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Abstract
Background: The role of the urobiome in health and disease remains an understudied area compared to the rest of 
the human microbiome. Enhanced culturing techniques and next-generation sequencing technologies have 
identified the urobiome as an untapped source of potentially novel antimicrobials. The aim of this study was to 
screen the urobiome for genes encoding bacteriocin production.

Methods: The genomes of 181 bacterial urobiome isolates were screened in silico for the presence of bacteriocin 
gene clusters using the bacteriocin mining tool BAGEL4 and secondary metabolite screening tool antiSMASH7.

Results: From these isolates, an initial 263 areas of interest were identified, manually annotated, and evaluated for 
potential bacteriocin gene clusters. This resulted in 32 isolates containing 80 potential bacteriocin gene clusters, of 
which 72% were identified as class II, 13.75% as class III, 8.75% as class I, and 5% as unclassified bacteriocins.

Conclusion: Overall, 53 novel variants were discovered, including nisin, gassericin, ubericin, and colicins.
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INTRODUCTION
The human microbiome and its role in health and disease have been at the forefront of scientific research in 
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recent times[1-4]. To date, bacterial communities from numerous body sites have been screened, both in silico 
and in vitro, for antimicrobial compounds[5-11]. Recent advances in metaculturomics and metagenomic 
sequencing have led to the discovery and characterisation of the urobiome[12,13], which represents a relatively 
understudied environment in terms of the diversity and novelty of bacteriocins encoded by this microbial 
community.

Bacteriocins are classified as ribosomally synthesised antimicrobial peptides, which are produced by bacteria 
as a defence mechanism against other bacteria present in the same environment[5,14,15]. Bacteriocins can 
display both narrow- and broad-spectrum bactericidal activity but are usually most effective against bacteria 
that are closely related to the producer strain[6,8,16-18]. While some bacteriocins are produced by Gram-
negative bacteria[19], the majority of bacteriocins characterised to date are produced by Gram-positive, lactic 
acid bacteria[20-22]. Bacteriocins have been divided into three classes: class I, also known as lantibiotics, are 
characterised based on the presence of the amino acid lanthionine or methyllanthionine as a result of post-
translational modifications. The primary mode of action of class I bacteriocins is targeting the cell 
membrane[14,20]. Class II bacteriocins are smaller, thermostable peptides that can be further categorised into 
five subclasses[23]. They are classed as broad range antimicrobials and act by forming pores in the cell 
membrane. Class III bacteriocins are larger, heat-sensitive peptides that cause bacterial cell lysis[5,14,20]. In 
previous years, food preservation and other applications in the food industry were the primary focus of 
bacteriocin research[15]. More recently, this focus has shifted to antimicrobial resistance, and strategies to 
improve the treatment and control of antibiotic-resistant infections[15], mainly centred on in vivo animal 
studies[24]. Bacteriocins have numerous desirable traits as antimicrobials, which make them particularly 
attractive alternatives to antibiotics, including low toxicity, high potency, and, most importantly, the ability 
to be effectively bioengineered[18,23]. Furthermore, a narrower activity spectrum than conventional antibiotics 
significantly reduces undesirable collateral damage to the commensal microbiota[2,11,14].

In silico screening of bacterial genomes for bacteriocin production has significantly reduced both the time 
and cost of culture-based approaches for bacteriocin discovery[25], with gene mining tools such as BAGEL4 
and antiSMASH7[26,27] enabling the rapid identification of bacteriocin gene clusters. BAGEL4 scans the 
bacterial genome for putative bacteriocin open reading frames (ORFs). It searches for the structural 
bacteriocin gene, but also takes advantage of the common structure of bacteriocin operons and scans the 
surrounding ORFs for possible accessory genes that encode immunity, transport, regulation, and 
modification proteins[25,28,29]. AntiSMASH7, on the other hand, uses set “rules” that identify core biosynthetic 
functions present within a genomic region to create a biosynthetic gene cluster (BGC). AntiSMASH7 
combines different profile hidden Markov model “rules” to identify 81 different BGC types[27].

The current study is, to the best of our knowledge, the first to screen the urobiome for genes encoding 
bacteriocin production. Herein, we screened 181 bacterial isolates previously isolated from the bladder[30], 
with the primary objective to identify novel bacteriocin clusters in the urobiome [Figure 1]. Initially, 263 
putative bacteriocin gene clusters were identified, highlighting the potential of the urobiome to host a 
diversity of bacteriocin producers.

METHODS
Data collection
The 181 fully sequenced genomes examined in this study were from urinary bacterial isolates, collected via 
catheter, previously isolated, sequenced, and assembled by Miller-Ensminger et al. (2018)[30]. Accession 
numbers were obtained [Supplementary Data], and each individual genome was downloaded from the 
European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena/browser/home) in FASTA format.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202403/mrr2078-SupplementaryData.xlsx
https://www.ebi.ac.uk/ena/browser/home
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Figure 1. Flow chart of bacteriocin screening performed in this study.

Initial screening
The bacteriocin mining tool BAGEL4 (http://bagel4.molgenrug.nl/index.php)[26] was used in combination 
with antiSMASH7 (https://antismash.secondarymetabolites.org/#!/start)[27] to identify and analyse putative 
bacteriocin gene clusters (PBGCs), using default parameters.

Further analysis of individual gene clusters
Areas of interests (AOIs) identified by BAGEL4, predicted to be bacteriocins or associated with bacteriocin 
production, were investigated using BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&
PAGE_TYPE=BlastSearch&LINK_LOC=blasthome)[31]. An AOI was considered to be a PBGC if it 
contained a structural core peptide and if it was surrounded by the key associated genes previously 
described in the literature, such as immunity, transport, leader cleavage, and a modification gene for post-
translationally modified peptides[9,29]. To determine the degree of novelty of the PBGCs, the amino acid 
sequences for bacteriocin production were aligned against their closest characterised homologues, as 
indicated by BLASTP using the sequence alignment tool EMBL-EBI EMBOSS Needle (https://www.ebi.ac.
uk/Tools/psa/) using the Needleman-Wunsch algorithm. Novelty was described when a difference of two or 
more amino acids was identified in the predicted bacteriocin sequence compared to previously 
characterised bacteriocins[10]. All amino acid sequences of the surrounding accessory proteins displayed > 
95% identity to their predicted proteins, unless otherwise stated.

http://bagel4.molgenrug.nl/index.php
https://antismash.secondarymetabolites.org/#!/start
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://www.ebi.ac.uk/Tools/psa/
https://www.ebi.ac.uk/Tools/psa/
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RESULTS
In silico screening for putative bacteriocin gene clusters
This study screened 181 bacterial urobiome isolates[30] cultured from catheterised urine samples. 
Catheterised urine samples reduced the risk of cross-contamination from surrounding microbiomes 
(urethra, skin, vagina, etc.), and, as such, represent true urobiome/bladder isolates[32]. The initial screening 
using BAGEL4 and antiSMASH7 resulted in the identification of 263 AOIs [Supplementary Table 1]. 
BAGEL4 identifies the presence of AOIs within the genomes; however, this does not necessarily translate 
into functional peptide production for reasons including mutations, regulation, or target specificity.

In total, 263 AOIs were identified from 97 isolates across 35 genera, with 54 of the isolates predicted to 
produce more than one putative bacteriocin [Supplementary Table 1]. Further analysis revealed that 83 of 
the AOIs lacked a core structural peptide sequence. Of these, 72 of the identified bacteriocin operons 
contained the full complement of accessory genes necessary for bacteriocin production but appeared to lack 
the required core structural peptides. Thirty-six strains encoded sactipeptide gene clusters with no core 
peptide, and 16 strains encoded bottromycin but again lacked the structural core peptide from 25 different 
genera including Actinomyces, Aerococcus, Bacillus, Fingoldia, Gordonia, Staphylococcus, Klebsiella, Leclercia,
Morganella and Pseudomonas. A possible explanation for this is that the BAGEL4 database may simply 
not contain the sequence homologues of the core peptides[33]. It has also been hypothesised that
bacteriocin production can be spontaneously acquired in the microbiome by horizontal gene transfer and
can be lost by deletion of biosynthetic genes as bacteriocin production is metabolically costly[18,34]. Similarly,
20 putative helveticin J peptides predicted by BAGEL4 were excluded from further analysis due to the lack
of a core peptide. It is also noteworthy that, in some studies, helveticin J peptides are no longer classed as
bacteriocins  and are considered a distinct group of antimicrobials (called bacteriolysins)[28].

Of the remaining 180 putative bacteriocin AOIs, 100 were determined to be lacking the key associated genes
for bacteriocin production and, as such, were eliminated [Figure 1]. This resulted in 32 remaining isolates
with 80 PBGCs that contained a structural core peptide and the associated accessory genes [Supplementary
Table 2]. While they were removed based on the parameters set for this study, we do accept the possibility
that these gene products may work in conjunction with other novel bacteriocins/bacteriocin-related genes
encoded elsewhere on the genome[33]. Of the 80 remaining bacteriocins, 72% were identified as class II,
13.75% as class III, 8.75% as class I, and 5% as unclassified bacteriocins.

Further analysis of PBGCs of particular interest
Based on BAGEL4, BLASTP, and EBI EMBOSS Needle analysis of the urobiome isolates, 53 putative
bacteriocin hits were determined to be potentially novel [Supplementary Table 2]. Novelty in this case is
taken as a core peptide with two or more amino acid differences compared to its closest characterised
homologue[10], or a 100% identity to previously uncharacterised bacteriocin with no other closely related
characterised homologues. Three bacterial strains, Lactobacillus gasseri UMB0099, Streptococcus
macedonicus UMB0733, and Proteus mirabilis UMB0315, were chosen for further analysis [Table 1,
Figures 2 and 3].

Analysis of selected novel PBGCs identified among Lactobacillus species
Lactobacillus strains were identified most often (54%) when analysing urobiome isolates for novel
bacteriocin production. Lactobacillus is one of the most common bacterial species isolated from the
urobiome, particularly in women[13,28,35], and is thought to play a protective role within the urobiome[36].
Lactobacillus species are well-characterised bacteriocin producers[22] and have been highlighted for their
potential applications in medicine, veterinary medicine, and the food industry as effective alternatives to

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202403/mrr2078-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202403/mrr2078-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202403/mrr2078-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202403/mrr2078-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202403/mrr2078-SupplementaryMaterials.pdf
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Table 1. Abridged version of urobiome strains of interest which encode putative bacteriocin gene cluster(s) with surrounding 
accessory genes present

BAGEL4 AOIs Genome name BLASTP result Query 
cover

% 
identity

Alignment 
EMBOSS

Accession 
Number

ACIDOCIN_LF22IB 
(GASSERICINK7B)

Lactobacillus gasseri 
str. UMB0099

Blp family class II 
bacteriocin 
[Lactobacillus]

100% 100% 100% WP_003649213.1

BACTERIOCIN_LS2CHAINB* Lactobacillus gasseri 
str. UMB0099

Blp family class II 
bacteriocin 
[Ligilactobacillus salivarius]

97% 47.76% 43.8% WP_032495430.1

BOVICIN_225_PEPTIDE* Streptococcus 
macedonicus str. 
UMB0733

Bacteriocin class II with 
double glycine leader 
peptide 
[Streptococcus infantarius 
subsp. Infantarius]

100% 93.5% 95.9% MCO4620482.1

COLICIN* Proteus mirabilis str. 
UMB0315

Colicin-E2 
[Proteus mirabilis]

99% 99% 99.1% AWF41001.1

COMC; L_BIOTIC_TYPEA; 
BACTERIOCIN_IIC*

Streptococcus 
macedonicus str. 
UMB0733

Bacteriocin 
[Streptococcus gallolyticus]

100% 78% 78% WP_114317773.1

GASSERICIN_T Lactobacillus gasseri 
str. UMB0099

Blp family class II 
bacteriocin 
[Lactobacillus paragasseri]

100% 100% 100% WP_049159833.1

GGMOTIF; BACTERIOCIN_IIC; Lactobacillus gasseri 
str. UMB0099

Blp family class II 
bacteriocin 
[Lactobacillus]

100% 100% 100% WP_101890487.1

L_BIOTIC_TYPEA; 
BACTERIOCIN_IIC*

Lactobacillus gasseri 
str. UMB0099

Lactacin F inducer peptide 
precursor 
[Lactobacillus johnsonii]

100% 84% 92% WP_260307981.1

MICROCIN_M* Lactobacillus gasseri 
str. UMB0099

Bacteriocin 
[Lactobacillus]

100% 100% 100% WP_101890486.1

NISIN_U* Streptococcus 
macedonicus str. 
UMB0733

Gallidermin/nisin family 
lantibiotic 
[Streptococcus suis]

100% 100% 75% WP_228478826.1

PEDIOCIN* Lactobacillus gasseri 
str.  UMB0099

Bacteriocin immunity 
protein 
[Lactobacillus]

100% 100% 100% WP_101890489.1

UBERICIN_A* Streptococcus 
macedonicus str. 
UMB0733

Blp family class II 
bacteriocin 
[Streptococcus]

93% 100% 93.5% WP_003066580.1

UNIDENTIFIED BACTERIOCIN* Lactobacillus gasseri 
str. UMB0099

Bacteriocin 
[Lactobacillus]

100% 100% 100% WP_049160225.1

A full summary of all 53 novel urobiome strains which encode putative bacteriocin gene cluster(s) is available in Supplementary Table 2. Putative 
bacteriocin hits are presented with their closest homologues as identified through BLASTP analysis and alignment using EBI EMBOSS Needle, with 
an asterisk (*) representing the bacteriocins that are potentially novel by either differing by two or more amino acids or matching to a reported 
but previously uncharacterised bacteriocin. AOIs: Areas of interests.

antibiotics and food preservatives[37]. Additionally, many lactic acid bacteria (LAB) and their products are 
generally recognised as safe (GRAS status) by the FDA[37,38].

Lactobacillus gasseri UMB0099 was isolated by Miller-Ensminger et al. (2018)[30] from a urine sample 
collected by catheter from a patient suffering from an overactive bladder (OAB). BAGEL4 analysis revealed 
that this strain encoded nine putative bacteriocin peptides in total. One was removed as it lacked the 
associated production proteins. The remaining eight included three “generic” bacteriocins (dark green 
peptides; bacteriocin 1-3), gassericin T, acidocin_LF221B, microcin M, pediocin, and a bacteriocin LS2 
chain b peptide [Figure 2A]. The gassericin T, acidocin_ LF221B (gassericin K7B), and bacteriocin-2 
putative core peptides [Figure 2A] all represent 100% identity to previously characterised Blp class II 
bacteriocins[39,40]. Blp bacteriocin gene clusters are known to encode multiple bacteriocin-like peptides[39] 

-SupplementaryMaterials.pdf
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Figure 2. BAGEL4 outputs for urobiome isolates from (A) Lactobacillus gasseri UMB0099 depicting a putative microcin gene cluster 
and a class IIb gene cluster; (B) from Streptococcus macedonicus UMB0733 depicting a putative ubericin- A gene cluster and a 
putative novel nisin U gene cluster; and (C) from Proteus mirabilis UMB0315 depicting a putative active colicin bacteriocin gene cluster.

which are secreted by ATP binding cassette (ABC) transporter proteins, similar to the PBGC identified in 
this study. Both gassericin and acidocin have been previously studied for their ability to prevent the growth 
of Staphylococcus aureus from mastitic milk and used as food preservatives and therapeutic agents for 
mastitis[41]. While the putative pediocin gene was predicted by BAGEL4 to encode a core bacteriocin 
peptide, once blasted, this was determined to exhibit 100% identity to an immunity protein and, thus, is 
likely mis-annotated and is not a core bacteriocin peptide. The putative cluster also contained a LanT gene, 
cleavage/export ABC transporter, HylD protein, and an immunity protein. The presence of all the accessory 
genes suggests functionality of the PBGC, although experimental validation is required for confirmation[41].

Of interest in this PBGC are the microcin M and bacteriocin-1. The microcin M on this cluster exhibits 
100% identity to an uncharacterised bacteriocin, not a microcin. While BLASTP analysis did identify one 
uncharacterised bacteriocin, unlike other putative hits, it appears to have no other homologues. Microcins 
are typically produced by Gram-negative Enterobacteriaceae family[42] and have not been found before in 
Gram-positive bacteria. Therefore, with no other closely related hits, it can be inferred that it is either 
misannotated or is an uncharacterised novel bacteriocin. Bacteriocin-3 revealed a novel lactacin F precursor 
protein, with 84% identity to an uncharacterised lactacin F precursor isolated from Lactobacillus johnsonii. 
This is similar to other studies that have found multi-bacteriocin producing LAB strains that also encoded 
gassericin and acidocin on the same operon. These previously characterised bacteriocins have been shown 
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Figure 3. Mechanism of action of the putative bacteriocins identified in Table 1.

to inhibit enteric bacteria and retain activity in colon conditions in vitro[43]. Production of multiple 
bacteriocins by a single strain is a desirable trait and can expand their spectrum of inhibition against 
different pathogenic strains. For example, Jiang et al. found synergistic activity, in vitro, of a two-peptide 
bacteriocin against a pathogenic Salmonella strain[44].

The putative class IIb PBGC shown in Figure 2A contained two core bacteriocin peptides: bacteriocin LS2 
chain b and an unidentified bacteriocin. After analysis using BLASTP and EMBI-EBI EMBOSS Needle, the 
bacteriocin LS2 chain b showed a 43.8% identity to BIp family class II bacteriocin isolated from 
Ligilactobacillus salivarius[40], demonstrating a potentially novel variant of a class II bacteriocin. Similarly, 
the unidentified bacteriocin exhibited 100% identity to an uncharacterised bacteriocin; however, further 
investigation using BLASTP and EBI EMBOSS Needle alignment showed 91.1% identity to a previously 
characterised BIp family class II bacteriocin. These two putative BIp peptides were also found in 
Lactobacillus gasseri strain UMB0056. Among the Lactobacillus urobiome isolates, numerous strains 
encoded putative novel BIp class II bacteriocins with all the necessary accessory genes required for 
production present. Strains encoding novel class II two peptide bacteriocins include Lactobacillus crispatus 
strains UMB0040, UMB0803, UMB0805, UMB0044, UMB1398 and Lactobacillus rhamnosus UMB0004. 
Bacteriocins from LAB are of particular interest, with some already approved by the FDA for their use in 
food preservation, including nisin and pediocin[38]. Importantly, LAB bacteriocins have shown promise in 
inhibiting human pathogens in both in vitro studies against Pseudomonas aeruginosa[45], uropathogenic 
E.coli[46], and Candida spp.[47] and in in vivo studies against Gardnerella vaginalis[48], and in trials using 
bacteriocin-producing probiotics against bacterial vaginosis and UTIs[49]. Novel variants of these 
bacteriocins can aid in the treatment/prevention of infections, further highlighting the importance of in 
silico screening studies.
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Analysis of various novel PBGCs identified from Streptococcus macedonicus
A study by Hilt et al. found Streptococcus to be a prevalent genus within the healthy female urobiome[50]. 
Streptococcus species produce many well-characterised bacteriocins[51] such as salivaricin, streptolysin, and 
mutacin[52], but none to date have been associated with the urobiome. Streptococcus macedonicus has 
previously been linked to bacteriocin production (macedocin) in dairy fermentations[53]. S. macedonicus 
UMB0733 was collected by catheter from a participant with no urinary symptoms or diseases[30]. BAGEL4 
analysis on this strain identified multiple PBGCs.

The PBGC shown in Figure 2B was initially identified by BAGEL4 as an ubericin A bacteriocin gene cluster. 
Numerous Streptococcus uberis strains, producing multiple bacteriocins such as uberolysin A, ubericin A, 
and the lantibiotic, nisin U, have shown in vitro activity against different mastitis-inducing pathogens[54]. 
Further analysis of all three putative bacteriocin hits using BLASTP and EMBI-EBI EMBOSS Needle 
identified novel variants of class II bacteriocin peptides. The first bacteriocin hit shared 78% identity with an 
uncharacterised bacteriocin isolated from Streptococcus gallolyticus. The ubericin A hit shared 93.5% 
identity with a BIp family class II bacteriocin previously characterised by Dawid et al.[39].

Finally, the bovicin 225 peptide shared 93.4% identity with a previously characterised class II bacteriocin 
with a double-glycine leader peptide isolated from Streptococcus infantarius. Alongside the three core 
peptides, two EntA immunity proteins were present on the genome with LanT, HlyD, and two ABC 
transporters. With three putative novel bacteriocins and all the accessory genes necessary for production, it 
can be inferred that this is a novel variant of class II bacteriocin gene cluster. Figure 2B shows a novel 
variant of the bacteriocin nisin U which displayed 75% identity to a gallidermin/nisin family lantibiotic 
previously characterised by Christ et al.[55]. With all eleven accessory genes present on the gene cluster 
[Figure 2B], it can be assumed to be an active variant of nisin U[56].

Analysis of novel Colicin PBGCs identified from Proteus mirabilis
Proteus mirabilis UMB0315 [Figure 2C] was collected by catheter from a participant with symptoms of an 
overactive bladder[30]. BAGEL4 analysis identified a novel colicin bacteriocin gene cluster. Colicins, which 
are usually produced by E. coli, are among the most well-studied bacteriocins and are effective 
antimicrobials against other E. coli and Enterobacteriaceae strains[57,58]. The colicin of interest in this study 
was a novel variant produced by Proteus mirabilis. To date, it appears that colicins produced by Proteus 
have not been extensively characterised, but a crude bacteriocin extract from Proteus mirabilis has been 
described for its colicin-like antibiofilm properties[59].

The PBGC, shown in Figure 2C, was identified by BAGEL4 as a colicin E2 bacteriocin gene cluster. Further 
analysis of the bacteriocin core peptide using BLASTP and EMBI-EBI EMBOSS demonstrated a novel 
variant of a colicin E2 peptide sharing 99.5% identity with six amino acid differences at positions 1, 57, 59, 
86, 128, and 188. With both immunity proteins also present [Figure 2C], this suggests that this novel colicin 
variant is one of the first predicted to be produced by a Proteus species. Colicins have been previously 
highlighted for their antimicrobial potential by coating catheters to inhibit colonisation by UTI-causing 
pathogenic bacteria[60]. Colicins have numerous favourable properties such as the low concentrations needed 
for antimicrobial activity and also their specificity in killing, making them desirable antimicrobials that 
inflict limited collateral damage on the commensal microbiota[61]. Other putative colicin clusters identified 
in this study were found among the following urobiome strains: Citrobacter murliniae (UMB1094), 
Escherichia fergusonii (UMB0727, UMB0901, UMB0900, UMB0789), Morganella morganii (UMB1297) and 
Pseudomonas aeruginosa (UMB0710). New bacteriocins that have recently obtained GRAS status from the 
FDA for their use in food include colicins and colicin-like peptides (salmocins from Salmonella)[58], further 
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highlighting the utility of in silico screening studies to aid in the discovery of novel bacteriocins.

DISCUSSION
In conclusion, previous in silico screening techniques have successfully identified bacteriocin gene clusters 
in the human microbiome[5,6,9-11,33]. However, given that urobiome research is in its nascent stages, 
investigation of its bioactive products has remained relatively understudied to date. This in silico analysis 
highlights the overall bacteriocin production ability of the urobiome. Bacteriocin production is a highly 
regulated process and requires specific environmental conditions, which complicates in vitro screening for 
bacteriocins. In silico screening, on the other hand, has allowed the rapid identification of bacteriocins 
without the restrictions of in vitro screening[10,28]. However, it is important to note that in silico screening is 
limited by the need for comparison to previously characterised bacteriocins, which can lead to completely 
novel bacteriocin gene clusters being missed[28,33]. Furthermore, such in silico screens are based solely on 
inference and can only be definitively verified by in vitro and or in vivo follow-up analysis. Notwithstanding, 
the current study determined that 19.33% (35/181) of strains isolated from the urobiome encoded one or 
more potentially active bacteriocin peptides. Despite these limitations, such studies remain an important 
first step in identifying novel bacteriocins. Bacteriocins have been isolated from a variety of microbiomes, 
demonstrating antimicrobial activity against clinically relevant pathogens. Bacteriocins have been used to 
target pathogens both in vitro[45-47,54,62] and in vivo[48,63], exerting probiotic effects[49,64], inhibiting biofilm 
formation[60], and resensitising resistant bacterial strains to antibiotics[65], while demonstrating limited 
cytotoxic effects on the commensal healthy microbiomes. It is hoped that the identification of bacteriocins 
from untapped niches such as the urobiome can aid in the transition into use in clinical settings to control 
infections.

Overall, this study identified 53 putative novel bacteriocin peptides that have not been previously 
characterised, suggesting a high degree of novelty and diversity of bacteriocin production within the 
urobiome. These results indicate that the urobiome represents a comprehensive, and relatively untapped, 
source of novel antimicrobials, some of which might well find application in the control of antibiotic 
resistant infections.
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