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Since we have entered the precision prostate cancer surgery era[1], the robotic approach currently represents 
the preferred choice of the patients[2]. Focusing on robot assisted radical prostatectomy (RARP), several 
technical[3-5] and technological[6] innovations have been introduced with the aim to maximize both 
functional and oncological outcomes.

The advent of three-dimensional (3D) technology[7] meets both patients’[8] and surgeons’ preferences[8,9], 
allowing visualization of the anatomy three-dimensionally and enhancing the perception of the disease’s 
location and characteristics, such as its relationship with the prostate capsule.

A step further in this direction is represented by the possibility to overlap the 3D virtual images with the real 
anatomy during in vivo robotic procedure, performing augmented reality procedures[10,11]. As reported in 
our previous experiences, 3D prostatic models can be obtained from 2D-MRI images and consequently used 
during RARP, allowing the surgeon to focus on the tumor’s characteristics, with particular attention to the 
potential presence of extracapsular extension. Thanks to specifically developed software, virtual models can 
be displayed on the da Vinci surgical console (Intuitive Surgical Inc.) and automatically anchored to the in 
vivo live images during surgery[12].
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Notwithstanding the initial encouraging findings, this approach revealed not to be accurate enough due to 
the high heterogeneity of colors displayed during the endoscopic view and the absence of clear 
intraoperative landmarks for providing a precise spatial orientation along the three main axes. In the 
current year, we began to explore the potential applications of artificial intelligence (AI) for urologic in vivo 
surgery. Our new approach consists of a two-step automatic system that aligns a 3D virtual model of the 
patient’s prostate with the endoscopic 2D images at the end of the extirpative phase during RARP. For each 
of the two steps, a specific convolutional neural network (CNN) was developed. Briefly, the first CNN 
outputs catheter location and z rotation by identifying the anchor point. The second CNN returns antero-
posterior rotation on the x axis. Their combined results allow to perform the actual overlay rate. Our 
findings are promising and were presented during the last edition of Virtual EAU 2021, showing that the 
introduction of CNNs allows to correctly overlay 3D virtual images in a completely automatic manner. The 
correct identification of extracapsular extension at the level of the resection bed can potentially bring a 
reduction in positive surgical margins rates, with a subsequent oncological advantage for the patients with 
locally advanced disease[13].

As shown in the recent literature, the application of AI in uro-oncology has gained wide diffusion[14]; despite 
its use during live surgeries, it is still limited to anecdotical experiences[15]. The intraoperative support of 
machine learning (ML) for autonomous camera positioning was promisingly explored analyzing data 
obtained by instrument kinematics, laparoscopic video, and surgeon eye-tracking[15]. On the contrary, the 
application of ML to more complex tasks (e.g., suturing, knot-tying, and tissue dissection) is more difficult 
to reach. As recently summarized by Ma et al.[16], a robot must be able to perform three different actions to 
complete these surgical tasks: it must “see” (vision recognition), “think” (task planning), and “act” (task 
execution).

Therefore, even if this field of research seems to be the most appealing, we need to think of the potentiality 
of AI driven surgery, looking to a wider horizon[16,17].

Starting from preoperative setting, as shown by Auffenberg et al.[18], specifically developed ML algorithms 
can help the surgeon in selecting candidates for the different treatments (e.g., active surveillance, radical 
prostatectomy, radiation therapy, and androgen-deprivation therapy) by analyzing data from the electronic 
health records.

Furthermore, this technology may also be applied for improving surgical training: by extracting data from 
the da Vinci console, dedicated ML can be developed to automatically analyze the trainees’ movements, 
providing a personalized evaluation highlighting the strongest and weakest technical abilities[19]. As well, the 
application of ML-based analysis to automate segmentation of anatomical landmarks during 12 different 
surgical steps during RARP showed, with respect to human segmentation, that the ML-based model 
annotated better the boundaries[20].

Looking to the future, the further development of robotic technology towards automation will enhance 
surgical outcomes by improving the workflow and minimizing repetitive or mundane tasks[21].

However, the most challenging aspect of this technology is the ability to reproduce the sophistication of 
human movements and therefore to reach complete autonomy.
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Theoretically, to reach this quality of information, multiple tertiary centers should provide standardized 
data, following uniform standards. Deep learning models developed from these data may be able to predict 
unexpected complications, offering the surgeon a chance to adjust the intraoperative planning. The robotic 
system would also be able to recognize the operator and adapt its feedback to the surgeon, providing 
instantly tailored data to reach the best and smartest surgical decision making[16]. Moreover, exploiting the 
available cloud services and high-speed internet connection (i.e., 5G), information can be rapidly exchanged 
between machines.

Even if this scenario sounds appealing, the assurance of data secrecy and the lack of precise legislation 
represent technical obstacles which still need to be overcome.

In conclusion, particularly in an intraoperative setting, the advent of AI is obstacle by the lack of live data 
collection and by the complexity of privacy and data sharing legislation.

For all these reasons, the current research should be focused on the ability of AI to provide the operator 
important additional information (e.g., augmented reality images) during the surgical procedure, rather 
than trying to substitute the surgeon.
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