor hypoxia-inducible factor 1α (HIF-1α)[12,15]. Transcriptional complexes often include 
metabolic enzymes, which locally supply substrates and cofactors to these complexes[16]. For this reason, 
OXPHOS itself and the transcription factors that regulate it are attractive targets for novel therapeutic 
interventions.

The persistence of LSCs and treatment-resistant AML cells in the BM remains the major cause of failure to 
eradicate AML. Cancer stem cells were initially identified in AML[17,18] and subsequently validated in solid 
tumors. Across cancers, cancer stem cells share two important features: they can self-renew and produce 
differentiated progeny. The OXPHOS-dependent survival mechanism of LSCs is common to several solid 
tumor stem cells. For example, pancreatic cancer stem cells use OXPHOS for survival by accumulating the 
transcription coactivator peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), which 
enhances mitochondrial biogenesis and the oxygen consumption rate and is sensitive to inhibitors of 
mitochondrial respiration[19]. Reliance on OXPHOS has also been observed in other solid-tumor stem cells, 
including those in brain[10] and breast cancers[20].

Several recent studies have revealed how AML LSCs exploit OXPHOS[21]. The transcriptional and epigenetic 
signatures of leukemia-initiating LSCs are largely mutation-independent[22-25]. Instead, rewired cellular 
metabolism has been increasingly recognized to play a significant role in LSC maintenance and treatment 
resistance in AML[26]. In LSCs, several components of the electron transport chain (ETC) complexes I and V 
have been shown to be more abundant than in normal hematopoietic stem cells (HSCs)[27]. Notably, AML 
LSCs overexpress antiapoptotic BCL-2, which has been shown to regulate ATP/ADP exchange across the 
mitochondrial membrane by facilitating regulation of voltage-dependent anion channels and adenine 
nucleotides,[28,29] preventing the loss of coupled mitochondrial respiration during apoptosis[30].

Rewiring of mitochondrial function facilitates AML resistance to OXPHOS inhibition
Understanding the crosstalk between AML cells and their microenvironment is critical to targeting the 
pathways involved in the metabolic reprogramming of chemoresistant AML cells and LSCs. In preclinical 
studies, most AML models responded to inhibition of OXPHOS via targeting of ETC complex I[3]. However, 
several clinical trials have shown that the efficacy of these OXPHOS inhibitors is limited[31,32]. In trials of 
several types of solid tumors, one putative complex I inhibitor, carboxyamidotriazole, had no clinical 
benefit[31]. Mouse studies of BAY87-2243, a novel complex I inhibitor, demonstrated antitumor activity and 
no toxic effects, but the phase I trial was terminated because of unexpected toxic effects[32]. These findings 
indicate that OXPHOS inhibitors have a narrow therapeutic window and emphasize the need to better 
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Figure 1. Energy metabolism in AML. Glucose is converted to pyruvate by glycolysis. Pyruvate is converted to acetyl-CoA for use in the 
tricarboxylic acid (TCA) cycle. ATP is produced by oxidative phosphorylation (OXPHOS) in the TCA cycle and electron transport chain 
(ETC). Fatty acid metabolism supplies acetyl-CoA to the TCA cycle via β-oxidation of fatty acids (FAO). Glutamine metabolism is the 
process of converting glutamine to glutamic acid. a-KG: Alpha-ketoglutarate; FAS: fatty acid synthase; OAA: oxaloacetic acid; ROS: 
reactive oxygen species.

understand how the BM microenvironment enables AML cells to become resistant to the metabolic stress 
caused by OXPHOS inhibition.

One such mechanism occurring in the tumor microenvironment is the horizontal transfer of mitochondrial 
DNA from host to tumor cells. Studies using in vivo models have shown that this transfer reestablishes 
respiration and promotes tumorigenesis[33]. In OXPHOS-dependent AML cells, OXPHOS inhibition 
induced formation of tunneling nanotubes that enabled this mitochondrial DNA trafficking from BM 
stroma cells to AML cells[34]. In the formation of tunneling nanotubes, a filopodium-like protrusion is 
extended from one cell to another[35]. This process is positively regulated by activation of motor proteins 
such as Rho GTPases through actin polymerization[36,37] and filopodia formation through focal adhesion[38]. 
In addition, a recent study showed that a transmembrane complex gap junction channel opens under ROS-
induced oxidative stress via PI3K-Akt activation to enable the transfer of mitochondrial DNA from stromal 
cells in the BM to HSCs [Figure 2][39].

OXPHOS inhibition-induced horizontal transfer of mitochondria from BM stromal cells to AML cells is 
accompanied by endogenous mitochondrial fission and elimination of damaged mitochondria by 
mitophagy, both of which contribute to AML cell survival[34,40]. As the process by which damaged 
mitochondria are segregated for elimination by autophagy, mitochondrial fission is central to 
mitophagy[41-44]. Cellular metabolism and cell survival require efficient mitophagy[40,45]. Because of the 
centrality of these processes in the maintenance of mitochondrial function, both mitochondrial fission and 
crosstalk with BM stroma cells via tunneling nanotubes may be another mechanism by which AML cells 
develop resistance to OXPHOS inhibition[46].

LSCs have low rates of energy metabolism and cannot upregulate glycolysis after OXPHOS inhibition. 
Thus, they are particularly sensitive to OXPHOS blockade[47,48]. However, LSCs are able to maintain their 
stemness by mitochondrial fission and mitophagy, which balance mitochondrial functions such as energy 
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Figure 2. Secondary resistance to oxidative phosphorylation (OXPHOS) inhibition through bone marrow mesenchymal stem cells. 
OXPHOS inhibition stimulates cell adhesion and actin dynamics in AML cells. The bone marrow (BM) microenvironment facilitates the 
development of secondary resistance to OXPHOS inhibition by supporting direct mitochondrial trafficking via tunneling nanotubes from 
BM stromal cells to AML cells. This trafficking is accompanied by mitophagy and mitochondrial fission. MSC: Mesenchymal stem cell.

production, ROS generation, and apoptosis regulation[44]. Given these competing pressures, LSCs have a 
fragile mitochondrial network. Thus, blocking both OXPHOS and other metabolic pathways is a promising 
strategy for overcoming OXPHOS resistance associated with the BM microenvironment. Two possible 
targets include the enzyme ASS1 and the lipid metabolism protein LRP1, both of which are overexpressed in 
OXPHOS inhibitor-treated AML cells in vivo. ASS1 is essential for the biosynthesis of arginine[49], and LRP1 
contributes to hemin-induced autophagy in leukemia cells[50,51]. Further investigations will improve our 
understanding of how these enzymes shape the responses of LSCs to the metabolic and energetic effects of 
OXPHOS inhibition.

Several repurposed drugs have been shown to inhibit OXPHOS. Biguanides, including metformin, are 
routinely used for diabetes treatment and have been proposed for use in cancer because they inhibit 
complex I of the ETC in cancer cells[52]. However, metformin carries a risk of severe lactic acidosis[53,54], 
which is a safety concern for cancer patients. In addition, because high OXPHOS levels play a key role in 
cytarabine resistance, treatments combining cytarabine with OXPHOS inhibitors might be more effective 
than monotherapy with either type of agent[33]. Recently, a novel lipoate analog, devimistat, an inhibitor of 
two key TCA cycle enzymes, the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase 
complexes[55,56], showed a satisfactory safety profile in AML patients. In a phase I study, patients with 
relapsed or refractory AML who received a combination of devimistat with cytarabine and mitoxantrone 
had a complete remission rate of 50%[57].

In a phase II study of this combination, responses were observed in older patients but not in younger 
patients. In addition, RNA sequencing analysis showed a decrease in expression of mitochondria-related 
genes with aging, suggesting that age-related reduction in mitochondrial quality may be related to 
devimistat response[58]. These are encouraging findings that indicate that this approach would be particularly 
effective for older patients with the highest unmet medical needs. In sum, the judicious use of novel 
OXPHOS inhibitors in combination treatments may add to armamentarium of currently available 
therapeutics.

FAO metabolism of AML cells and LSCs in the fatty acid-abundant BM microenvironment
FAO of AML cells in the BM microenvironment
Adipocytes in the BM microenvironment support the survival of several types of tumor cells by stimulating 
FAO through fatty acid transfer[59]. While it was reported that BM adipocytes occupy approximately 60% of 
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the BM in 65-year-old individuals[60], the development of BM adipocytes varies across different skeletal 
regions, and single-point iliac biopsy may not represent the BM environment of the skeletal system 
containing the red marrow and yellow marrow. In a previous study, leukemic cells have been shown to 
colonize in both red and yellow marrow regions, adhere to the cortical bone in the spine, and have 
enhanced activity in the proximal/distal femur[61]. In addition, radiation therapy accelerates the 
differentiation of mesenchymal stem cells into adipocytes in BM[62]. Such temporal and spatial changes in 
the BM microenvironment may play a key role in leukemia’s dynamic adaptation of FAO and in leukemia 
cells’ interactions with BM stromal cells.

AML cells generally obtain fatty acids for FAO from the extracellular microenvironment through lipolysis 
of stored triglycerides[63]. FAO is metabolically activated to promote leukemic cell survival by remodeling 
and lipolysis of BM adipocytes. FAO is an essential source of mitochondrial NADH and FADH2 for the 
ETC and provides acetyl-CoA to the TCA cycle to produce ATP[64]. BM adipocytes supply long-chain fatty 
acids, which are then taken up into the cytoplasm via the scavenger receptor CD36[65,66]. Fatty acids 
activation is a two-step reaction. In the first step, the fatty acids form acyl-CoA in the cytoplasm. Then, 
FAO breaks down acyl-CoA to form acetyl-CoA in the mitochondria. Carnitine O-palmitoyltransferase 1 
(CPT1) catalyzes a rate-limiting step of FAO; this enzyme conjugates fatty acids to carnitine, which is 
required for fatty acids to translocate from the cytoplasm to the mitochondria[67]. The internalized fatty acids 
are further transferred to the AML cell nucleus by the lipid chaperone fatty acid-binding protein 4 (FABP4). 
In the nucleus, the fatty acids ligate to peroxisome proliferator-activated receptor γ (PPAR)[68]. Activated 
PPAR induces downstream target genes, including CD36, FABP4, and the antiapoptotic BCL2 [Figure 3][69].

As with AML cells, the specific BM microenvironment created by the interaction between LSCs and stromal 
adipocytes supports the metabolic demands of LSCs. LSCs induce adipocyte lipolysis, which drives FAO in 
LSCs and facilitates their survival[70,71]. Therefore, CD36 and CPT1 are potential targets for AML. A CD36 
neutralizing antibody inhibited metastasis of human melanoma and breast cancer cells[72], and inhibition of 
CPT1 caused mitochondrial damage leading to cell death in primary AML cells[67].

FABP4 is important in FAO and cancer cell survival in both solid and hematologic cancers. Adipocytes are 
known to serve as fatty acid reservoirs in breast cancer and melanoma[73,74]. Ovarian cancer cells also survive 
and proliferate in an adipocyte-rich microenvironment[75]. When primary human omental adipocytes were 
co-cultured with ovarian cancer cells, the adipocytes underwent lipolysis, and FAO was induced in the 
cancer cells[63]. These processes are mediated by adipokines including interleukin-8 and by upregulation of 
FABP4 both in adipocytes and ovarian tumor cells. In studies of leukemia, AML cells co-cultured with BM 
adipocytes exhibited higher levels of FABP4[69], and knockdown of FABP4 prolonged survival in a mouse 
model of leukemia[71]. Thus, FABP4’s critical role in cancer cell survival involves its interactions with 
adipocytes.

Activation of β-adrenergic receptors, along with a G protein-coupled cascade that stimulates the lipolytic 
enzyme hormone-sensitive lipase (HSL), induces lipolysis of adipocytes[76,77]. Ovarian cancer cells have been 
found to upregulate HSL phosphorylation, thereby stimulating the release of free fatty acids from 
adipocytes[63]. AML blasts also induce HSL phosphorylation and, thus, activation of lipolysis in BM 
adipocytes[71].

BM adipocytes also increase AML cells’ expression of adiponectin and its downstream target, AMP-
activated protein kinase (AMPK), a stress response kinase[69]. AMPK, an important modulator of energy 
metabolism, is activated upon ATP depletion. Its functions include upregulation of fatty acid uptake, FAO, 
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Figure 3. Bone marrow adipocytes promote fatty acid metabolism in AML. (A) Fatty acids derived through lipolysis of stored 
triglycerides in adipocytes induce upregulation of PPARG, CD36, and FABP4 gene transcription, which stimulates fatty acid endocytosis. 
In mitochondria, fatty acids are metabolized through fatty acid oxidation (FAO), decreasing mitochondrial reactive oxygen species 
(ROS) formation and intracellular oxidative stress, thereby reducing apoptosis; (B) transcriptional regulation and fatty acid metabolism 
pathways maintain AML cells in a quiescent state. Activation of AMPK, upregulation of p38 and associated induction of autophagy, and 
upregulation of antiapoptotic HSP chaperone proteins in this state lead to chemoresistance; (C) in mitochondria, fatty acids are 
consumed for FAO, resulting in diminished formation of mitochondrial ROS and decreased intracellular oxidative stress. Inhibition of 
FAO induces an integrated stress response that stimulates transcriptional activation of ATF4 and promotes apoptosis induced by 
chemotherapy. ADIPOR1: Adiponectin receptor 1; ATF4: activating transcription factor 4; AMPK: AMP-activated protein kinase; FABP4: 
fatty acid binding protein 4; p38: p38 mitogen-activated protein kinase.
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and regulation of autophagy[78,79]. Levels of adiponectin, much of which is supplied by BM adipocytes, have 
been shown to increase during cancer therapy[80], and to promote chemotherapy resistance in myeloma cells 
via inducing adipokine secretion of adipokines and activating AMPK-dependent autophagy[81,82]. AMPK also 
positively regulates responses of an antiapoptotic chaperone heat shock protein that binds to denatured and 
unfolded proteins and promotes protein refolding or degradation to support AML cell survival[79]. In sum, 
leukemic cells often rely on fatty acids when they undergo metabolic stress, and the NADH and FADH2 
generated by FAO support ATP production, redox homeostasis, biosynthesis, and cell survival.

FAO is involved in the interactions between LSCs and BM stromal cells[83]. LSCs rely on fatty acid uptake 
and consumption to shape their adaptation to the conditions of the BM microenvironment, their response 
to drugs, and their development of drug resistance[69]. Several such mechanisms have been identified. 
Mitochondrial uncoupling in AML cells negatively regulates Bak-dependent mitochondrial permeability 
transition[84]. In a study using samples from patients with relapsed AML, LSCs acquired the ability to 
counteract the loss of amino acid metabolism by upregulating FAO[85]. Specifically, this mechanism may 
underlie the development of resistance to treatment with azacitidine/venetoclax, a common induction 
regimen used mainly in older patients with AML[85,86]. In addition, a preclinical study demonstrated that 
cytarabine-resistant AML cells had enhanced FAO and OXPHOS[66]. Thus, targeting the metabolic 
vulnerabilities of chemoresistant LSCs, such as their dependence on FAO, may be a useful strategy for 
eradicating these cells.

FAO inhibitors and resistance acquired by compensatory metabolism in the BM microenvironment
FAO inhibition disrupts metabolic homeostasis, increases ROS levels, and induces expression of the 
integrated stress response mediator ATF4 in AML cells, all of which contribute to apoptosis[87]. Numerous 
studies have reported the anti-AML effect of inhibition of CPT1, the major rate-limiting enzyme in 
FAO[67,84,87,88]. CPT1 positively controls FAO by conjugating fatty acids with carnitine to transfer fatty acids 
into the mitochondrial matrix. Etomoxir is a pharmacological inhibitor of CPT1A, one of the isoforms of 
CPT1[89], frequently used to block free fatty acids from entering the mitochondria via CPT1. Although the 
clinical use of etomoxir has ceased because of adverse effects[90], the CPT1 inhibitor perhexiline can sensitize 
breast cancer cells to paclitaxel[91], and other CPT1 inhibitors[92] are currently being investigated for use in 
cancer therapy. The CPT1A inhibitor ST1326 has been shown to cause cell growth arrest, mitochondrial 
damage, and apoptosis in AML cells in a dose- and time-dependent manner[67]. Another novel FAO 
inhibitor, avocatin B, which is derived from avocados, decreased NADPH levels that were increased by FAO 
through acetyl-CoA and NADH production, inducing ROS-dependent cell death in AML cells[93,94]. Finally, 
the fatty acid synthase inhibitor orlistat has induced apoptosis in leukemic cells[2].

The intramitochondrial FAO enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) is critical in 
supporting both FAO and OXPHOS in AML cells and LSCs. Recently, preclinical studies have 
demonstrated the antileukemia activity of a novel small-molecule VLCAD inhibitor, a polyhydroxylated 
fatty alcohol with a terminal alkyne (AYNE)[95]. AYNE reduced mitochondrial respiration by altering FAO, 
which led to reduced ATP production in AML cells, even though AYNE also moderately upregulated 
glycolysis. In a mouse model, pharmacological inhibition of VLCAD with AYNE significantly reduced the 
repopulation potential of leukemia cells and was well tolerated[95]. Notably, normal HSCs compensate for 
this reduced replicative capacity through glycolysis which maintains their ATP levels and thus their 
viability[95,96]. These findings demonstrate the importance of focusing on the specific metabolic 
vulnerabilities of residual AML cells and LSCs that survive chemotherapy-induced stress. Unfortunately, 
only a few FAO inhibitors have advanced from preclinical to clinical studies [Table 1].
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Table 1. FAO inhibitors in clinical trials on cancer treatment

Compounds Targeted enzyme Clinical applications Phase ClinicalTrials.gov 
Identifier Verified

Trimetazidine 3-ketoacyl-C3-ketoacyl-CoA 
thiolase

Advanced Hepatocellular 
Carcinoma

Phase 3 NCT03278444 September 
2017

Trimetazidine 3-ketoacyl-C3-ketoacyl-CoA 
thiolase

Intermediate-stage Hepatocellular 
Carcinoma

Phase 3 NCT03274427 September 
2017

Ranolazine 3-ketoacyl-C3-ketoacyl-CoA 
thiolase

Prostate Cancers N//A (Pilot 
Study)

NCT01992016 December 
2018

Because AML is heterogeneous and multiclonal, blocking only one part of this complex metabolic system 
may allow residual cells to adapt metabolically. For instance, it has been shown that BM-derived stromal 
cells, including adipocytes, diminish the antileukemia effects of FAO inhibitors in AML cells by increasing 
glycolysis and glucose and free fatty acid uptake[87]. This compensatory induction of glycolysis is a sustained 
source of ATP to AML cells and, in turn, induces substantial lactate production. Similarly, FAO-deficient 
Abcb11-knockout mice exhibited high FABP4 and CD36 expression and free fatty acid uptake[97]. In sum, it 
is clear that FAO inhibition initiates several different adaptive mechanisms that promote AML cell survival 
in the BM microenvironment.

For this reason, treatment options based on combination regimens have been tested. Although FAO 
inhibition alone can trigger compensatory activation of other metabolic pathways, FAO inhibitors can also 
synergize with conventional antitumor agents such as paclitaxel[91]. For example, FAO and OXPHOS are 
increased in cytarabine-resistant AML cells; FAO inhibition with etomoxir induced a metabolic shift from 
high to low OXPHOS, sensitizing the cells to cytarabine[66]. Similarly, the combination of avocatin B and 
cytarabine synergized to enhance ROS production and induce apoptosis in AML cells co-cultured with BM 
adipocytes[87]. The role of avocatin B in apoptosis induction was attributed to activation of endoplasmic 
reticulum stress-induced ATF4[87]. These findings suggest that AML cells treated with cytarabine exhibit 
increased dependence on FAO, which may account for the synergism of cytarabine and FAO inhibitors.

CONCLUSIONS
AML cells and LSCs both strongly depend on the production of mitochondrial biomass and on OXPHOS[66] 
and FAO[84] for survival. Compared to healthy HSCs, AML cells and LSCs are more susceptible to 
mitochondrial stress because their respiratory chain reserve capacity is lower[98]. These characteristic 
differences in the metabolism of AML cells and their normal hematopoietic-cell counterparts represent a 
specific vulnerability of leukemia cells and therefore are drawing a great deal of attention as targets for AML 
therapy. The results of studies in preclinical models using agents that target fatty acid metabolism have been 
encouraging.

Although they are vulnerable to the targeting of their metabolic pathways, AML cells, drawing on 
microenvironmental factors, can adapt to metabolic stress by activating metabolic bypass processes. Several 
in vivo studies and clinical trials have shown that the use of metabolic inhibitors alone is ineffective both 
because of their narrow therapeutic window and because of these adaptive mechanisms[87]. Alternatively, 
inhibition of FAO and other metabolic mechanisms along with conventional chemotherapy or targeted 
therapy may synergistically eradicate chemotherapy-resistant AML cells present in the BM.

In conclusion, understanding AML cell metabolism in the specific context of the BM microenvironment is 
crucial to improving therapies for AML. Because characteristics of the BM microenvironment enable the 
acquisition of resistance to OXPHOS and FAO inhibitors, drug combination strategies that interfere with 
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these adaptations are needed. A more comprehensive understanding of the mechanisms of AML cell 
metabolism in future studies may reveal new treatment options targeting OXPHOS and FAO, enhance the 
efficacy of chemotherapeutic agents that target related pathways, reduce the toxicity of these agents, and 
enable the translation of new combinations of agents into clinically applicable treatment strategies.
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