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Automatic image analysis techniques applied to neuroimaging data in general, and magnetic resonance 
imaging (MRI), and functional MRI (fMRI) in particular, have proven to be effective computer-aided 
diagnosis (CAD) tools in neuroscience[1-4]. Recently, the advancements in machine learning techniques 
combined with the wide availability of computational power have proven to be efficient in solving 
previously difficult problems in analyzing neuroimaging data. At the forefront of these advancements is the 
usage of deep (artificial) neural network architectures that led robust learning based techniques to attack 
challenging problems such as segmentation and classification in neuroimaging data[5-8]. 

Many of the impressive results obtained in CAD using deep learning (DL) techniques utilize mainly 
image datasets. DL networks typically require annotations of several images for employing supervised 
learning techniques and are one of the roadblocks in employing these state of the art networks in various 
classification tasks in MRI/fMRI. However, unsupervised learning techniques within the DL paradigm are 
now being employed in natural image classification with a lot of success and we believe the adaptability of 
these to the neuroimaging data are required to attack challenging neuroimage analysis problems. 

A stacked denoising auto encoders approach that is an unsupervised learning technique was used[9] for 
brain tumor segmentation in MRI imagery. The experimental results showed that using this particular 
approach is as good as using supervised learning based DL techniques that require accurate image-based 
annotations. This indicates that we can use different unsupervised learning in DL networks variants for 
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various neuroimaging data problems. A Siamese DL networks approach[10] for detecting spinal metastasis 
with a multi-resolution technique correctly detected 100% of lesions on a dataset of 26 sagittal MR images 
from 14 males and 12 females (58 ± 14 years; mean ± SD). The DL network considered produced only 
0.40 false positives (FPs) per case. Further, at a true positive (TP) rate of 90%, with aggregation FPs were 
reduced from 0.375 FPs per case to 0.207 FPs per case obtaining 44.8% overall reduction. Although this 
work was for MR images of the spine, the usage of a Siamese neural network with the aggregation strategy 
promises to be an interesting approach that can also be adapted to brain MRI/fMRI imagery. 

Utilizing domain-transfer convolutional neural networks, an end-to-end DL technique[11], shows great 
promise since it overcomes the following problems of traditional classification and other DL based 
methods: (1) the need for manual design of feature space; (2) effective feature vector classifier or segment 
specific detection object and image patches; (3) large training datasets; (4) computing resources; and (5) 
long waiting times for training a perfect deep model. An example classification of the Open Access Series 
of Imaging Studies (OASIS)-MRI dataset showed good potential for such an approach’s generalizability. 

Extreme learning machines is a variant of DL networks, and an application in resting state fMRI data 
for schizophrenia was undertaken[12] and experimental results indicated that near 90% accuracy was 
obtained on a dataset of 72 patient images and 75 healthy controls (18 to 65 years) from the Center for 
Biomedical Research Excellence (COBRE)’s raw anatomical and fMRI data on this difficult classification 
problem. A DL pipeline[13] applied to recognize Alzheimer’s disease using fMRI data obtained overall 
highest accuracy of 96.86% on 28 patient images and 15 healthy controls (24 female and 19 male, 
74.9 ± 5.7 years) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. 

Most of the CAD pipelines with DL techniques at their core utilize non-medical data to train due to 
the lack of availability of massive labeled data. Recent advancements in natural image analysis with 
DL methods are yet to be used for neuroimaging data and the challenges in obtaining the datasets/
annotations/labels, improvising/adapting DL networks, parameters setup, multi-modality generalization 
pose remain to be solved. However, the recent advancements in deep learning based image analysis shows 
great potential for analyzing MRI/fMRI imagery. Even with the limited results available so far in the 
literature, with deep learning based CAD for neuroimaging data we believe the future is bright for solving 
some of the hard neuroimage analysis problems. 
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