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Abstract
Patients with Parkinson’s disease (PD) usually have varying degrees of bradykinesia, and the current clinical assess-
ment is mainly based on the Movement Disorder Society Unified PD Rating Scale, which can hardly meet the needs
of objectivity and accuracy. Therefore, this paper proposed a small-sample time series classification method (DTW-
TapNet) based on dynamic time warping (DTW) data augmentation and attentional prototype network. Firstly, for
the problem of small sample sizes of clinical data, a DTW-based data merge method is used to achieve data augmen-
tation. Then, the time series are dimensionally reorganized using random grouping, and convolutional operations are
performed to learn features frommultivariate time series. Further, attentionmechanism and prototype learning are in-
troduced to optimize the distance of the class prototype to which each time series belongs to train a low-dimensional
feature representation of the time series, thus reducing the dependency on data volume. Clinical experiments were
conducted to collect motion capture data of upper and lower limb movements from 36 patients with PD and eight
healthy controls. For the upper limb movement data, the proposed method improved the classification accuracy,
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weighted precision, and kappa coefficient by 8.89%-15.56%, 9.22%-16.37%, and 0.13-0.23, respectively, compared
with support vector machines, long short-term memory, and convolutional prototype network. For the lower limb
movement data, the proposed method improved the classification accuracy, weighted precision, and kappa coeffi-
cient by 8.16%-20.41%, 10.01%-23.73%, and 0.12-0.28, respectively. The experiments and results show that the
proposed method can objectively and accurately assess upper and lower limb bradykinesia in PD.

Keywords: Parkinson’s disease, bradykinesia, motion capture, dynamic time warping, attentional prototype network

1. INTRODUCTION
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease, which affects 1%–2% of indi-
viduals above 65 [1]. The Global Burden of Disease Study 2016 reported that China has about 23% of the global
PD patients [2]. By 2030, this proportion will reach 50% [3]. This substantial number of affected individuals will
pose significant medical challenges and place a heavy economic burden on society.

PD typically presents with varyingmotor symptoms, including bradykinesia, tremors, rigidity, gait disturbance,
and postural instability [4,5]. As the most characteristic clinical symptom, bradykinesia manifests as a general
slowness of movement, hesitations, and a reduction in movement amplitude or speed during continuous mo-
tion [6]. According to the most recent clinical diagnostic criteria, the diagnosis of PD is based on the presence
of bradykinesia plus at least one among tremor, rigidity, and postural instability, which makes bradykinesia the
cornerstone of the disease [7]. Therefore, accurate bradykinesia assessment can facilitate PD’s clinical diagnosis
and long-term monitoring. Currently, the clinical assessment of bradykinesia is mainly based on the Move-
ment Disorders Society United PD Rating Scale part III (MDS-UPDRS-part III), which primarily evaluates
the motor performance of the patient’s upper and lower limbs, such as finger and toe tapping. The severity of
bradykinesia is scored as 0-4 points, where 0 indicates normal, and 4 indicates severe condition [8]. However,
the scale rating relies on the doctor’s judgment and clinical expertise, which may introduce a degree of subjec-
tivity and variation among individuals [9]. Besides, the manual evaluation assessments are based on an overall
impression of movement, making it challenging to discern the minor differences [10]. Therefore, developing
an accurate and objective method for evaluating bradykinesia represents a significant challenge and a current
area of focus in PD diagnosis and therapy.

In recent years, a variety of intelligent instruments, such as inertial sensing units, gyroscopes, and accelerome-
ters, have been employed for the quantitative assessment of bradykinesia in PD [11–15]. These instruments can
collect movement data from patients with PD. However, their ability to directly capture movement features is
not always reliable, and they may generate errors due to fusion algorithms. Motion capture systems employ
markers on the patient’s limbs to monitor movement. These markers are tracked by a specialized capture sys-
tem that records their positions, enabling motion information collection. This technology outperforms other
instruments in capturing accurate and direct movement data, which is vital for improving the precision of
quantitative evaluations of bradykinesia in patients with PD.

Currently, researchers have utilized motion capture systems for quantitative assessments of bradykinesia in
PD. Given that clinical data often comprises small samples, analysis of motion capture data has predominantly
been manual feature extraction followed by traditional machine learning techniques. Das et al. have extracted
features such as movement amplitude and average speed from gait and toe tapping tasks. Using support vector
machine (SVM) methods, they differentiated between patients with mild and severe symptoms with an accu-
racy of about 90% [10]. Wahid et al. used gait-basedmotion capture data to extract features such as stride length
and gait time, applying methods such as random forest and SVM to distinguish between patients with PD and
healthy controls, achieving an accuracy of 92.6% [16]. However, these methods have limitations in uncovering
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latent features, and the classification accuracy depends on the choice of features. In recent years, deep learn-
ing networks, such as convolutional neural networks (CNN) and long short-term memory (LSTM) networks,
have started to be applied in the field of quantifying bradykinesia in PD [17,18]. Classification methods based on
deep learning networks can overcome the limitations of manual feature extraction and learn low-dimensional
feature representations but are more susceptible to the limitations posed by the amount of data compared to
traditional machine learning methods. On the other hand, clinical data usually have the characteristic of small
samples, and motion capture data are typical multidimensional time series signals. Since the classic data aug-
mentation methods, such as slicing, jittering, and rotation, result in temporal information distortion, methods
based on dynamic time warping (DTW) can address this issue by maintaining the temporal relationships of
time series signals [19,20].

In this paper, to address the characteristics of small sample sizes of clinical data, we design a network clas-
sification approach based on DTW data merge and attentional prototype networks (DTW-TapNet). Firstly,
a DTW-based data merge method is employed for data augmentation. Secondly, random grouping is used
for dimensionality reorganization of time series, followed by convolution operations to learn features from
multivariate time series data. The approach then incorporates attention mechanism and prototype learning
to optimize the distance of the class prototypes of time series, achieving a low-dimensional feature represen-
tation of the training set and thus reducing the dependency on data volume. Based on motion capture data
collected from patients with PD and healthy controls during upper and lower limb movements, the proposed
DTW-TapNet classification method aims to achieve an objective and accurate assessment of bradykinesia in
PD.

2. METHODS
This paper designs a DTW-TapNet network based on DTW data merge and attentional prototype network,
and the network structure is shown in Figure 1. The network structure includes DTW data merge, feature
extraction, and attentional prototype network, which are discussed in the following sub-sections.

2.1 Dataset
The study was approved by the local ethics committee of Tianjin Huanhu Hospital (No. 2019-56). All subjects
provided written informed consent in accordance with the Declaration of Helsinki to participate in this study.
The subjects in the dataset consisted of 36 patients with PD (27 male and nine female) and eight age-matched
healthy controls (three male and five female).

The experimental paradigm consisted of finger and toe tapping tasks, which referred to the MDS-UPDRS and
were commonly used to assess the bradykinesia in PD [8,21,22]. For the finger tapping task, the subjects were
instructed to rapidly and consistently tap the index finger against the thumb. For the toe tapping task, they were
instructed to tap their toes on the ground. Moreover, the subjects were required to complete ten consecutive
cycles for both tasks, and the score ratings were performed by a professional doctor.

The motion capture data were collected during the experiment with a sampling rate of 60 Hz, which consisted
of the three-dimensional coordinates of the reflective markers. For the finger tapping task, two markers were
placed at the tip of the thumb and the index finger, respectively. For the toe tapping task, themarker was placed
at the toe. The marker location diagram is shown in Figure 2. Considering the use of hands and medication,
multiple sets of motion capture data can be collected for each subject, and the data with missing values was
removed due to the obstruction. In total, the sample sizes are 165 and 169 for the finger and toe tapping tasks,
respectively. In addition, since patients with a rating of 4 could not complete the task, the final dataset contains
the rating of 0, 1, 2, and 3. Specifically, the sample sizes of each rating are 33, 74, 44, and 14 for the finger tapping
task and 31, 68, 48, and 22 for toe tapping. Since the sample sizes do not conform to the long-tail distributions,
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Figure 1. DTW-TapNet network structure diagram. DTW: Dynamic time warping.

it is sufficient to validate the effectiveness of the proposed method.

For the raw data, a band-pass filter of 0.3-20 Hz was used to retain the main frequency band of the limb
movement. After that, zero-padding was employed to increase the length of shorter data, while a proportional
scaling method was applied to reduce the length of longer data. Thus, the data length was standardized to
500 data points. Finally, the data was standard deviation normalized and used as the input of the proposed
network. In this paper, the hold-out method was employed to validate the effectiveness of the classification
method, and the dataset was divided into training and test sets with an approximately 7:3 ratio. The datasets

http://dx.doi.org/10.20517/ir.2024.05


Shu et al. Intell Robot 2024;4(1):74-86 I http://dx.doi.org/10.20517/ir.2024.05 Page 78

Figure 2. Marker location of motion capture system in finger tapping (top) and toe tapping tasks (bottom).

Figure 3. Example of the optimal warping path.

were augmented two times using the DTW data merge method for the network training, and the final sample
size of the training set is 360 for both the finger and toe tapping tasks.

2.2 DTW-based data augmentation
This paper adopts the DTW data merge method to achieve data augmentation, which can address the problem
of temporal information distortion by preserving temporal relationships during augmentation. It employs a
DTW algorithm to obtain the optimal match between the two signals. This algorithm stretches or compresses
the two signals to identify corresponding similar points. The set of these corresponding points is referred to
as the optimal warping path [Figure 3].

For two signals, 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑁 ) with 𝑁 elements and 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑀 ) with 𝑀 elements, the optimal
warping path is obtained using the DTW algorithm as𝑊 = (𝑤1, 𝑤2, ..., 𝑤𝑘 , ..., 𝑤𝐿), where 𝑤𝑘 = (𝑤𝑘,𝑖 , 𝑤𝑘, 𝑗 ),
𝑘 = 1, 2, ..., 𝐿, 𝑖 = 1, 2, ..., 𝑁 , and 𝑗 = 1, 2, ..., 𝑀 . 𝑤𝑘,𝑖 and 𝑤𝑘, 𝑗 denote the corresponding points of the two
signals. After obtaining the optimal warping path between the two signals, a random element𝑤𝑟 = (𝑤𝑝,𝑟 , 𝑤𝑞,𝑟 )
was selected where 𝑟 is chosen from aGaussian distributionN( 𝐿

2
,
𝐿

10
). According to𝑤𝑟 , the 𝑋 and𝑌 are sliced

and concatenated to generate a new time series 𝐶 = (𝑥1, 𝑥2, ..., 𝑥𝑤𝑝,𝑟 , 𝑦𝑤𝑞,𝑟 , ..., 𝑦𝑁 ).
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Figure 4. Feature extraction neural network structure diagram.

2.3 Feature extraction
Patients with PD typically exhibited decreased movement amplitude and velocity during continuous limb
movements, which can be captured in the spatio-temporal domain of motion capture data. This paper uses
the one-dimensional CNN to extract the spatial-temporal features of motion capture signals and characterize
the movement differences in PD patients with varying degrees of bradykinesia and healthy controls. The mo-
tion capture data for the finger and toe tapping tasks have dimensions of six and three, respectively. Given the
similarity between these two datasets, we have established a unified feature extraction network structure [Fig-
ure 4]. To capture the interactive features between the multivariate dimensions, the data were reorganized into
three groups, each formed by randomly selecting two dimensions. Each of these groups is then fed into one-
dimensional convolutional blocks. The global average pooling layer is used to extract different dimensional
spatio-temporal features. Finally, the outputs of the pooling layer are concatenated, and the latent features are
derived through a fully connected layer. The architecture of each one-dimensional convolutional block com-
prises a one-dimensional convolution layer, a batch normalization layer, and a rectified linear unit (ReLU).
The last two convolutional blocks employ a parameter sharing mechanism to reduce the number of network
parameters.

For the feature extraction neural network, the learning rate is set to 5 × 10−6, and the training is terminated
when the change in loss is less than 1 × 10−9. In addition, the dropout and regularization methods are added
to reduce the effect of overfitting. In this paper, the dropout parameter is set to 0.8, and the parameter of L2
regularization is set to 0.5.
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Figure 5. Schematic diagram of prototype learning.

2.4 Attentional prototype network
This paper uses an attentional prototype learning approach to train a distance-based loss function [23]. The
prototype learning method is suitable for datasets with small sample sizes and can alleviate overfitting. It es-
tablishes a prototype representation for each category, and the output category is determined by comparing
the distance between the output features of the feature extraction neural network and the prototype representa-
tion [Figure 5]. The prototype representation for each category is computed as the weighted sum of the output
features from the feature extraction neural network, utilizing all training samples belonging to that category,
as given in Equation 1.

𝒄𝑘 =
∑
𝑖

𝑨𝑘,𝑖𝑯𝑘,𝑖 (1)

where 𝑯𝑘,𝑖 is the element of the feature matrix for the 𝑖-th sample in category 𝑘 , 𝑨𝑘,𝑖 is the corresponding
weight, and 𝒄𝑘 is the prototype representation for category 𝑘 . The weights for each category are learned using
an attention mechanism, as given in Equation 2.

𝑨𝑘 = softmax
(
𝒘𝑇𝑘 tanh

(
𝑽𝑘𝑯

𝑇
𝑘

))
(2)

where 𝒘𝑘 and 𝑽𝑘 are the training parameters of the attention model. After obtaining the prototype repre-
sentation for each category, the distance between the features of the test set samples and the prototype repre-
sentations for each category can be calculated. The prototype representation with the closest distance is then
determined as the category to which the sample belongs, as given in Equation 3.

𝑑 ( 𝑓Θ(𝒙), 𝒄𝑘 ) = ∥ 𝑓Θ(𝒙) − 𝒄𝑘 ∥2 (3)

Next, the softmax function is used to calculate the probability of the sample belonging to each category, as
given in Equation 4.

𝑝Θ(𝑦 = 𝑘 | 𝒙) = exp (−𝑑 ( 𝑓Θ(𝒙), 𝒄𝑘 ))∑
𝑖 exp (−𝑑 ( 𝑓Θ(𝒙), 𝒄𝑘 ))

(4)

Finally, the loss function is calculated, as given in Equation 5, and the Adam optimization algorithm is used to
update network parameters to minimize the loss function.

𝐽 (Θ) = − log 𝑝Θ(𝑦 = 𝑘 | 𝒙) (5)

The hyperparameter settings for the DTW-TapNet network structure designed in this paper are presented in
Table 1.
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Table 1. Hyperparameter settings of the proposed network

Network name Network layer
Parameters setting

Upper limb Lower limb

Feature extraction network

Conv1
Layers count 256,
kernel size (8, −),

stride (1, −)

Layers count 256,
kernel size (8, −),

stride (1, −)

Conv2
Layers count 256,
kernel size (5, −),

stride (1, −)

Layers count 256,
kernel size (5, −),

stride (1, −)

Conv3
Layers count 128,
kernel size (3, −),

stride (1, −)

Layers count 128,
kernel size (3, −),

stride (1, −)
Fc1 Unit count 300 Unit count 400
Fc2 Unit count 100 Unit count 200

Attention network
AttFc1 Unit count 128 Unit count 128
Output Unit count 1 Unit count 1

Table 2. Feature extraction of support vector machine

Feature index Feature

1-4 Mean, standard deviation, coefficient of variation, standard deviation of slope of amplitude
5-8 Mean, standard deviation, coefficient of variation, standard deviation of slope of velocity
9-12 Mean, standard deviation, coefficient of variation, standard deviation of slope of smoothness

2.5 Comparison methods
2.5.1 SVM
SVM is a classic machine learning method based on manual feature extraction [24]. In this study, we extract
12 commonly used indicators related to motion amplitude, speed, and smoothness based on the evaluation
criteria in the MDS-UPDRS-part III, as detailed in Table 2 [25,26]. The penalty parameter in the SVM classifier
is set to 1, and a radial basis function is used as the kernel.

2.5.2 LSTM
LSTM is an improved type of recurrent neural network (RNN). Compared to RNN, LSTM incorporates gated
units, effectively retaining the temporal dependencies in time series data [27]. The LSTM network is designed
with 500 units based on the data length, where each unit consists of a single hidden layer with 32 hidden units.
L2 regularization is applied, and training is conducted using the cross-entropy loss function.

2.5.3 Convolutional prototype network
The convolutional prototype network (CPN) consists of CNN and prototype learning. The difference between
this network architecture and the DTW-TapNet is that it lacks an attention mechanism. It utilizes a CNN
to extract features and then averages the features to obtain prototype representations for each category. Sub-
sequently, the loss function is computed, and the network is optimized. In this paper, the CNN structure
and hyperparameters used for feature extraction remain consistent with the feature extraction section of our
method. The settings for learning rate, regularization, and other parameters are also kept consistent with our
method.

3. RESULTS
This paper employs the confusion matrix (CM) to represent the classification results of the classification
method. Each row in the matrix corresponds to the true class, and each column represents the predicted
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Table 3. Performance comparison results of each classification method

Classification method
Upper limb task (finger tapping) Lower limb task (toe tapping)

Accuracy Weighted precision Kappa coefficient Accuracy Weighted precision Kappa coefficient

SVM 60.00% 60.40% 0.41 61.22% 60.92% 0.45
LSTM 62.22% 63.64% 0.45 63.27% 62.48% 0.46
CPN 66.67% 67.55% 0.51 73.47% 74.64% 0.61

Our method 75.56% 76.77% 0.64 81.63% 84.65% 0.73

SVM: Support vector machine; LSTM: long short-term memory; CPN: convolutional pro-
totype network.

class. It can be given as Equation 6.

𝑪𝑴 =



𝑘11 · · · 𝑘1𝑖 · · · 𝑘1𝑁
...

. . .
...

. . .
...

𝑘𝑖1 · · · 𝑘𝑖𝑖 · · · 𝑘𝑖𝑁
...

. . .
...

. . .
...

𝑘𝑁1 · · · 𝑘𝑁𝑖 · · · 𝑘𝑁𝑁


(6)

where 𝑘𝑖 𝑗 denotes the number of samples that belong to class 𝑖 and are classified as class 𝑗 . 𝑁 represents the
dimension of the matrix, corresponding to the total number of classes. This paper employs accuracy (𝐴𝑐𝑐),
weighted precision (𝑊𝑃), and kappa coefficient (𝐾𝐶) as evaluation metrics to assess the overall performance
of the classification method. The respective formulas are given as Equations 7-9.

𝐴𝑐𝑐 =

∑𝑁
𝑖=1 𝑘𝑖𝑖

𝑆
(7)

𝑊𝑃 =
𝑁∑
𝑖=1

(
𝑘𝑖𝑖∑𝑁
𝑗=1 𝑘 𝑗𝑖

·
∑𝑁
𝑙=1 𝑘𝑖𝑙

𝑆

)
(8)

𝐾𝐶 =

∑𝑁
𝑖=1 𝑘𝑖𝑖
𝑆 −

∑𝑁
𝑖=1

(∑𝑁
𝑗=1 𝑘𝑖 𝑗 ·

∑𝑁
𝑙=1 𝑘𝑙𝑖

)
𝑆2

1 −
∑𝑁

𝑖=1

(∑𝑁
𝑗=1 𝑘𝑖 𝑗 ·

∑𝑁
𝑙=1 𝑘𝑙𝑖

)
𝑆2

(9)

where 𝑆 denotes the total number of samples in the dataset.

The present study compares the proposedmethodwith the three comparisonmethods, and confusionmatrices
for the four classification methods of finger and toe tapping tasks are shown in Figures 6 and 7, respectively.
Classification performancemetrics calculated from theCMare presented in Table 3. For the finger tapping task,
the proposed method achieves an accuracy of 75.56%, a weighted precision of 76.77%, and a kappa coefficient
of 0.64. In comparison, the CPN method achieves an accuracy of 73.47%, a weighted precision of 74.64%,
and a kappa coefficient of 0.61. The LSTM method achieves an accuracy of 62.22%, a weighted precision
of 63.64%, and a kappa coefficient of 0.45. The SVM method achieves an accuracy of 60.00%, a weighted
precision of 60.40%, and a kappa coefficient of 0.41. Relative to the comparisonmethods, the proposedmethod
shows improvements of 8.89%-15.56% in accuracy, 9.22%-16.37% inweighted precision, and 0.13-0.23 in kappa
coefficient.

For the toe tapping task, the proposed method achieves an accuracy of 81.63%, a weighted precision of 84.65%,
and a kappa coefficient of 0.73. In comparison, the CPN method achieves an accuracy of 66.67%, a weighted
precision of 67.55%, and a kappa coefficient of 0.51. The LSTM method achieves an accuracy of 63.27%, a
weighted precision of 62.48%, and a kappa coefficient of 0.46. The SVMmethod achieves an accuracy of 61.22%,
a weighted precision of 60.92%, and a kappa coefficient of 0.45. The proposed method shows improvements
of 8.16%-20.41% in accuracy, 10.01%-23.73% in weighted precision, and 0.12-0.28 in the kappa coefficient.
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Figure 6. Confusionmatrix of the four classificationmethods of upper extremitymovements. CPN: Convolutional prototype network; LSTM:
long short-term memory; SVM: support vector machine.

Figure 7. Confusionmatrix of the four classificationmethods of lower extremitymovements. CPN: Convolutional prototype network; LSTM:
long short-term memory; SVM: support vector machine.

4. DISCUSSION
Motion analysis techniques offer a more objective and detailed view of the patient’s motor abilities, which can
detect subtle changes and nuances in movement that might not be noticeable to clinical observations. Previous
studies have combined motion analysis techniques, such as optical motion capture systems and wearable sen-
sors, with machine learning methods to assess the bradykinesia in PD [28–30]. These studies derived the classic
motion features and primarily achieved the distinction between healthy controls and PD patients. Compared
with these studies, this study employed the deep learning-based method to learn the latent features and subdi-
vide the bradykinesia in PD.

Clinical data often exhibit the characteristic of a small sample size. This paper employs a data augmentation
method using DTW data merge. It involves finding the optimal match between the two time series and then
concatenating them, ensuring that the concatenation points of the two time series have similar temporal char-
acteristics. Besides, DTW data merge can enhance robustness against noise and temporal misalignment in
time series [31]. The prototype learning method learns low-dimensional feature representations for time series
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to reduce the data requirements [23]. The attention mechanism, calculating the distance between prototypes
and feature embeddings for classification, can also address the issue of small sample sizes [32]. Comparative
results with traditional classification methods demonstrate the effectiveness of the proposed method. Further-
more, compared to the CPN classification method, the result indicates that the attentional prototype networks
significantly improve classification performance. The attentional prototype network, effective for addressing
small-sample classification problems, incorporates an attention mechanism that enhances the extraction of
delayed features. This improvement contributes to improved performance in the classification of time-series
signals [33].

Currently, the assessment of bradykinesia in PD primarily relies on clinical scales. Despite the application of
various intelligent instruments to achieve more objective and accurate quantitative assessments, there remains
a lack of detailed differentiation of bradykinesia, and the classification accuracy can be further improved [10,34].
This paper introduces an effective solution for the accurate assessment of the degree of bradykinesia in PD
by combining high-precision motion capture data and a small-sample classification method designed for time
series signals.

This study has some limitations, which are planned as the focus of our future research. One main limitation
is that PD is a heterogeneous condition rather than a disease. Hence, it is ambitious to draw generalizable
conclusions. Besides, the test-retest reliability is absent in our study. Larger sample sizes with segmented PD
types should be considered in future work to further validate our method’s effectiveness and the test-retest
reliability. On the other hand, the previous study has explored the potential of integrating multimodal signals,
which improved themotion function assessment [35]. The proposedmethod can be extended to themultimodal
signals, which promises to achieve a more accurate assessment of bradykinesia in PD.

5. CONCLUSIONS
This paper addresses the classification of small-sample time series signals and proposes a classification method
based on DTW data merge and attentional prototype networks. Firstly, the method employs DTW data merge
for data augmentation. Subsequently, a random grouping method is used to reorganize the dimension of time
series, followed by convolution operations to extract features in multivariate time series. The attention mech-
anism and prototype learning are introduced to train low-dimensional feature representations of time series,
thus reducing the dependency on data volume. The proposed method is applied to motion capture data of
upper and lower limb movements. Experimental results indicate that the DTW data merge method, atten-
tion mechanism, and prototype learning modules effectively reduce the data volume requirements. Addition-
ally, the use of attention prototype networks significantly improves classification performance. The proposed
method can be effectively applied to the classification of small-sample time series signals and achieve an accu-
rate assessment of the degree of bradykinesia in PD.
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