
Zhou et al. Complex Eng Syst 2023;3:14
DOI: 10.20517/ces.2023.16

Complex Engineering
Systems

Research Article Open Access

Event-triggered state estimation for complex networks
under deception attacks: a partial-nodes-based ap-
proach
Lu Zhou, Bing Li

School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China.

Correspondence to: Prof. Bing Li, Department of Applied Mathematics, Chongqing Jiaotong University, No. 66, XueFu Avenue,
Chongqing 400074, China. E-mail: libingcnjy@163.com

How to cite this article: Li B, Zhou L. Event-triggered state estimation for complex networks under deception attacks: a partial-
nodes-based approach. Complex Eng Syst 2023;3:14. http://dx.doi.org/10.20517/ces.2023.16

Received: 26 May 2023 First Decision: 19 Jun 2023 Revised: 20 Jul 2023 Accepted: 22 Aug 2023 Published: 29 Aug
2023

Academic Editor: Hamid Reza Karimi, Yurong Liu Copy Editor: Fanglin Lan Production Editor: Fanglin Lan

Abstract
This paper addresses the issue of state estimation for a kind of complex network (CN) with distributed delays and
random interference through output measurements. In the data transmission, the deception attacks are taken into
account by resorting to a sequence of Bernoulli random variables with a given probability. Considering the complex-
ity of the network, the fact that only partial output measurements are available in practical environments presents a
new challenge. Therefore, the partial-nodes-based (PNB) state estimation problem is proposed. For the sake of data
collision avoidance and energy saving, a general event-triggered scheme is adopted in the design of the estimator.
A novel estimator is constructed to consider both cyber attacks and resource limitations, filling the gap in previous
results on PNB state estimation. By using the Lyapunov method and several stochastic analysis techniques, a few
sufficient conditions are derived to guarantee the desired security and convergency performance for the overall esti-
mation error. The estimator gains are obtained by solving a set of matrix inequalities with nonlinear constraints. At
last, two examples and simulations are presented to further show the efficiency of the proposed method.

Keywords: Complex networks (CNs), deception attacks, partial-nodes-based (PNB) estimation, event-triggered scheme,
finite-distributed delays
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1. INTRODUCTION
Over the past few decades, complex networks (CNs) have gained significant research interest due to their
diverse applications in natural and artificial systems, including but not limited to sensor networks, biological
networks, and social networks, among others [1–6]. Generally speaking, a CN is composed of numerous nodes
that can be described as various types of topologies. In CNs, each individual node exhibits intricate and diverse
dynamical behavior [7,8], which results in plenty of dynamics, including synchronization, chaos, and so on.
Furthermore, it is widely acknowledged that time delays are an inevitable factor in data transmission. This can
lead to a decline in performance and introduce additional challenges during analysis. So far, a great deal of
research effort has been devoted to dynamic analysis and control for CNs with delays [9–16].

In practical engineering, state information plays a key role in the analysis and design of CNs. However, the
full state information is usually unavailable because of the large size of CNs, complex coupling relation, and
inaccuracy of models. To cope with this issue, one possible solution is to estimate the state by using some
available measurement outputs [17–23]. For example, in [17], a finite-time 𝐻∞ state estimation problem has been
investigated for genetic regulatory networks under stochastic communication protocols. In [18,19], the state
estimation problems have been examined for different classes of CNs subject to both discrete and distributed
time delays. For the state estimation of CNs, it should be noted that the majority of the existing literature has
assumed the outputs of all nodes are accessible [24]. However, when a CN possesses a huge number of nodes,
it might be unreasonable (even impossible) to get all outputs. Additionally, the sensor failure can also result in
some output not being obtained. Taking these problems into consideration, a partial-node-based (PNB) state
estimation, which implements the state estimation only via partial measurements of CNs, has attracted more
and more research attention [25–29].

In the networked communication environment, the components are usually interconnected through a shared
communication network. On the one hand, during information transmission, opponents or attackers may
capture and manipulate interchanged information between components, which causes degraded network per-
formance or even destabilization of the system [30]. A lot of research works have been done to focus on cyber
attacks [31–39]. For instance, the state estimation issue has been investigated for large-scale systems subjected
to deception attacks in [33]. In [38], 𝐻∞ state estimation problems have been studied for memristive neural
networks with randomly occurring denial-of-service (DoS) attacks. On the other hand, because of limited
communication resources, it is crucial to reduce the burden of communication resources and alleviate data
congestion in data transmission. Recently, the event-triggered mechanism (ETM) has been extensively used
for saving communication resources while maintaining the desired performance [40–42]. Compared with the
traditional periodic triggered mechanism, the most distinguishing feature of ETMs is to transmit information
only when certain triggered conditions are met, which allows a considerable reduction of the network resource
occupancy. However, from the perspective of security levels against cyber attacks, the event-triggered PNB
state estimation for CNs has rarely been investigated, which is the main motivation of this paper [43–46].

To sum up the above discussions, this paper aims to investigate the event-triggered PNB state estimation prob-
lem for CNs under deception attacks. There are two significant contributions of the current research: (1) By
employing partial output measurements, an event-triggered state estimator is designed for CNs subjected to
deception attacks; (2) With the aid of stochastic analysis techniques and the Lyapunov method, the gain matri-
ces and the event-triggered parameters are co-designed (by resorting to solutions of matrices inequalities) to
ensure the desired secure performance of closed-loop systems under the deception attacks and the aperiodic
data updating. The rest of this paper is presented as follows. Section 2 gives the problem formulation. In
Section 3, an event-triggered PNB state estimation scheme is put forward for CNs against deception attacks.
Two numerical simulation examples are presented in Section 4 to further demonstrate the effectiveness of the
proposed method. Finally, several conclusions are derived in Section 5.
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Notation: N0 denotes the set of nonnegative integers. R𝑛 and R𝑛×𝑚 represent the 𝑛-dimensional Euclidean
space and the set of all 𝑛×𝑚 real matrices, respectively. 𝐼 denotes the identity matrix of compatible dimension.
‖·‖ denotes the Euclidean norm. E{𝑥} is the expectation of the stochastic variable 𝑥. diag{· · · } describes a
block-diagonal matrix. 𝜆𝑚𝑖𝑛 (· · · ) (𝜆𝑚𝑎𝑥 (· · · )) means the smallest (largest) eigenvalue. 𝐴 > 0 means that 𝐴 is
positive definite. The symbol “⊗” stands for the Kronecker product.

2. MODEL DESCRIPTION
Consider a class of discrete-time CNs with 𝑁 coupled nodes as follows:



𝑥𝑖 (𝑘 + 1) = 𝐴𝑖𝑥𝑖 (𝑘) + 𝑓 (𝑥𝑖 (𝑘)) + 𝐴𝑑𝑖
𝜏(𝑘)∑
𝑠=1

𝑔 (𝑥𝑖 (𝑘 − 𝑠)) +
𝑁∑
𝑗=1
𝑤𝑖 𝑗Γ𝑥 𝑗 (𝑘) + 𝐵𝑖𝑣𝑖 (𝑘)

𝑦̄𝑖 (𝑘) = 𝐶𝑖𝑥𝑖 (𝑘) + 𝐷𝑖𝑣𝑖 (𝑘)
𝑧𝑖 (𝑘) = 𝐸𝑖𝑥𝑖 (𝑘), 𝑖 = 1, 2, . . . , 𝑁
𝑥𝑖 (𝑟) = 𝜙𝑖 (𝑟),∀𝑟 ∈ [−𝜏𝑀 , 0]

(1)

where 𝑥𝑖 (𝑘) ∈ R𝑛 represents the state of the 𝑖th node, 𝑦̄𝑖 (𝑘) ∈ R𝑚 (1 ≤ 𝑚 ≤ 𝑛) denotes the measurement
output, and 𝑧𝑖 (𝑘) ∈ R𝑞 is the controlled output. The nonlinear vector-valued functions 𝑓 (·) and 𝑔(·) are con-
tinuous and satisfy the conditions 𝑓 (0) = 0, 𝑔(0) = 0, as well as

[ 𝑓 (𝑥) − 𝑓 (𝑦) −𝑈1(𝑥 − 𝑦)]𝑇 × [ 𝑓 (𝑥) − 𝑓 (𝑦) −𝑈2(𝑥 − 𝑦)] ≤ 0 (2)

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ ‖𝜑(𝑥 − 𝑦)‖, ∀𝑥, 𝑦 ∈ R𝑛 (3)

where 𝑈1, 𝑈2, and 𝜑 = 𝑑𝑖𝑎𝑔 {𝜑1, 𝜑2, . . . , 𝜑𝑛} > 0 are known constant real matrices with appropriate dimen-
sions. The inner-coupling matrix Γ = 𝑑𝑖𝑎𝑔 {𝑡1, 𝑡2, . . . , 𝑡𝑛} ≥ 0 denotes the linking of the state variable for
𝑗 th ( 𝑗 = 1, 2, . . . , 𝑛) node if 𝑡 𝑗 ≠ 0. 𝑣𝑖 (𝑘) ∈ R is a Gaussian white noise sequence with E{𝑣𝑖 (𝑘)} = 0 and
E{𝑣2

𝑖 (𝑘)} ≤ 𝜀2, 𝜀 > 0. Here, 𝐴𝑖 , 𝐴𝑑𝑖 , 𝐵𝑖 , 𝐶𝑖 , 𝐷𝑖 , and 𝐸𝑖 are parameter matrices with appropriate dimensions,
𝜙𝑖 (𝑟) (∀𝑟 ∈ [−𝜏𝑀 , 0], 𝑖 = 1, 2, . . . , 𝑁) are the initial conditions. The symmetric matrix𝑊 =

[
𝑤𝑖 𝑗

]
∈ R𝑁×𝑁 is

for the outer-coupling configuration of the CNs with 𝑤𝑖 𝑗 ≥ 0 (𝑖 ≠ 𝑗) but not all zero and satisfies
∑𝑁
𝑗=1 𝑤𝑖 𝑗 =∑𝑁

𝑗=1 𝑤 𝑗𝑖 = 0 for 𝑖 = 1, 2, . . . , 𝑁 . The distributed delay 𝜏(𝑘) satisfies 𝜏𝑚 ≤ 𝜏(𝑘) ≤ 𝜏𝑀 , where 𝜏𝑚 > 0 and
𝜏𝑀 > 0 are known integers.

Actually, the issue of data safety usually arises in networked environments since the data may be subject to
malicious cyber attacks during the transmission. In this paper, we assume that the measurement from the
output sensors is affected by deception attacks as follows:

𝑦𝑖 (𝑘) = 𝑦̄𝑖 (𝑘) + 𝜗(𝑘)𝜚(𝑘), 1 ≤ 𝑖 ≤ 𝑙0 (4)

where 𝜚(𝑘) = −𝑦̄𝑖 (𝑘) + 𝜉 (𝑘) stands for the deceptive attack signal injected by the hostile attacker. 𝑦𝑖 (𝑘) ∈ R𝑚
denotes the measurement signal received by neighboring nodes, 𝜉 (𝑘) ∈ R𝑚 is deception data and satisfies

‖𝜉 (𝑘)‖ ≤ 𝜀1 (5)

in which 𝜀1 is a given positive scalar for describing the intensity of deception attacks. 𝜗(𝑘) is a Bernoulli
stochastic variable sequence, satisfying

𝑃𝑟𝑜𝑏 {𝜗(𝑘) = 0} = 1 − 𝜗̄, 𝑃𝑟𝑜𝑏 {𝜗(𝑘) = 1} = 𝜗̄

with 𝜗̄ ∈ [0, 1).

http://dx.doi.org/10.20517/ces.2023.16
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Remark 1: From (4), it is noticeably known that 𝜗(𝑘) = 1 represents deception attacks occur; the real data
𝑦̄𝑖 (𝑘) is replaced by false signal 𝜉 (𝑘) from deception attacks. When 𝜗(𝑘) = 0, the real measurement signal will
be available.

For the purpose of saving limited communication resources, an ETM is introduced during the data transmis-
sion. For clarity, the triggering instant sequence for node 𝑖 is denoted by 0 = 𝑘 𝑖0 ≤ · · · ≤ 𝑘 𝑖𝑝 ≤ . . . , which is
determined as follows

𝑘 𝑖𝑝+1 = 𝑚𝑖𝑛
{
𝑘 ∈ N0 |𝑘 > 𝑘 𝑖𝑝 , 𝜋𝑖 (𝜇𝑖 (𝑘), 𝛿𝑖) > 0

}
(6)

in which the event generator function 𝜋𝑖 (·, ·) is constructed to be

𝜋𝑖 (𝜇𝑖 (𝑘), 𝛿𝑖) = 𝜇𝑇𝑖 (𝑘)𝜇𝑖 (𝑘) − 𝛿𝑖𝑦𝑇𝑖 (𝑘)𝑦𝑖 (𝑘) (7)

with 𝜇𝑖 (𝑘) = 𝑦𝑖 (𝑘) − 𝑦𝑖 (𝑘 𝑖𝑝) and 𝛿𝑖 > 0. Here, 𝑦𝑖 (𝑘 𝑖𝑝) is the final measurement of node 𝑖 received by the
estimator at the latest instant.

Remark 2: From the perspective of reducing the data transmission rate, it has been proven that the event-
triggered scheme is an effective implementation approach under which the data transmission is permitted only
if a prescribed condition is met. For clarity, let 𝑘 𝑖𝑝 be the latest triggering instant. For 𝑘 = 𝑘 𝑖𝑝 , the event does not
occur due to (𝑦𝑖 (𝑘)−𝑦𝑖 (𝑘 𝑖𝑝))𝑇 (𝑦𝑖 (𝑘)−𝑦𝑖 (𝑘 𝑖𝑝)) = 0. When (𝑦𝑖 (𝑘)−𝑦𝑖 (𝑘 𝑖𝑝))𝑇 (𝑦𝑖 (𝑘)−𝑦𝑖 (𝑘 𝑖𝑝))−𝛿𝑖 (𝑦𝑇𝑖 (𝑘)𝑦𝑖 (𝑘))) ≤
0 for some 𝑘 𝑖𝑝 < 𝑘 < 𝑘∗ but (𝑦𝑖 (𝑘) − 𝑦𝑖 (𝑘 𝑖𝑝))𝑇 (𝑦𝑖 (𝑘) − 𝑦𝑖 (𝑘 𝑖𝑝)) − 𝛿𝑖 (𝑦𝑇𝑖 (𝑘)𝑦𝑖 (𝑘))) > 0 at 𝑘∗, the event occurs at
time 𝑘∗. Thus, the output data received by estimators maintains 𝑦𝑖 (𝑘 𝑖𝑝) from 𝑘 𝑖𝑝 to 𝑘∗ − 1 and then is updated
to 𝑦𝑖 (𝑘∗). In other words, the signals are only updated at some necessary instants. As such, the event-triggered
scheme shows a significant advantage via reducing unnecessary information exchange between the sensors
and estimators.

Within the event-triggered PNB scheme, the state estimator is constructed as follows:



𝑥𝑖 (𝑘 + 1) = 𝐴𝑖𝑥𝑖 (𝑘) + 𝑓 (𝑥𝑖 (𝑘)) + 𝐴𝑑𝑖
𝜏(𝑘)∑
𝑠=1

𝑔 (𝑥𝑖 (𝑘 − 𝑠)) +
𝑁∑
𝑗=1
𝑤𝑖 𝑗Γ𝑥 𝑗 (𝑘)

+ 𝐾𝑖
(
𝑦𝑖 (𝑘 𝑖𝑝) − 𝐶𝑖𝑥𝑖 (𝑘)

)
, 𝑖 = 1, 2, . . . , 𝑙0

𝑥𝑖 (𝑘 + 1) = 𝐴𝑖𝑥𝑖 (𝑘) + 𝑓 (𝑥𝑖 (𝑘)) + 𝐴𝑑𝑖
𝜏(𝑘)∑
𝑠=1

𝑔 (𝑥𝑖 (𝑘 − 𝑠)) +
𝑁∑
𝑗=1
𝑤𝑖 𝑗Γ𝑥 𝑗 (𝑘),

𝑖 = 𝑙0 + 1, 𝑙0 + 2, . . . , 𝑁
𝑧𝑖 (𝑘) = 𝐸𝑖𝑥𝑖 (𝑘)

(8)

where 𝑥𝑖 (𝑘) denotes the estimated state of 𝑥𝑖 (𝑘), and 𝐾𝑖 ∈ R𝑛×𝑚 (𝑖 = 1, . . . , 𝑙0) are the gain matrices to be
designed.

We denote by 𝑒𝑖 (𝑘) = 𝑥𝑖 (𝑘) − 𝑥𝑖 (𝑘) and 𝑧𝑖 (𝑘) = 𝑧𝑖 (𝑘) − 𝑧𝑖 (𝑘) the state and output error, respectively. For

http://dx.doi.org/10.20517/ces.2023.16
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convenience of later analysis, let

= =
[
=𝑇1 =𝑇2 · · · =𝑇𝑁

]𝑇 (= = 𝑥(𝑘), 𝑣(𝑘), 𝑒(𝑘), 𝑧(𝑘))

< =
[
<𝑇

1 <𝑇
2 · · · <𝑇

𝑙0

]𝑇
(< = 𝜇(𝑘), 𝑦(𝑘)), 𝐶̄ = [𝐶 0]

𝑅(𝑥(𝑘)) =
[
𝑟𝑇 (𝑥1(𝑘)) · · · 𝑟𝑇 (𝑥𝑁 (𝑘))

]𝑇
, 𝐾̄ =

[
𝐾𝑇 0

]𝑇
, 𝐷̄ = [𝐷 0]

𝑅(𝑒(𝑘)) =
[
𝑟𝑇 (𝑒1(𝑘)) · · · 𝑟𝑇 (𝑒𝑁 (𝑘))

]𝑇 (𝑅 = 𝐹, 𝐺; 𝑟 = 𝑓 , 𝑔)
ℵ = 𝑑𝑖𝑎𝑔 {ℵ1,ℵ2, . . . ,ℵ𝑁 } (ℵ = 𝐴, 𝐴𝑑 , 𝐵, 𝐸), 𝑆1 = [𝐼 𝐼 · · · 𝐼]𝑇𝑚×𝑙0𝑚
Ω = 𝑑𝑖𝑎𝑔

{
𝛿1𝐼, 𝛿2𝐼, . . . , 𝛿𝑙0 𝐼

}
, ℧ = 𝑑𝑖𝑎𝑔

{
℧1,℧2, . . . ,℧𝑙0

}
(℧ = 𝐾,𝐶, 𝐷)

𝑓 (𝑒𝑖 (𝑘)) = 𝑓 (𝑥𝑖 (𝑘)) − 𝑓 (𝑥𝑖 (𝑘)), 𝑔̃(𝑒𝑖 (𝑘)) = 𝑔(𝑥𝑖 (𝑘)) − 𝑔(𝑥𝑖 (𝑘)).

The error system is obtained as follows:

𝑒(𝑘 + 1) =𝐴𝑒(𝑘) + 𝐹 (𝑒(𝑘)) + 𝐴𝑑
𝜏(𝑘)∑
𝑠=1

𝐺 (𝑒(𝑘 − 𝑠))

+𝑊 ⊗ Γ𝑒(𝑘) + 𝐵𝑣(𝑘) − 𝐾̄𝐶̄𝑒(𝑘) − (1 − 𝜗̄)𝐾̄ 𝐷̄𝑣(𝑘)
+ (𝜗(𝑘) − 𝜗̄)𝐾̄ 𝐷̄𝑣(𝑘) + (𝜗(𝑘) − 𝜗̄)𝐾̄𝐶̄𝑥(𝑘) + 𝜗̄𝐾̄𝐶̄𝑥(𝑘)
− (𝜗(𝑘) − 𝜗̄)𝐾̄𝑆1𝜉 (𝑘) − 𝜗̄𝐾̄𝑆1𝜉 (𝑘) + 𝐾̄𝜇(𝑘),

𝑧(𝑘) =𝐸𝑒(𝑘).

(9)

By defining 𝜂(𝑘) =
[
𝑥𝑇 (𝑘) 𝑒𝑇 (𝑘)

]𝑇 and 𝑅(𝜂(𝑘)) =
[
𝑅𝑇 (𝑥(𝑘)) 𝑅𝑇 (𝑒(𝑘))

]𝑇 (𝑅 = 𝐹, 𝐺), we derive the
following augmented system:

𝜂(𝑘 + 1) =A𝜂(𝑘) + (𝜗(𝑘) − 𝜗̄)C𝜂(𝑘) + 𝐹 (𝜂(𝑘)) + A𝑑

𝜏(𝑘)∑
𝑠=1

𝐺 (𝜂(𝑘 − 𝑠))

+ (B − (1 − 𝜗̄)D)𝑣(𝑘) + (𝜗(𝑘) − 𝜗̄)D𝑣(𝑘) − 𝜗̄S1𝜉 (𝑘)
− (𝜗(𝑘) − 𝜗̄)S1𝜉 (𝑘) + S2 ®𝜇(𝑘)

𝑧(𝑘) =𝐸̄𝜂(𝑘)

(10)

where

A =

[
𝐴 +𝑊 ⊗ Γ 0
𝜗̄𝐾̄𝐶̄ 𝐴 +𝑊 ⊗ Γ − 𝐾̄𝐶̄

]
,

A𝑑 = 𝑑𝑖𝑎𝑔 {𝐴𝑑 , 𝐴𝑑} , 𝐸̄ =
[

0 𝐸
]
, B =

[
𝐵𝑇 𝐵𝑇

]𝑇
,

C =

[
0 0
𝐾̄𝐶̄ 0

]
, D =

[
0
𝐾̄ 𝐷̄

]
, S1 =

[
0
𝐾̄𝑆1

]
,

S2 =

[
0 0
0 𝐾̄

]
, C̄ =

[
𝐶̄ 0

]
, ®𝜇(𝑘) =

[
0 𝜇𝑇 (𝑘)

]𝑇
.

Remark 3: It is obviously noted that the estimation error system (9) is a subsystem of the augmented system
(10). That is to say, the evolution of errors can be derived by analyzing the dynamic of the augmented system
(10).

The definition and lemmas presented in this context play a crucial role in the stability analysis of the augmented
system (10) and the design of an appropriate estimator.
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Definition 1 [36]: For given constants 𝜀, 𝜀1, 𝜀2, and 𝜀3, the augmented system (10) is said to be (𝜀, 𝜀1, 𝜀2, 𝜀3)-
secure if for 𝑖 = 1, 2, . . . , 𝑁 ,E{v2

𝑖 (𝑘)} ≤ 𝜀2, ‖𝜉 (𝑘)‖ ≤ 𝜀1, and the initial condition sup
𝑟=−𝜏𝑀 ,−𝜏𝑀+1,...,−1,0

E{‖𝜙𝑖 (𝑟)‖2} ≤

𝜀2
2 imply that E{‖𝑧(𝑘)‖2} ≤ 𝜀2

3, 𝑘 ≥ 𝜏𝑀 + 1.

Remark 4: The parameter 𝜀 plays a crucial role in determining the overall disturbance bound. Specifically, 𝜀1
is employed for the level of deception attack, while 𝜀2 shows the impact of the initial error states. Lastly, 𝜀3
stands for the required performance of security.

Lemma 1 [47]: For a matrix𝑄 > 0, integers 𝑙1 and 𝑙2 (𝑙2 ≥ 𝑙1 ≥ 0) and 𝑥(𝚤) ∈ R𝑛 for 𝚤 = 𝑖− 𝑙2, 𝑖− 𝑙2+1, . . . , 𝑖− 𝑙1,
the following inequality is valid:

− (𝑙2 − 𝑙1 + 1)
𝑖−𝑙1∑
𝑘=𝑖−𝑙2

𝑥𝑇 (𝑘)𝑄𝑥(𝑘) ≤ −
(
𝑖−𝑙1∑
𝑘=𝑖−𝑙2

𝑥(𝑘)
)𝑇
𝑄

(
𝑖−𝑙1∑
𝑘=𝑖−𝑙2

𝑥(𝑘)
)
. (11)

Lemma 2 [36]: For constants 𝑀 > 0, 𝑏 > 0 (𝑏 ≤ 𝑀 − 1), a scalar 𝑎 > 1, and vectors 𝑥(𝜁) (𝜁 = −𝑏, . . . , 𝑀 − 2),
we have

𝑀−1∑
𝑘=0

𝑘−1∑
𝜁=𝑘−𝑏

𝑎𝑘E
{
‖𝑥(𝜁)‖2} ≤ 𝑎𝑏 − 1

𝑎 − 1
©­«

−1∑
𝜁=−𝑏
E

{
‖𝑥(𝜁)‖2} + 2𝑎

𝑀−1∑
𝑘=0

𝑎𝑘E
{
‖𝑥(𝑘)‖2}ª®¬

3. ANALYSIS AND RESULTS
In this section, by resorting to the stochastic analysis techniques, we shall provide the analysis result to guar-
antee that the augmented system (10) is (𝜀, 𝜀1, 𝜀2, 𝜀3)-secure. For ease of subsequent analysis, we denote

Θ0 =

[
Θ011 Θ012
Θ021 Θ022

]
, 𝑃̄ = 𝐼4×4 ⊗ 𝑃, 𝛾2 = 𝜆1𝑁𝜀

2 + 𝜆2𝜀
2
1

Θ011 =


Π011 𝜆3(𝐼 ⊗ 𝑈̄2) 0

𝜆3(𝐼 ⊗ 𝑈̄𝑇2 ) −𝜆3𝐼 0
0 0 𝜃𝑄 − 𝜆4𝐼

 , 𝜗̃ =
√
𝜗̄(1 − 𝜗̄)

Θ012 =


0 𝜆5𝜓1C̄𝑇Ω𝐷̄ 𝜆5𝜓2C̄𝑇Ω𝑆1 0
0 0 0 0
0 0 0 0

 , 𝜓3 = 𝜗̄2, 𝜓1 = (1 − 𝜗̄)2

Θ021 =


0 0 0

𝜆5𝜓1𝐷̄
𝑇ΩC̄ 0 0

𝜆5𝜓2𝑆
𝑇
1ΩC̄ 0 0

0 0 0


, 𝑈̂2 =

𝑈𝑇1𝑈2 +𝑈𝑇2𝑈1

2
, 𝑈̄2 =

𝑈𝑇2 +𝑈𝑇1
2

Θ022 =


− 1
𝜏𝑀
𝑄 0 0 0

0 −𝜆1𝐼 + 𝜆5𝜓1𝐷̄
𝑇Ω𝐷̄ 𝜆5𝜓2𝐷̄

𝑇Ω𝑆1 0
0 𝜆5𝜓2𝑆

𝑇
1Ω𝐷̄ −𝜆2𝐼 + 𝜆5𝜓3𝑆

𝑇
1Ω𝑆1 0

0 0 0 −𝜆5𝐼


Π011 = −𝑃 − 𝜆3(𝐼 ⊗ 𝑈̂2) + 𝜆4(𝐼 ⊗ (𝜑𝑇𝜑)) + 𝜆5𝜓1C̄𝑇ΩC̄, Θ1 =

[
Θ111 Θ112

0 Θ122

]
𝜃 = 2𝜏𝑀 − 𝜏𝑚 + (𝜏𝑀 − 𝜏𝑚) (𝜏𝑚 + 𝜏𝑀 − 1)

2
, Θ112 =

[
0 −𝜗̄S1 0
0 −𝜗̃S1 0

]
Θ111 =

[
A 𝐼 0 A𝑑

𝜗̃C 0 0 0

]
, Θ122 =

[
B − (1 − 𝜗̄)D 0 0

𝜗̃D 0 S2

]
, 𝜓2 = (𝜗̄ − 𝜗̄2).
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For the (𝜀, 𝜀1, 𝜀2, 𝜀3)-security of the dynamic system (10), we have the following results.

Theorem 1: Let positive constants 𝜀, 𝜀1, 𝜀2, 𝜀3 and matrices 𝐾𝑖 (𝑖 = 1, 2, . . . , 𝑙0) be known. The dynamic
system (10) is (𝜀, 𝜀1, 𝜀2, 𝜀3)-secure provided that there exist positive definite matrices 𝑃,𝑄 and positive scalars
𝜆𝑖 (𝑖 = 1, · · · , 5) satisfying {

Θ = Θ0 + Θ𝑇1 𝑃̄Θ1 < 0
𝜆𝑚𝑎𝑥 (𝐸̄𝑇 𝐸̄)𝑚𝑎𝑥{𝜛̄(𝑏0), 𝑏̄0} ≤ 𝜀2

3
(12)

in which

𝜛̄(𝑏0) =
𝜛(𝑏0)
𝜆𝑚𝑖𝑛 (𝑃)

, 𝑏̄0 =
𝑏0𝛾

2

(𝑏0 − 1)𝜆𝑚𝑖𝑛 (𝑃)
, (13)

the constant 𝑏0 > 1 is determined as

− 𝑏0𝜆𝑚𝑖𝑛 (−Θ) + (𝑏0 − 1)𝜆𝑚𝑎𝑥 (𝑃) + 2𝑏0(𝑏𝜏𝑀0 − 1)
× 𝜆𝑚𝑎𝑥 (𝑄) (𝜏𝑀 + (𝜏𝑀 − 𝜏𝑚) × (𝜏𝑀 − 1))𝜆𝑚𝑎𝑥 (𝐼 ⊗ (𝜑𝑇𝜑))

= 0 (14)

and 𝜛(𝑏0) is given as follows:

𝜛(𝑏0) = 2𝑁𝜀2
2 (𝜏𝑀𝜆𝑚𝑎𝑥 (𝑄)(𝜏𝑀 + (𝜏𝑀 − 𝜏𝑚)(𝜏𝑀 − 1)) × 𝜆𝑚𝑎𝑥 (𝐼 ⊗ (𝜑𝑇𝜑)) (𝑏𝜏𝑀0 − 1) + 𝜏𝑀

× 𝑚𝑎𝑥{𝜆𝑚𝑎𝑥 (𝑃), 𝜆𝑚𝑎𝑥 (𝑄)(𝜏𝑀 + (𝜏𝑀 − 𝜏𝑚) × (𝜏𝑀 − 1))𝜆𝑚𝑎𝑥 (𝐼 ⊗ (𝜑𝑇𝜑))}).

Proof: We choose the Lyapunov-Krasovskii functional 𝑉 (𝜂(𝑘)) = ∑3
𝜄=1𝑉𝜄(𝜂(𝑘)) with

𝑉1(𝜂(𝑘)) = 𝜂𝑇 (𝑘)𝑃𝜂(𝑘), 𝑉2(𝜂(𝑘)) =
𝜏(𝑘)∑
𝑗=1

𝑘−1∑
𝑖=𝑘− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖))

𝑉3(𝜂(𝑘)) =
𝜏𝑀∑

𝑣=𝜏𝑚+1

𝑣−1∑
𝑗=1

𝑘−1∑
𝑖=𝑘− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖)).

Here, 𝑉1(𝜂(𝑘)) is chosen for the energy of the error system, 𝑉2(𝜂(𝑘)) and 𝑉3(𝜂(𝑘)) are adopted to deal with
the evolution of state with distributed delays. By considering the difference of 𝑉 (𝜂(𝑘)) with the system (10),
and combing with the mathematical expectation, one has

E{Δ𝑉1(𝜂(𝑘))} = E{𝑉1(𝜂(𝑘 + 1)) −𝑉1(𝜂(𝑘))}
= E

{
𝜂𝑇 (𝑘 + 1)𝑃𝜂(𝑘 + 1) − 𝜂𝑇 (𝑘)𝑃𝜂(𝑘)

}
= E

{
𝜂𝑇 (𝑘)Θ𝑇1 𝑃̄Θ1𝜂(𝑘) − 𝜂𝑇 (𝑘)𝑃𝜂(𝑘)

}
(15)

where

𝜂(𝑘) =
[
𝜂𝑇 (𝑘) 𝐹𝑇 (𝜂(𝑘)) 𝐺𝑇 (𝜂(𝑘))

(
𝜏(𝑘)∑
𝑠=1

𝐺 (𝜂(𝑘 − 𝑠))
)𝑇

𝑣𝑇 (𝑘) 𝜉𝑇 (𝑘) ®𝜇𝑇 (𝑘)
]𝑇
. (16)
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For the differences of 𝑉2(𝜂(𝑘)) and 𝑉3(𝜂(𝑘)), we get

E{Δ𝑉2(𝜂(𝑘))} = E{𝑉2(𝜂(𝑘 + 1)) −𝑉2(𝜂(𝑘))}

= E

𝜏(𝑘+1)∑
𝑗=1

𝑘∑
𝑖=𝑘+1− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖)) −
𝜏(𝑘)∑
𝑗=1

𝑘−1∑
𝑖=𝑘− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖))

+
𝜏(𝑘)∑
𝑗=1

𝑘∑
𝑖=𝑘+1− 𝑗

𝐺𝑇 (𝜂(𝑖)) (𝑄 −𝑄)𝐺 (𝜂(𝑖))


= E

𝜏(𝑘+1)∑
𝑗=1

𝑘−1∑
𝑖=𝑘+1− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖)) +
𝜏(𝑘+1)∑
𝑗=1

𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘))

−
𝜏(𝑘)∑
𝑗=1

𝑘−1∑
𝑖=𝑘− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖)) +
𝜏(𝑘)∑
𝑗=1

𝑘∑
𝑖=𝑘+1− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖))


≤ E


𝜏𝑀∑
𝑗=𝜏𝑚+1

𝑘−1∑
𝑖=𝑘+1− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖)) + 𝜏𝑀𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘))

+
𝜏𝑀∑
𝑗=𝜏𝑚

𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘)) −
𝜏(𝑘)∑
𝑗=1

𝐺𝑇 (𝜂(𝑘 − 𝑗))𝑄𝐺 (𝜂(𝑘 − 𝑗))


≤ E


𝜏𝑀∑
𝑗=𝜏𝑚+1

𝑘−1∑
𝑖=𝑘+1− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖))

+(2𝜏𝑀 − 𝜏𝑚)𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘)) −
𝜏(𝑘)∑
𝑗=1

𝐺𝑇 (𝜂(𝑘 − 𝑗))𝑄𝐺 (𝜂(𝑘 − 𝑗))
 (17)

and

E{Δ𝑉3(𝜂(𝑘))} = E{𝑉3(𝜂(𝑘 + 1)) −𝑉3(𝜂(𝑘))}

= E


𝜏𝑀∑
𝑣=𝜏𝑚+1

𝑣−1∑
𝑗=1

𝑘∑
𝑖=𝑘+1− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖))

−
𝜏𝑀∑

𝑣=𝜏𝑚+1

𝑣−1∑
𝑗=1

𝑘−1∑
𝑖=𝑘− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖))


≤ E
{
(𝜏𝑀 − 𝜏𝑚) (𝜏𝑚 + 𝜏𝑀 − 1)

2
𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘))

−
𝜏𝑀∑

𝑗=𝜏𝑚+1

𝑘−1∑
𝑖=𝑘+1− 𝑗

𝐺𝑇 (𝜂(𝑖))𝑄𝐺 (𝜂(𝑖))
}
. (18)

Furthermore, it can be inferred from Lemma 1 that

−
𝜏(𝑘)∑
𝑗=1

𝐺𝑇 (𝜂(𝑘 − 𝑗))𝑄𝐺 (𝜂(𝑘 − 𝑗)) ≤ − 1
𝜏𝑀

©­«
𝜏(𝑘)∑
𝑗=1

𝐺 (𝜂(𝑘 − 𝑗))ª®¬
𝑇

𝑄
©­«
𝜏(𝑘)∑
𝑗=1

𝐺 (𝜂(𝑘 − 𝑗))ª®¬ . (19)

Combining with E{𝑣2
𝑖 (𝑘)} ≤ 𝜀2 and (5), it is observed 𝑣𝑇 (𝑘)𝑣(𝑘) ≤ 𝑁𝜀2 and 𝜉𝑇 (𝑘)𝜉 (𝑘) ≤ 𝜀2

1. By following
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from (2) and (3), one has

Λ1 =

[
𝜂(𝑘)

𝐹 (𝜂(𝑘))

]𝑇 [
𝐼 ⊗ 𝑈̂2 𝐼 ⊗ (−𝑈̄2)

∗ 𝐼

] [
𝜂(𝑘)

𝐹 (𝜂(𝑘))

]
≤ 0, (20)

Λ2 =

[
𝜂(𝑘)

𝐺 (𝜂(𝑘))

]𝑇 [
−𝐼 ⊗ (𝜑𝑇𝜑) 0

∗ 𝐼

] [
𝜂(𝑘)

𝐺 (𝜂(𝑘))

]
≤ 0. (21)

Combining (15)-(19), we have

E{Δ𝑉 (𝜂(𝑘))} ≤ E
{
𝜂𝑇 (𝑘)Θ1𝑃̄Θ1𝜂(𝑘) − 𝜂𝑇 (𝑘)𝑃𝜂(𝑘) + (2𝜏𝑀 − 𝜏𝑚)𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘))

+ (𝜏𝑀 − 𝜏𝑚) (𝜏𝑚 + 𝜏𝑀 − 1)
2

𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘))

− 1
𝜏𝑀

(
𝜏(𝑘)∑
𝑗=1

𝐺 (𝜂(𝑘 − 𝑗))
)𝑇
𝑄

(
𝜏(𝑘)∑
𝑗=1

𝐺 (𝜂(𝑘 − 𝑗))
)}
. (22)

Bearing in mind (20) and (21), it stems from (22) that

E{Δ𝑉 (𝜂(𝑘))} ≤ E
{
𝜂𝑇 (𝑘)Θ1𝑃̄Θ1𝜂(𝑘) − 𝜂𝑇 (𝑘)𝑃𝜂(𝑘) + (2𝜏𝑀 − 𝜏𝑚)𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘))

+ (𝜏𝑀 − 𝜏𝑚) (𝜏𝑚 + 𝜏𝑀 − 1)
2

𝐺𝑇 (𝜂(𝑘))𝑄𝐺 (𝜂(𝑘))

− 1
𝜏𝑀

(
𝜏(𝑘)∑
𝑗=1

𝐺 (𝜂(𝑘 − 𝑗))
)𝑇
𝑄

(
𝜏(𝑘)∑
𝑗=1

𝐺 (𝜂(𝑘 − 𝑗))
)

− 𝜆1

(
𝑣𝑇 (𝑘)𝑣(𝑘) − 𝑁𝜀2

)
− 𝜆2

(
𝜉𝑇 (𝑘)𝜉 (𝑘) − 𝜀2

1

)
− 𝜆3Λ1

− 𝜆4Λ2 − 𝜆5

(
𝜇𝑇 (𝑘)𝜇(𝑘) − 𝑦𝑇 (𝑘)Ω𝑦(𝑘)

)}
≤ E

{
𝜂𝑇 (𝑘)Θ𝜂(𝑘) + 𝛾2

}
. (23)

Recalling (12) gives

E {Δ𝑉 (𝜂(𝑘))} ≤ −𝜆𝑚𝑖𝑛 (−Θ)E
{
| |𝜂(𝑘) | |2

}
+ 𝛾2. (24)

In addition, taking (21) into consideration, we have

𝑉 (𝜂(𝑘)) ≤𝜆𝑚𝑎𝑥 (𝑃)E
{
| |𝜂(𝑘) | |2

}
+ 𝜆𝑚𝑎𝑥 (𝑄) (𝜏𝑀 + (𝜏𝑀 − 𝜏𝑚)(𝜏𝑀 − 1))

× 𝜆𝑚𝑎𝑥 (𝐼 ⊗ (𝜑𝑇𝜑)) ×
𝑘−1∑

𝑖=𝑘−𝜏𝑀
E
{
| |𝜂(𝑖) | |2

}
. (25)

It is readily derived from (24) and (25) that for a real number 𝑏 > 1

E
{
𝑏𝑘+1𝑉 (𝜂(𝑘 + 1))

}
− E

{
𝑏𝑘𝑉 (𝜂(𝑘))

}
≤ 𝜖1(𝑏)𝑏𝑘E

{
| |𝜂(𝑘) | |2

}
+ 𝑏𝑘+1𝛾2 + 𝜖2(𝑏) ×

𝑘−1∑
𝑖=𝑘−𝜏𝑀

𝑏𝑘E
{
| |𝜂(𝑖) | |2

}
(26)
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where

𝜖1(𝑏) = −𝑏𝜆𝑚𝑖𝑛 (−Θ) + (𝑏 − 1)𝜆𝑚𝑎𝑥 (𝑃),
𝜖2(𝑏) = (𝑏 − 1)𝜆𝑚𝑎𝑥 (𝑄)(𝜏𝑀 + (𝜏𝑀 − 𝜏𝑚)(𝜏𝑀 − 1)) × 𝜆𝑚𝑎𝑥 (𝐼 ⊗ (𝜑𝑇𝜑)).

For any integer 𝑁0 ≥ 𝜏𝑀 + 1, (26), together with Lemma 2, we get

E
{
𝑏𝑁0𝑉 (𝜂(𝑁0))

}
− E {𝑉 (𝜂(0))}

≤ 𝑏(𝑏𝑁0 − 1)𝛾2

𝑏 − 1
+ 𝜏𝑀𝜖2(𝑏) (𝑏

𝜏𝑀 − 1)
𝑏 − 1

sup
−𝜏𝑀≤𝑖≤0

E
{
| |𝜂(𝑖) | |2

}
+ 𝜖 (𝑏)

𝑁0−1∑
𝑘=0

𝑏𝑘E
{
| |𝜂(𝑖) | |2

}
(27)

where 𝜖 (𝑏) = 𝜖1(𝑏) + 2𝑏𝜖2 (𝑏)(𝑏𝜏𝑀−1)
𝑏−1 .

Noting that 𝜖 (1) = −𝜆𝑚𝑖𝑛 (−Θ) < 0 and lim
𝑏→∞

𝜖 (𝑏) = +∞, there is a scalar 𝑏0 > 1 such that 𝜖 (𝑏0) = 0. For such
a scalar 𝑏0 > 1, it is concluded

E
{
𝑏𝑁0

0 𝑉 (𝜂(𝑁0))
}
− E {𝑉 (𝜂(0))} ≤

𝑏0(𝑏𝑁0
0 − 1)𝛾2

𝑏0 − 1
+
𝜏𝑀𝜖2(𝑏0) (𝑏𝜏𝑀0 − 1)

𝑏0 − 1
sup

−𝜏𝑀≤𝑖≤0
E
{
| |𝜂(𝑖) | |2

}
.

Since sup
−𝜏𝑀≤𝑖≤0

E
{
| |𝜂(𝑖) | |2

}
≤ 2𝑁𝜀2

2, E
{
𝑏𝑁0

0 𝑉 (𝜂(𝑁0))
}
≥ 𝜆𝑚𝑖𝑛 (𝑃)𝑏𝑁0

0 E
{
| |𝜂(𝑁0) | |2

}
, and

E{𝑉 (𝜂(0))} ≤ 𝜏𝑀𝑚𝑎𝑥
{
𝜆𝑚𝑎𝑥 (𝑃), 𝜆𝑚𝑎𝑥 (𝑄)(𝜏𝑀 + (𝜏𝑀 − 𝜏𝑚)(𝜏𝑀 − 1))

× 𝜆𝑚𝑎𝑥 (𝐼 ⊗ (𝜑𝑇𝜑))
}
× sup

−𝜏𝑀≤𝑖≤0
E
{
| |𝜂(𝑖) | |2

}
,

it is observed that

E
{
| |𝑧(𝑁0) | |2

}
≤ 𝜆𝑚𝑎𝑥 (𝐸̄𝑇 𝐸̄)E

{
| |𝜂(𝑁0) | |2

}
≤ 𝜆𝑚𝑎𝑥 (𝐸̄𝑇 𝐸̄)

(
𝑏−𝑁0

0 (𝜛̄(𝑏0) − 𝑏̄0) + 𝑏̄0

)
≤ 𝜆𝑚𝑎𝑥 (𝐸̄𝑇 𝐸̄)𝑚𝑎𝑥{𝜛̄(𝑏0), 𝑏̄0}. (28)

By following from (12), we get E{| |𝑧(𝑁0) | |2} ≤ 𝜀2
3 , indicating that the dynamic system (10) is (𝜀, 𝜀1, 𝜀2,

𝜀3)-secure. Therefore, the proof is considered finished.

For analysis simplification, we denote

Λ =


Λ11 𝑃 0 𝑃A𝑑 0 −𝜗̄𝐿2 0
𝜗̃𝐿3 0 0 0 0 −𝜗̃𝐿2 0

0 0 0 0 Λ35 0 0
0 0 0 0 𝜗̃𝐿4 0 𝐿5


Λ11 = 𝑃A1 + 𝐿1, Λ35 = 𝑃B − (1 − 𝜗̄)𝐿4

A1 = 𝑑𝑖𝑎𝑔{𝐴 +𝑊 ⊗ Γ, 𝐴 +𝑊 ⊗ Γ}

𝐿1 =

[
0 0

𝜗̄𝑋̄𝐶̄ −𝑋̄𝐶̄

]
, 𝐿2 =

[
0
𝑋̄𝑆1

]
𝐿3 =

[
0 0
𝑋̄𝐶̄ 0

]
, 𝐿4 =

[
0
𝑋̄ 𝐷̄

]
, 𝐿5 =

[
0 0
0 𝑋̄

]
.
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In what follows, a method is proposed for designing the gain matrix of an estimator for the augmented system
(10).

Theorem 2: Let positive constants 𝜀, 𝜀1, 𝜀2, and 𝜀3 be given. The system (10) is (𝜀, 𝜀1, 𝜀2, 𝜀3)-secure if there
are positive definite matrices 𝑄, 𝑃1 = 𝑑𝑖𝑎𝑔{𝑃11, 𝑃12, . . . , 𝑃1𝑁 }, 𝑃2 = 𝑑𝑖𝑎𝑔{𝑃21, 𝑃22, . . . , 𝑃2𝑁 }, matrix 𝑋 =
𝑑𝑖𝑎𝑔{𝑋1, 𝑋2, . . . , 𝑋𝑙0}), and positive scalars 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜅 satisfying:

Ξ =


Θ0 ∗ ∗ ∗
Λ −𝑃̄ ∗ ∗
0 0 −𝜅𝐼 ∗
0 0 0 −𝜅𝐼


< 0

𝜆𝑚𝑎𝑥 (𝐸̄𝑇 𝐸̄)𝑚𝑎𝑥{𝜛̄(𝑏0), 𝑏̄0} ≤ 𝜀2
3

(29)

where 𝑃 = 𝑑𝑖𝑎𝑔{𝑃1, 𝑃2}, 𝑋̄ = [𝑋𝑇 0]𝑇 , and the solution for the constant 𝑏0 > 1 in (29) is obtained as
follows:

− 𝑏0𝜆𝑚𝑖𝑛 (−Ξ) + (𝑏0 − 1)𝜆𝑚𝑎𝑥 (𝑃) + 2𝑏0(𝑏𝜏𝑀0 − 1)
× 𝜆𝑚𝑎𝑥 (𝑄) (𝜏𝑀 + (𝜏𝑀 − 𝜏𝑚) × (𝜏𝑀 − 1))𝜆𝑚𝑎𝑥 (𝐼 ⊗ (𝜑𝑇𝜑))

= 0 (30)

In addition, the matrices 𝐾𝑖 (𝑖 = 1, 2, . . . , 𝑙0) can be designed as

𝐾𝑖 = 𝑃
−1
2𝑖 𝑋𝑖 . (31)

Proof: Recalling (12) and denoting Θ̄1 = 𝑃̄Θ1, it follows from the Schur Complement Lemma that[
Θ0 ∗
Θ̄1 −𝑃̄

]
< 0 (32)

where Θ̄135 = 𝑃B − (1 − 𝜗̄)𝑃D and

Θ̄1 =


𝑃A 𝑃 0 𝑃A𝑑 0 −𝜗̄𝑃S1 0
𝜗̃𝑃C 0 0 0 0 −𝜗̃𝑃S1 0

0 0 0 0 Θ̄135 0 0
0 0 0 0 𝜗̃𝑃D 0 𝑃S2


.

By applying the Schur Complement Lemma, (32) is valid only if the subsequent inequality is satisfied:
Θ0 ∗ ∗ ∗
Θ̄1 −𝑃̄ ∗ ∗
0 0 −𝜅𝐼 ∗
0 0 0 −𝜅𝐼


< 0. (33)

It is worth noting that 𝑋̄ = 𝑃2𝐾̄ . In other words, (33) is implied by (29). The rest part of the proof follows
immediately fromTheorem 2.

The model establishment and consensus analysis are finally completed with the help of (29) (an important
property of the Laplacian matrix). The gain matrices are designed by resorting to the feasible solutions of
(30), which obviously depends on the Laplacian matrix. Both of them show the influence of the network
communication topology.
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Remark 5: Theorem 2 proposes an easy-to-check approach for designing the PNB- and-ETM-based state es-
timator, which enables the error system to achieve the desired convergence and security performance even
in the presence of random deception attacks. The gain matrix for the estimator is determined by considering
feasible solutions to the inequalities (29) and (30). These solutions are heavily influenced by various factors,
including network parameters, external disturbances, inherent nonlinearities, the coupling Laplacian matrix,
delay bounds, the intensity and frequency of deception attacks, and the event-triggering threshold.

Remark 6: Theorem 2 proposes an effective method to design state estimators for CNs by using the output
of partial nodes. It differs significantly from the state estimators proposed in [10,11,13,17]. Compared with the
results of PNB state estimation for CNs in [27–29], our result stands out by considering both deception attacks
and event-triggering mechanisms simultaneously. This notable feature makes Theorem 2 more practical and
feasible for network environments that are constrained by limited resources and susceptible to network attacks.

4. EXAMPLES AND SIMULATIONS
In this section, two examples are presented to demonstrate the validity of our method.

Example 1
Consider a CN with 𝑁 = 5, 𝑙0 = 3, and the relevant parameters are given as follows:

𝐴1 = 𝐴2 =


0.003 −0.004 −0.003
0.002 0.004 −0.001
0.001 0.002 −0.002

 , 𝐷1 =

[
0.1
0.2

]
, 𝐷2 =

[
0.2
0.1

]

𝐴3 = 𝐴4 =


0.001 −0.002 −0.001
0.001 −0.002 −0.001
0.001 0.002 −0.001

 , 𝐷3 =

[
0.2
0.2

]
, 𝐵1 = 𝐵2 =


0.001
0.002
0.002


𝐴5 =


−0.001 −0.001 −0.002
0.001 0.002 −0.002
−0.001 0.002 −0.002

 , 𝐵5 =


0.002
0.001
0.001

 , 𝐵3 = 𝐵4 =


0.001
0.002
0.001


𝐴𝑑1 = 𝐴𝑑2 =


0.001 0.001 0.004
0.001 −0.001 0.001
0.002 0.004 0.001

 , 𝐴𝑑3 = 𝐴𝑑4 =


0.002 0.002 0.001
0.002 −0.003 0.001
0.001 0.004 0.003


𝐴𝑑5 =


0.001 0.002 0.003
0.001 −0.001 0.002
0.001 0.002 0.003

 , 𝐸3 =
[

0.1 0.2 0.1
]
, 𝐸5 =

[
0.1 0.2 0.1

]
𝐶1 = 𝐶2 = 𝐶3 =

[
2 0 0
3 0 2.4

]
, Γ = 0.55𝐼, 𝜗̄ = 0.4, 𝜀 = 0.4, 𝜀1 = 0.2, 𝜀2 = 0.3, 𝜀3 = 11

𝜏𝑚 = 2, 𝜏𝑀 = 5, 𝛿1 = 𝛿2 = 𝛿3 = 3, 𝐸1 =
[

0.1 0.2 0.2
]
, 𝐸4 =

[
−0.2 −0.2 0.2

]
𝐸2 =

[
0.2 0.1 0.3

]
,𝑊 =



−0.006 0.001 0.002 0.001 0.002
0.001 −0.007 0.002 0.002 0.002
0.002 0.002 −0.005 0 0.001
0.001 0.002 0 −0.005 0.002
0.002 0.002 0.001 0.002 −0.007


.
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Table 1. Triggering frequencies and estimation errors with different threshold parameters

Values of 𝛿𝑖 Triggering of Node1 Triggering of Node2 Triggering of Node3 Total Error
𝛿1 = 𝛿2 = 𝛿3 = 0.8 83% 83% 83% 0.0122
𝛿1 = 𝛿2 = 𝛿3 = 3 20% 13.3% 23.3% 0.0416
𝛿1 = 𝛿2 = 𝛿3 = 6 13.3% 10% 10% 0.0609

Here, we choose 𝑓 (·) and 𝑔(·) to be

𝑓 (𝑥𝑖 (𝑘)) =


𝑓1(𝑥𝑖 (𝑘))
𝑠𝑖𝑛(−0.1𝑥𝑖2(𝑘))
𝑠𝑖𝑛(−0.2𝑥𝑖3(𝑘))


𝑓1(𝑥𝑖 (𝑘)) = −0.1𝑥𝑖1(𝑘)+0.1( |𝑥𝑖1(𝑘) + 2| − |𝑥𝑖1(𝑘) − 2|) + 0.1𝑥𝑖2(𝑘)

and

𝑔(𝑥𝑖 (𝑘)) =

−0.2𝑐𝑜𝑠(𝑥𝑖1(𝑘))
0.2𝑐𝑜𝑠(𝑥𝑖2(𝑘))
0.1𝑐𝑜𝑠(𝑥𝑖3(𝑘))

 .
It is not difficult to verify that conditions (2) and (3) can be met with

𝑈1 =


0.1 0.1 0
0 −0.2 0
0 0 −0.2

 ,𝑈2 =


−0.1 0.1 0

0 0 0
0 0 0

 , 𝜑 =


0.1 0 0
0 0.2 0
0 0 0.1

 .
According to (29) and using the Matlab software (with the YALMIP toolbox), we obtain the gain matrices for
the estimator as follows

𝐾1 =


0.0000 −0.0001
0.0006 0.0274
0.0000 −0.0000

 , 𝐾2 =


0.0000 −0.0001
0.0006 0.0273
0.0000 −0.0000

 , 𝐾3 =


0.0000 −0.0000
0.0006 0.0274
0.0000 0.0000

 .
Let initial values be 𝜙𝑖 (𝑟) = [0.1 0.1 0.1]𝑇 (∀𝑟 ∈ [−5, 0], 𝑖 = 1, . . . , 5). The simulation results are
illustrated in Figures 1-4. To be more specific, the values of 𝜗(𝑘) are recorded in Figure 1, in which 𝜗(𝑘) = 1
stands for the occurrence of the deception attacks while 𝜗(𝑘) = 0 shows the deception attacks do not occur.
Figure 2 shows the triggering time sequences on the first three nodes with the thresholds 𝛿𝑖 (𝑖 = 1, 2, 3) being
taken as 3. Figure 3 displays the evolution of the estimation error outputs 𝑧𝑖 (𝑘). For the estimation error,

Figure 4 shows the evolution of the mean square E{| |𝑧(𝑘) | |2} and the root mean square
√∑5

𝑖=1 𝑒
2
𝑖 (𝑘) with the

upper bound 𝜀2
3, which implies the convergency and security performance are met.

In order to explain the relationship between the number of event triggerings and the estimation accuracy,
we provide the following Table 1 to record the triggering frequency and the estimation error. It is readily
observed that the larger number of triggerings usually indicates better estimation accuracy. Generally speak-
ing, the threshold parameters 𝛿𝑖 can be delicately tuned to achieve a trade-off between the desired estimation
performance and the energy-saving target.
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Figure 1. Occurrence of the deception attacks.

Example 2
Consider a CN with 5-node discrete-time Chua’s circuits borrowed from [29] and let 𝑙0 = 3. The relevant
parameters are given as follows:

𝐴1 = 𝐴2 =


0.3 0.2 0
0.1 0.2 0.2
0 −3.4 0.4

 , 𝐴3 = 𝐴4 = 𝐴5 =


0.4 0.2 0
0.25 0.45 0.2

0 −0.2 0.5


𝑊 =



−0.7 0.15 0.2 0.15 0.2
0.15 −0.6 0.15 0.2 0.1
0.2 0.15 −0.5 0 0.15
0.15 0.2 0 −0.5 0.15
0.2 0.1 0.15 0.15 −0.6


, 𝐵𝑖 = 𝐴𝑑𝑖 = 0(𝑖 = 1, 2, . . . , 5)

𝑓 (𝑥𝑖 (𝑘)) =

−0.2𝑥𝑖1 + 0.3(|𝑥𝑖1 + 2| − |𝑥𝑖1 − 2|)

0
0

 , 𝑔(𝑥𝑖 (𝑘)) =


0
0

0.5𝑠𝑖𝑛(0.2𝑥𝑖1(𝑘))


𝐶1 = 𝐶2 = 𝐶3 =

[
1 0 0
0 1 0

]
, Γ = 𝐼, 𝜏𝑚 = 2, 𝜏𝑀 = 3, 𝐷𝑖 = 0(𝑖 = 1, 2, 3)

and other parameters are set as the same as in Example 1.

Without any difficulties, we derive that conditions (2) and (3) are satisfied with

𝑈1 =


−0.8 0 0

0 0 0
0 0 0

 ,𝑈2 =


−0.2 0 0

0 0 0
0 0 0

 , 𝜑 =


0 0 0
0 0 0
0 0 0.1

 .
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Figure 2. Triggering instants for the first three nodes.

Figure 3. Output estimation errors of five nodes.

By using the Matlab toolbox, the estimator gain matrices are derived as follows

𝐾1 =


−0.0003 0.0005
−0.0094 0.0008
0.0330 0.0027

 , 𝐾2 =


0.0006 −0.0004
−0.0024 0.0013
0.0035 0.0024

 , 𝐾3 =


0.0006 −0.0001
−0.0008 0.0019
−0.0076 0.0050

 .
For the aim of simulation, we choose initial states to be 𝜙𝑖 (𝑟) = [0.1 0.1 0.1]𝑇 for 𝑟 ∈ [−3, 0], 𝑖 =

http://dx.doi.org/10.20517/ces.2023.16
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Figure 4. The norm square and root mean square of the estimated error.

Figure 5. Triggering instants for the first three nodes.

1, . . . , 5. Without loss of generality, let the occurrence of deception attacks be the same as in Example 1. In
Figure 5, the instants for event triggering are illustrated by taking the thresholds 𝛿𝑖 = 3 (𝑖 = 1, 2, 3). It is readily
seen that the updating frequency of sensors is reduced dramatically. The evolution of the estimation error out-
put 𝑧𝑖 (𝑘) is given in Figure 6, from which we see estimation errors tend to zero with small oscillations. Figure

7 shows that the mean square E{| |𝑧(𝑘) | |2} and the root mean square
√∑5

𝑖=1 𝑒
2
𝑖 (𝑘) approach zero ultimately;

that is, the performance of secure estimation is realized.
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Figure 6. Output estimation errors of five nodes.
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Figure 7. The norm square and the root mean square of the estimated error.

5. CONCLUSIONS
The event-triggered PNB state estimation problem has been studied in this paper for a class of discrete-time
CNs under deception attacks. A novel state estimator has been designed based on the measurement outputs
from the fraction of nodes. A general event-triggering scheme has also been taken into account in the design

http://dx.doi.org/10.20517/ces.2023.16


Page 18 of 20 Zhou et al. Complex Eng Syst 2023;3:14 I http://dx.doi.org/10.20517/ces.2023.16

of the estimator such that the communication resources are saved dramatically. Sufficient conditions have been
established (in the form of matrix inequalities) to ensure the existence of the desired state estimator. Finally,
a numerical example and simulations are presented to further demonstrate the effectiveness of the proposed
method. Several future research topics include the state estimation of complex systems subjected to complexity
attacks or communication protocols.
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