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Abstract
Perovskites are promising materials applied in new energy devices, from solar cells to battery electrodes. Under 
traditional experimental conditions in laboratories, the performance improvement of new energy devices is slow 
and limited. Artificial intelligence (AI) has recently drawn much attention in material properties prediction and new 
functional materials exploration. With the advent of the AI era, the methods of studying perovskites have been 
upgraded, thereby benefiting the energy industry. In this review, we summarize the application of AI in perovskite 
discovery and synthesis and its positive influence on new energy research. First, we list the advantages of AI in 
perovskite research and the steps of AI application in perovskite discovery, including data availability, the selection 
of training algorithms, and the interpretation of results. Second, we introduce a new synthesis method with high 
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efficiency in cloud labs and explain how this platform can assist perovskite discovery. We review the use of 
perovskites in energy applications and illustrate that the efficiency of energy production in these fields can be 
significantly boosted due to the use of AI in the development process. This review aims to provide the future 
application prospects of AI in perovskite research and new energy generation.

Keywords: Perovskite solar cells, machine learning, artificial intelligence, new perovskite prediction, accelerated 
synthesis

INTRODUCTION
As a result of increasing environmental issues, the energy crisis is now a severe problem for humans globally 
due to climate change and fossil fuel depletion[1,2]. Besides reducing fuel consumption and carbon-neutral 
policies, topics regarding advanced energy materials for efficient energy generation, consumption, and 
storage have attracted significant attention, including batteries[3-8], photocatalysts[9-11], supercapacitors[12-14], 
solar cells[15,16] and fuel cells[17-19]. Batteries and cells can further be improved by electrolyte, cathode and 
anode materials discovery[20-22]. However, the performance of current energy materials is not satisfactory for 
the ongoing energy crisis.

Recently, the types of energy materials are increasing rapidly and more attention is being paid to the 
potential of perovskites in the energy sector. Perovskite materials (PMs) are becoming popular because of 
their novel optoelectronic properties. PMs have a general formula of ABX3, where A is an inorganic ion or 
organic cation, B is a metal ion, and X is a halide anion. This flexible structure typically results in an 
excellent variety of PMs with different properties in the organic and inorganic regions. PMs now have wide 
applications in photocatalysts[23], perovskite solar cells (PSCs)[24-26] and batteries[27]. Figure 1A shows the 
general PM structure and the structure of a highly stable, hole-conductor-free, and printable mesoscopic 
PSC[25]. Due to the diversity of PMs and energy device architectures, PSCs can be constructed with different 
PMs with various performances, stabilities, and costs, as shown in Figure 1B[26]. However, the traditional 
method of PM research is a time-consuming process. To improve the time cost in the discovery and 
performance of PM applications, researchers now devote more attention to the assistance of artificial 
intelligence (AI).

AI is not a novel technology, having been developed rapidly in recent decades and applied to chemistry and 
materials science in seeking new structures with higher performance. AI technology helps us to discover the 
correlation between properties and structures. AI technology has several branches, including machine 
learning (ML) and artificial neural networks (ANNs). ML uses models and algorithms to understand high-
dimensional features in the supplied data. Choudhary et al.[28] used ML methods to explore efficient solar 
cell PMs by combining them with density functional theory (DFT) calculations through the Vienna Ab 
Initio Simulation Package (VASP). DFT software, like VASP[28], also helps to generate training data. 
Therefore, AI abilities offer a possible solution in performing various PM discoveries and applications.

This review presents an in-depth assessment of AI technology assistance for PMs and how AI can help to 
improve PM performance in the energy region, especially for solar cells and batteries. The following section 
starts from the AI workflow, including database information, model introduction, and interpretable ML, 
which help researchers comprehend ML. After training and predictions, we introduce AI-assisted synthesis 
and the concept of cloud labs, which accelerate new PM generation and testing. After synthesis, the 
comparison is made between the performance of general and AI-assisted PM productions. Energy 
conversion efficiency and capacity are reviewed. In the final section, we give our perspectives on how AI can 
assist PM discovery in other sectors and future challenges.
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Figure 1. Recent energy materials, perovskite structure description, and energy material application. (A) Perovskite material structure 
and architecture of a highly stable, hole-conductor-free, and printable mesoscopic perovskite solar cell. Copyright from AAAS[25]. (B) 
Different compositions of perovskite solar cells showing the variety of the perovskite family and its potential. Copyright from ACS 
Publications[26].

OBJECTIVES OF AI AND ITS WORKFLOW
AI for energy materials
PMs are favorable candidates for the next generation of energy devices. Given the high chemical flexibility 
made available by the perovskite framework in accommodating a broad spectrum of atomic substitutions 
and the multiple possibilities of spanning compositions or configurations of double perovskites, double 
perovskite oxides are considered to be promising materials that are beneficial for energy conversion and 
storage, e.g., PSCs[29]. With the commercialization of PMs, new perovskite-related performance 
requirements challenge related research efforts. For instance, the stability of PMs is limited by restricting 
photovoltaic device lifetimes to 3000 h[30]. In addition, other topics, such as predicting the formability of 
perovskite structures of hybrid organic-inorganic perovskites (HOIPs), also pose challenges for the space 
exploration of PMs[7]. However, traditional trial-and-error approaches to perovskite-related research and 
development, e.g., PSC screening and stability testing, are labor-intensive and expensive. The high 
computational cost results from the high-dimensional perovskite parameter space, multiple environmental 
factors (light, temperature, bias, oxygen, and humidity), many possible compound compositions 
enumerated, and the calculation of physical properties, such as high-throughput DFT, the GW approach, 
and hybrid functionals for bandgap estimation[31,32].

Research removes the burden of traversing every possible combination and accelerates progress with data-
driven approaches and has recently become a remarkable route. There have already been massive open-
access databases of computing materials properties, recording information on electronic structure, 
thermodynamic and structural properties. It is possible to find efficient ways to extract knowledge for 
materials science with databases. Therefore, ML is gradually making inroads into materials science, where 
one can predict the properties of materials with features efficiently yet accurately. AI allows machines to 
develop knowledge and perform human-like tasks, such as materials science research. The brain of AI is 
ML, an interdisciplinary subject that includes computer science, statistics, and mathematics. The goal of ML 
is to construct a model under the guidance of an algorithm to develop knowledge from historical data, and 
thus it can evaluate or predict new objects.
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ML is an ideal toolkit to accelerate PM research and development at an unprecedented pace. Over the last 
decade, ML has been applied to materials science problems in a variety of directions for properties 
prediction, such as the formation energy of elpasolite structures, molecular electronic properties in chemical 
compound space, the density of electronic states at the Fermi energy, the molecular atomization energies of 
molecules, the Curie temperature of high-temperature piezoelectric perovskites, the thermodynamic 
stability of ternary oxide compounds, the bandgap energy (Eg) of crystalline compounds and the metallic 
glass-forming ability of ternary amorphous alloys, crystal structures and the development of interatomic 
potentials[33]. Furthermore, ML can find the optimal density functionals for DFT and build predictive 
models of material properties[33]. Moreover, ML has applications in related fields, such as energy storage, 
where various research groups have implemented models to forecast the remaining lifetime of batteries and 
fuel cells[31]. ML models also can predict underlying physical phenomena, as well as PSC performance. Even 
though it is nearly impossible for researchers to find relevant patterns from a dataset, the PSC model 
predictions closely match the theoretical predictions of the Shockley and Queisser limits. Instead of the 
previous computational materials design, which derived materials properties according to physical laws, ML 
can obtain latent structural or compositional information from the big data and eliminate the practical 
obstacles for synthesizing PMs. The general workflow of ML in material science, shown in Figure 2[34], 
includes data preparation, feature engineering and model selection, evaluation, and application. The model 
applications can guide the process of target PMs.

Available databases and data preparation
Open-access databases of material properties provide a solid foundation for ML applications. Since the data 
determine the upper bound of ML performance, it is significant to use high-quality data to prevent 
erroneous and redundant information for ML. Table 1 provides a list of authoritative open databases 
containing information regarding perovskites. The commonly used authoritative open databases are the 
Materials Project[35], the Open Quantum Materials Database (OQMD)[36], and the Computational Materials 
Repository (CMR)[37]. The Materials Project, developed by Lawrence Berkeley National Laboratory (Berkeley 
Lab) and the Massachusetts Institute of Technology (MIT), uses supercomputing and state-of-the-art 
electronic structure methods to uncover the properties of all known inorganic materials. The latest database 
release V2021.03.13 features a new formation energy correction scheme. The OQMD is a high-throughput 
database currently consisting of nearly 300,000 DFT total energy calculations of compounds from the 
Inorganic Crystal Structure Database (ICSD)[38] and illustrations of commonly occurring crystal structures. 
It contains 3486 perovskites with symmetrically equivalent sites and 6972 perovskites with symmetrically 
distinct sites. The ICSD is the world’s largest database of entirely determined inorganic crystal structures, 
from elements to quintenary compounds. It contains about 185,000 structures, with 6,000 added annually. 
Each record includes crystallographic data, chemical/physical property data, and bibliographic information 
referencing the journal article structure. The CMR addresses the data challenge of quantum physical 
calculations and provides a software infrastructure that supports the collection, storage, retrieval, analysis, 
and sharing of data produced by many electronic structure simulators. The records were obtained by 
combining 53 stable cubic perovskite oxides with a finite bandgap on single perovskites[32]. These 53 parent 
single perovskites contained fourteen different A-site cations and ten B-site cations.

Many datasets contain PMs for energy applications that scientists have collected from works in recent 
decades[36-42]. Recent work has also discussed data augmentation strategies. For example, Oviedo et al.[43] 
performed peak scaling, peak elimination, and pattern shifting to augment an XRD dataset based on physics 
domain knowledge. Xu et al.[44] claimed that, based on the currently known derived data on the formability 
of perovskites with 2,000 compositions under certain environmental pressures, the number of stable 
perovskites is expected to reach 90,000.
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Table 1. Publicly accessible databases containing perovskite-related data

Database Brief Description URL

Materials Project It uses high-throughput computing to uncover the properties of all known inorganic materials. http://materialsproject.org/

The Open Quantum 
Materials Database 
(OQMD)

A high-throughput database currently consists of nearly 300,000 DFT total energy calculations of compounds from the ICSD and decorations of 
commonly occurring crystal structures.

http://oqmd.org

Computational Materials 
Repository (CMR)

The Computational Materials Repository addresses this data challenge of quantum physics calculations. It provides a software infrastructure that 
supports the collection, storage, retrieval, analysis, and sharing of data produced by many electronic-structure simulators.

https://cmr.fysik.dtu.dk/

AFLOW An automatic software framework for high-throughput materials discovery. http://www.aflowlib.org/

Inorganic Crystal 
Structure Database 
(ICSD)

It is the world's largest database of fully determined inorganic crystal structures, from elements to quintenary compounds. Each record includes 
crystallographic data, chemical/physical property data, and bibliographic information referencing the journal article structure.

https://icsd.products.fiz-
karlsruhe.de/

Cambridge Structural 
Database (CSD)

The Cambridge Structural Database (CSD) contains a complete record of all published organic and metal-organic small-molecule crystal structures. 
Before entering the database, all structures are processed computationally and by expert structural chemistry editors. A key component of this 
processing is the reliable association of the chemical identity of the structure studied with the experimental data. This important step helps ensure 
that data is widely discoverable and readily reusable.

https://scripts.iucr.org/cgi-
bin/paper?bm5086

JARVIS JARVIS (Joint Automated Repository for Various Integrated Simulations) is a repository designed to automate materials discovery and optimization 
using classical force-field, DFT, ML calculations, and experiments.

https://jarvis.nist.gov/

Crystallography Open 
Database (COD)

COD collects all known small molecule or small to medium-sized unit cell crystal structures and makes them available freely on the Internet. As of 
today, the COD has aggregated ~150,000 structures, offering basic search capabilities and the possibility to download the whole database, or parts 
thereof using a variety of standard open communication protocol

http://www.crystallography.net

Springer Materials The platform provides the most comprehensive and multidisciplinary collection of materials and chemical properties with extensive coverage of all 
major topics in materials science and related disciplines, taking advantage of the best and most trusted materials science sources such as Landolt 
Börnstein data on a single platform.

https://materials.springer.com/

Perovskite modeling and training procedure
Feature engineering
Besides the raw data, another important factor determining the effectiveness of ML models is how we describe the properties. The description should be 
physically meaningful, chemically intuitive, and consistent with materials transformations[32]. In most cases, the relationship between the primary features and 
the target is unlikely to be linear. With the primary features, conjunctive features are formed to allow for nonlinearity in the linear models. Normalization is 
another important operation to adjust feature distribution to the standard normal distribution, ensuring they are on the same scale. Some ML models are 
sensitive to feature scalings, such as the neural network (NN) and the support vector machine (SVM).

Besides those listed above, dimension reduction is yet another determinative operation in high-dimensional feature spaces and chemical data are typically high 
dimensional. High-dimensional features lead to high computational complexity, the curse of dimensionality, and the disappearance of information due to 
multicollinearity. There are two general methods for dimension reduction: feature selection and linear transformation. For many classical ML models, feature 

http://materialsproject.org/
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https://scripts.iucr.org/cgi-bin/paper?bm5086
https://jarvis.nist.gov/
http://www.crystallography.net
https://materials.springer.com/
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Figure 2. AI accelerating perovskite structure discovery with relevant data. The figure shows the general workflow of machine learning 
in materials science. Copyright from Springer Nature[34].

selection is a key factor in determining a successful model since it reduces the complexity of the model 
space, helps avoid overfitting and eliminate unrelated features and noise. Furthermore, it can also shorten 
the training time and further promote the prediction ability and generalization performance of the model. 
An intuitive method to perform feature selection is to drop the features with a high Pearson correlation. 
Recent works also propose an algorithm-based method to select the features, e.g., LASSO and genetic and 
greedy algorithms[45]. The linear transformation for dimension reduction is often achieved through matrix 
decomposition techniques, such as singular value decomposition and principal component analysis (PCA). 
PCA is the most popular method because it allows for transforming the parameter space into a mutually 
independent parameter space with a given dimension by selecting the first N eigenvalues of the covariance 
matrix of the parameter matrix. As a result, PCA eliminates complex computation problems, the curse of 
dimension, and multicollinearity. However, PCA may not provide the optimal principal component for 
non-Gaussian distribution data.

Model selection
ML algorithms can be grouped into supervised, unsupervised, and reinforcement learning. The choice of 
model mainly depends on the type of task. Supervised learning is the primary choice for a target output, 
such as the Eg of crystalline compounds. Supervised learning models can be further divided into regression 
and classification models, corresponding to continuous and discrete output items. If the main task is to infer 
or analyze data and is without any notation regarding relation, then the corresponding ML algorithm is 
unsupervised learning. Simultaneously, reinforcement learning suits the tasks rewarded by environment 
interaction. Deep learning is generally applied in supervised and reinforcement learning, but it requires 
significant data to perform well. In general, the best model is an ensemble algorithm, which is obtained by 
combining multiple algorithms. We display a flowchart in Figure 3[46] that can assist in rapid model 
selection. Cross-validation and independent testing are the primary basis for evaluating models. Commonly 
used evaluation indicators include the mean absolute error (MAE), mean square error (MSE), root mean 
square error (RMSE), coefficient of determination (R2), and regression correlation coefficient (R), with the 
confusion matrix, precision, recall, test receiver operating characteristic curve (ROC) and area under the 
ROC curve (AUC) were used for classification.
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Figure 3. Decision flowchart of model selection in common ML tasks[46], which is applied uniformly across perovskite discovery and 
properties prediction. The DBSCAN on the right part means “density-based spatial clustering of applications with noise”.

The terms “machine learning” and “deep learning” have become very popular in recent years, but both are 
confusing. ML is a part of AI that focuses on imitating human learning, while deep learning is one of the 
research orientations of ML. ML includes many famous algorithms, such as linear regression, decision trees, 
Bayesian learning and ANNs. ML extends from statistics, information theory and matrix analysis to obtain 
the optimal solution rivaling human learning results. For instance, random forest (RF) is an ensemble 
learning method that uses multiple decision trees for classification and prediction, while each decision tree 
splits the node by maximum information gain. In addition, following the principal theory of the ML model, 
the model can explain the relationship between the features and the target. However, traditional ML is not 
sufficiently intelligent to handle complex problems, such as image recognition, speech recognition, and 
natural language processing, and deep learning is therefore proposed. Deep learning originates from the 
ANN. The ANN is an algorithm with nonlinear adaptive information processing capability, consisting of 
multiple hidden-layer perceptions, and is the basic framework of deep learning. Deep learning is intelligent 
because it incorporates a complex algorithm that learns and reorganizes lower-layer perceptions to form 
abstract but efficient, higher-layer neurons for the final decision. With this mechanism, deep learning is 
superior to previous technologies in complex problems. Complicated systems can also be problematic. 
Firstly, deep learning requires tremendous amounts of data, usually at the million level, to overcome 
underfitting if trained from scratch. Moreover, significant computing resources will be spent to train a 
model, resulting in substantial costs. In addition, deep learning models are complicated to interpret because 
of their complexity, which means they cannot indicate patterns in the data.

Model evaluation and validation
The core of supervised learning is to infer the unknown from the known. There will inevitably be some 
statistical errors in the algorithm operation, and model evaluation is required to ensure the validity of the 
ML model and the correctness of the results. Generalization ability is an important indicator for evaluating 
models, which refers to the adaptability of ML algorithms to fresh samples. The purpose of ML is to find the 
laws hidden behind the data. The trained model can also give appropriate output for data other than the 
training set with the same laws. Therefore, the key is using the test set to test the generalization ability. It is 
noteworthy that the test and training sets need to be mutually exclusive. The error obtained using the test 
set can be seen as an approximation of the generalization error.
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A commonly used method for evaluating the reliability of ML models is k-fold cross-validation (k-fold CV). 
K-fold CV is to divide the input data into k mutually exclusive subsets of similar size based on stratified 
sampling. The union of k-1 subsets is then used as the training set and the remaining one is used as the test 
set. After k training and testing, the final ML performance is the average of all test results. The k value of the 
k-fold CV method, i.e., the number of subsets, has a significant impact on the stability and fidelity of the 
evaluation results. Commonly used values for k are 5, 10, and 20. When k is equal to the number of input 
data samples, k-fold CV becomes leave-one-out cross-validation (LOOCV). LOOCV is not affected by 
random sample division. The results are generally considered to be more accurate but simultaneously result 
in greater time costs and computational resource consumption. Whether it is a common test set or k-fold 
CV, quantitative evaluation metrics are required to measure model performance. Different algorithm tasks 
have different evaluation metrics. For regression algorithms, the commonly used evaluation metrics are 
MSE and R2. For classification algorithms, the commonly used metrics are precision, recall, precision, F1 
score, ROC, and AUC.

Interpretable ML
Interpretable models
It is common to apply interpretable models in materials science because we want to know what property 
affects the final performance of an energy material. Through k-fold CV, the support vector regressor (SVR) 
model is a very efficient method for predicting the Curie temperature (Tc) of PMs, resulting in an R of 
0.8549, an RMSE of 28.6659, and an MRE of 0.0725[45]. An explainable strategy is proposed that combines 
ML with the Shapley Additive Explanations (SHAP) method to accelerate the discovery of potential 
HOIPs[7]. The most common interpretable models in PM research are tree models, including RF[47] and 
gradient boosting regression tree (GBRT) models[33]. Im et al.[33] used a GBRT model to predict heats of 
formation and bandgaps, and a statistical analysis of the selected features identified design guidelines for 
discovering new lead-free perovskites. On the test set, the GBRT model was more accurate in predicting the 
heats of formation but had a more significant prediction error for the bandgaps. The importance scores of 
all features in the predictions of the heats of formation and bandgaps given by this GBRT model are shown 
in Figure 4A. As can be seen, in the GBRT prediction of the heats of formation, the halogen anion type (Xx) 
is the most crucial feature. The importance score of DB3+, the second important feature, has been reduced by 
half and the later feature importance score has become negligible. The distribution of important scores 
implies that the heat of formation strongly depends on halide anions and DB3+. In contrast, when the GBRT 
predicts Eg, the most important feature SG score is almost insignificant, indicating a more complex 
relationship between Eg and material features.

Deep learning
Deep learning has also excelled in materials science research in recent years. The highly nonlinear nature of 
deep learning can more fully restore the underlying physical mechanism. Kirman et al.[47] published a high-
throughput experimental framework in 2020 to discover new perovskite single crystals. This framework put 
high-throughput synthesized perovskite single-crystal images into a convolutional neural network (CNN) to 
obtain characterization results to predict the optimal conditions for synthesizing new perovskite single 
crystals and report the first synthesis of (3-PLA)2PbCl4. Saidi et al.[48] used a deep learning model to predict 
Eg ranging from 0.2 to 6.0 eV in the same year. The CNN performed exceptionally well, delivering a 
bandgap RMSE of only 0.02 eV compared to DFT results.

The above are examples of the further characterization or direct prediction of material properties with the 
help of deep learning. The question of whether deep learning models can explain physical and chemical laws 
is another direction of the discussion. Due to its high degree of nonlinearity and complexity, deep learning 
is considered a black box, reflecting its low interpretability. Nevertheless, some materials scientists have 
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Figure 4. Interpretation of perovskite ML models. (A) GBRT model gives insight into the heat of formation and bandgap predictions. 
The result shows that Xx plays an important role in both the heat of formation and bandgap. Copyright from Springer Nature[33]. (B) 
Mean site energy when the element occupies site A (1) and site B (2) is calculated by the CGCNN model. Copyright from APS[46].

developed explainable deep learning models. A crystal graph convolutional neural network (CGCNN) was 
proposed in 2018 to represent periodic crystal systems that provide material property predictions and 
atomic-level chemical insights with DFT precision[46]. With multiple convolutional, pooling, and hidden 
layers, the CGCNN can extract any structural differences based on atomic connections and discover latent 
relationships between structures and properties. Simultaneously, the empirical rules derived from the model 
results are consistent with the obvious aim of finding more stable perovskites, implying a reduced search 
space for high-throughput screening. Figure 4B shows the site energy distribution obtained by the CGCNN 
on sites A and B, respectively. Assuming that the cutoff energy for potential synthesizable is set to 0.2 
eV/atom, PbMoO3 falls within a reasonable range. It can be synthesized successfully, which confirms that 
the chemical insights gained from the CGCNN reduce the search space for high-throughput screening, 
thereby increasing the material search efficiency by a factor of seven.

The balance between accuracy, the interpretability of predictive models, and theoretical consistency is an 
essential proposition in the use of ML in materials science. Due to the complex interactions between 
material components, the relationship between material features and target properties is usually highly 
nonlinear, requiring the fitting of flexible nonlinear ML algorithms. However, most nonlinear ML models 
lack interpretability, adding difficulty to mechanistic understanding, such as finding critical components of 
target properties. Therefore, finding a balance of accurate prediction and interpretability by ML algorithms 
is crucial to advance data-driven materials research further. In addition, the consistency between the model 
interpretation and the theories in physics and chemistry is noteworthy. The model will be valueless if its 
interpretation does not match the theories, leading to the unachievable synthesis of new PMs.

IMPROVING PEROVSKITE PERFORMANCE IN ENERGY APPLICATIONS
Performance evolution of perovskite applications
Since PMs have been widely used in energy devices[24,49], improving their performance is the next step. In 
2013, the efficiency of a planar heterojunction solar cell with a CH3NH3PbI3-xClx absorber layer could reach 
an energy conversion efficiency of ~15%[50]. In 2021, He et al.[51] doped MAPbI3 into a homojunction PSC 
with NiO as the hole transport layer and the best efficiency reached 19.101%. Many new perovskite 
structures and devices are reported each year, and researchers are curious regarding the tendency of PM 
evolution in terms of composition and/or structure. Odabaşı et al.[52] reported that ML can screen perovskite 
structures and take part in an automatic synthesis system and help understand this tendency by learning the 
data extracted from previous works. One thousand nine hundred twenty-one records of (organo)-lead-
halide PSC device performance were collected from 800 publications from 2013 to 2018. Figure 5A shows 
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Figure 5. ML-assisted understanding of previous works on PSCs. (A) Discrete plot of average efficiency over the years legend by cell 
structure types, implying an increasing trend. (B) Forecast of cell efficiency growth by logistic growth model. (C) Decision tree of PSC 
efficiency based on synthesis conditions and PM material types. Copyright from Elsevier[52]. PCE: Power conversion efficiency.

their collected samples sorted by publication year and efficiency. The average efficiency of all three cell 
structures increased from ~8% to ~14%. Other conditions, like deposition procedures, solvents, anti-
solvents, electron transport layer materials, and hole transport layer materials, are all sorted by year and 
analyzed on cell efficiency, which have increased over the years.

Based on these data, a logistic growth model is generated to predict the efficiency limit of PSCs with blue 
points from Ye et al.[53] and red points from NREL, as shown in Figure 5B. They also predicted the stabilized 
efficiencies of normal cells using the decision tree in Figure 5C. The A, B, and C classes denote high 
efficiency (> 18%), intermediate efficiency, and low efficiency (< 9%), respectively. By obeying classification 
rules, the fraction of each node is present at the bottom of the frame. The middle of the frame shows the 
fraction of the A, B, and C classes in that node. The color and the top of the frame mean the class with the 
highest fraction in this node. The advantage of the decision tree is that it directly shows the interpretation of 
rules on the branches. Future improvements can be made by following the arrows on this diagram, but the 
limitation displayed in Figure 5B is a problem. Detailed predictions of properties are needed.
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Improvement of desired properties
Rather than strictly following development laws, focusing on specific properties can distinctly improve the 
performance of a device. Different combinations of the A and B cations in the ABX3 structure result in 
different performances, and appropriate doping or a double perovskite can significantly improve the desired 
properties. This means that the form of doping a PM changes into (A1-yMy)a(B1-yNy)bXc, where a and b can be 
unequal. This form raises a new problem, namely, finding an optimal doping value that is nearly continuous 
in an extensive perovskite system. Sun et al.[54], as mentioned above, used a DNN to solve this problem with 
a high-throughput experiment system. They classified synthetic Cs3(Bi1-xSbx)2(I1-xBrx)9 compounds, shown in 
Figure 6A, into 0D, 2D, and 3D structures according to the XRD data in Figure 6B. Although they 
practically trained their DNN with limited data (164 PXRD data from the ICSD), the system showed a high 
accuracy of over 90% in classification. The experiment was ten times faster than human labor. The 
interpretation of the ML model also gave suggestions regarding structure types. When x is equal to 20%, the 
model shows a high confidence score, indicating that the PM is in a 2D phase structure [Figure 6C], and by 
increasing x, tighter binding and larger bandgaps are achieved [Figure 6E]. The absorptance information 
agrees with this result in Figure 6D. The interpretation shows that the bandgap trend is not dependent on 
direct or indirect bandgap trends, but perhaps on the x value. Determining the optimal x can further 
understand the bandgap bowing phenomenon, which is observed in several common semiconductors and 
solar cells.

Other properties correlated to product performance can also be learned and predicted, such as the stability 
of perovskite oxides. Stability is vital as it affects the PM operating conditions in energy-related products. 
ML models can help improve PM synthesis by finding desirable structures with high stability. Li et al.[55] 
constructed an ML model to achieve this using a popular ML tool known as scikit-learn, an open-source 
package in Python under the BSD license. Their training data was a subset of the data from Jacobs et al.[56]. 
The key contribution of their work was that they found the correlation between stability and dataset 
features. They first found out that a higher cross-validation F1 score can be achieved if more features are 
used in training, which means a huge structural characteristic space behind the property. They then 
successfully predicted the stability of perovskites in five subsets, including 242 perovskite structures in 
different forms, and found the key features that affect the stability. Recursive feature elimination (RFE) was 
used to select the most relevant features by removing some insignificant features in the prediction each 
time. They also printed a heat map of all 1929 perovskites and their constituents, as shown in Figure 6F. The 
heat map shows that most perovskites are constituted with Ba, Sr, La, Y, Pr, and Ca at the A site and Fe, Mn, 
Co, and Ni at the B site. Li and colleagues also successfully predicted the stability of new perovskite 
compounds, like BaFe0.25V0.75O3 and La0.5Y0.5Co0.5Mn0.5O3, in high-activity solid oxide fuel cell (SOFC) 
cathodes.

In addition to the work of Li et al.[55], Schmidt et al.[57] also performed a stability prediction based on various 
ML methods and DFT calculations. Their dataset was collected from ~250,000 cubic perovskite systems, 
including all theoretically existing perovskites and antiperovskites. They found that the periodic table 
information (group, period, and number of valence electrons) is sufficient to predict the energy distance 
and convex hull with 140 meV/atom in MAE, which means that stability is highly related to the size of the 
crystal cell and valence electrons. Deng et al.[58] also predicted the stability of perovskites using specific 
descriptors in linear regression.

Similar approaches are also performed in predicting the conductivity of perovskites. Energy applications, 
especially batteries and fuel cells, rely on the conductivity of materials. Previously, conductivity was 
challenging to estimate without experiments. ML is now available for this task. Priya et al.[59] offered an ML 
regression and classification workflow to predict the conductivity of perovskites. The feature importance 
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Figure 6. (A) Structure of Cs3(Bi1-xSbx)2(I1-xBrx) 9. (B) XRD data of Cs3(Bi1-xSbx)2(I1-xBrx)9 with different x. (C) Confidence score on the 
dimensionality of perovskite. (D) Absorbance data of Cs3(Bi1-xSbx)2(I1-xBrx)9 with different x. (E) Bandgap “bowing” phenomenon is 
caused by the doping coefficient. Copyright from Elsevier[54]. (F) Heat map of 1929 perovskite structures and the prediction result of 
five test subsets. Copyright from Elsevier[55]. DFT: Density functional theory.

scores provided by their XGBoost model suggest that the electronegativity and atom mass of B site atoms, 
including dopants, are the most significant features. The atom mass and electronegativity are also 
periodicity-correlated features, matching the result of Schmidt et al.[57]. Important features help us to 
discover the influential factors of the activation energy (eV) and total conductivity (S cm-1) of stable 
perovskites of different charge carrier types. Figures 7A-F show the conductivity prediction results for 
proton (H), oxide (O), protonic electronic (H+e), oxide electronic (O+e), oxide protonic (O+H), and 
electronic (e) perovskite conductors. The desired perovskite will appear and show excellent application 
performance by combining different property predictions.
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Figure 7. Predictions of conductivity compared to experimental values for (A) proton (H), (B) oxide (O), (C) protonic electronic (H+e), 
(D) oxide electronic (O+e), (E) oxide protonic (O+H), and (F) electronic (e) perovskite conductors. Copyright from Springer Nature[59].

In addition to PSCs, ML can aid other perovskite applications. Shen et al.[60] combined high-throughput 
calculations and ML to find electrostatic energy storage dielectrics. They designed an integrated phase-field 
model to understand the nanofiller effect on polymer nanocomposites. The output included effective 
permittivity, breakdown strength, and effective electrical conductivity. A total of 6615 calculated results 
were used as a dataset to train a BPNN model to estimate the energy storage capability. With this ML 
model, the authors found that parallel perovskite nanosheets can enhance the breakdown strength of 
polymer nanocomposites and they successful ly fabricated a  high-voltage endurance 
P(VDF-HFP)/Ca2Nb3O10 material. Another work to find high dielectric breakdown strength perovskites for 
high energy density electric energy storage applications also used ML models[61]. A selection of 209 out of 
18928 ABX3-type perovskites were selected based on their bandgap and minimum photon frequency. A pre-
trained LASSO model was applied to predict the intrinsic breakdown field of the 209 selected perovskites, 
and three perovskites, SrBO2F, BaBO2F, and BSiO2F, were proposed. The results also suggest that the 
perovskites with larger maximum phonon frequencies and bandgaps are more likely to have larger 
breakdown strength. Xu et al.[62] designed an ML strategy to search for ABX3 ferroelectric perovskites with 
the desired properties of specific surface area, bandgap, Curie temperature, and dielectric loss. A 
classification model was first used to filter the ferroelectric perovskites from previously reported structures, 
and then regression models were used to predict the target properties. With the help of the ML model, they 
found 20 potential ferroelectric perovskites for photocatalysis, ferroelectric semiconductor, and water 
splitting applications.

Evaluating ML predictions through real products
The evaluation of PM performance is another important topic for energy applications. One cannot tell 
whether AI will promote PM performance before the product has been synthesized. Li et al.[63] built a two-
model strategy based on LR, KNN, SVR, RF, and ANN models. The training data were extracted from 333 
previous publications. The first model was used to predict the bandgaps of ABX3-type PMs. In contrast, the 
second model aimed to predict the open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor 
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(FF), and power conversion efficiency (PCE) of PSC devices. Eg, ΔH, and ΔL were used as inputs in the 
second model. The options of A, B, and X and the principle of ΔH and ΔL are shown in the right part of 
Figure 8A. The ANN showed the highest accuracy among all the ML results, giving 0.06 eV in RMSE and 
0.97 R2 in bandgap prediction. For the PCE prediction with a true bandgap, 3.23% in RMSE and 0.80 in R2 
were obtained. After training, they predicted and synthesized new films to evaluate the ML results.

Doped perovskites, like CsxMA1-xPbI3, CsPb(IxBr1-x), and MAPb1-xSnxI3, were predicted and synthesized with 
measured Eg between 1.3 and 2.3 eV. Figure 8B shows the predicted Eg versus the experimentally tested Eg of 
these new PMs. Figures 8C and D show the bandgaps of perovskites with different MA, FA, and Cs ratios in 
Cs/MA/FAPbI3 and Cs/MA/FASnI3, which act as the interpretation of correlations between the A and B 
components and bandgap. The first model showed high consistency between the prediction and 
experimental benchmark and is thus capable of providing new PMs for PSCs. Under the instruction of the 
first model, PSCs were designed with certain Eg, ΔH, and ΔL.

Figure 8E shows the predicted PCEs based on these three values, implying that the highest PCE values are 
between 1.2 and 1.3 eV of Eg with small ΔH and ΔL. This result agrees with the Shockley and Queisser 
theory that the best PCE can be reached with materials having a Eg in the range of 1.15-1.35 eV. However, 
there are still differences between the theoretical and actual values. In Figure 8F, the red line denotes the 
theoretical limit and the grey line shows the maximum PCE. Figures 8G and H show the experimental ΔH 
and ΔL preference and predicted ΔH and ΔL with 1.5 eV Eg and PCE. The predicted value shows a high 
similarity with the choice of the authors. Figures 8I and J show that the highest PCE appears when 
Eg = 1.2 eV with small ΔH and ΔL. The PCE shifts to a smaller value when Eg increases to 1.8 eV and 
requires higher ΔH and ΔL. This work demonstrates the power of ML tools for property prediction and 
interpretation. Furthermore, the authors synthesized the predicted result to evaluate the new PM 
performance. Their work is a suitable workflow combining ML, synthesis, and characterization and is highly 
similar to physical trends. Strategies for formulating new PSCs can follow this process.

Gok et al.[64] developed a 2-step ML approach to predict the Eg and PCE using eight different perovskites 
compositions (RbCsFAMAPI, CsFAMAPI, CsFAPI, FAPI, MAPI, MAPI-Cl, FAPI + MAPBr, and 
FAMAPI-Br). This approach contains two RF models. The first model uses RF to predict the optical Eg. A 
total of 1437 UV-vis absorption plots were used as the training set for an RF model and the simulated 
results showed high accuracy, with all of the eight perovskites having an exceptional R2 > 0.99. Furthermore, 
the Tauc plots were used to estimate the Eg of experimental and predicted data. As a result, the predicted Eg 
values display a low deviation (< 1.4%) from the experimental results. After that, the second model was used 
to predict the current density-voltage (J-V) curves of PSCs, which can be used to calculate the PCE. The 
average R2 of the second model decreases to 0.9010 with a standard deviation of 0.0534. To verify the results, 
eight different perovskites were fabricated as absorber layers under the same laboratory conditions. Among 
them, MAPI-Cl-based PSCs were fabricated in a p-i-n configuration, while the rest were in n-i-p. This 
factor is not considered to simplify the model and the effects of the charge transporting layers and the 
interfaces on the device performance. Thus, the deviation between the measured PCE and predicted value of 
MAPI-Cl-based PSCs reached 3.176%, significantly larger than the others.

As Figure 9A shows, the experimental and ML results suggested that FAPI perovskite has the lowest 
Eg of ≈ 1.49 eV and a FAPI-based PSC shows the lowest PCE of 15%. However, FAMAPI-Br, with the 
second-lowest Eg of 1.514eV, gave the highest PCE of 19.3%. The authors attributed this to the synthesis 
method for perovskites. In this work, the experimental confirmation proves that ML is reliable in predicting 
the Eg and PCE of perovskites under the scenarios where only the perovskite layer is considered. They 
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Figure 8. Model prediction and evaluation on synthesized perovskite thin film. (A) Description of A, B, and X in desired ABX3-type 
perovskite and explanation to ΔH and ΔL. (B) Predicted bandgap value versus experimental benchmark. (C, D) Bandgap rationalizes 
Cs/MA/FAPbI3 and Cs/MA/FASnI3 based on different Cs/MA/FA ratio. (E) Predicted PCE based on optimal values, implying that the 
highest PCE values are between 1.2 and 1.3 eV of bandgap with small ΔH and ΔL. (F) Comparison between PCE from Shockley and 
Queisser theory and maximum PCE from the model. (G, H) experimental ΔH, ΔL preference, and prediction map preference. (I, J) PCE 
map with ΔH and ΔL when Eg = 1.2 eV and Eg = 1.8 eV. Copyright from Wiley[63].

suggested further studies should involve charge transport layers, device architecture, interface properties, 
crystal size, halide segregations, ion migration, phase stability, and induced losses for more precise results.

Another ML method to optimize KI doping in MAPbI3 solar cells was proposed by Jiang et al.[65]. They built 
a Gaussian process regression (GPR) model to predict the current density-voltage curve of KI-doped 
MAPbI3. The outcome suggested that 5% KI doping leads to the highest PCE. Three samples with doping 
concentrations of 3%, 5%, and 6% were synthesized to verify this result. The experimental result showed that 
the 3%-doped sample has a higher PCE than the 5%-doped one, which conflicts with the ML prediction. 
Thus, the new data were fed back to the training set for a second round of training. The prediction of this 
round showed that 3% is the optimal concentration, in agreement with previous experimental results. Seven 
different samples with doping concentrations of 0%, 1%, 2%, 3%, 5%, 8% and 10% were fabricated for further 
testing. It was proved that the 3% concentration KI doping provided the highest PCE, which illustrates that 
the ML model is reliable. In addition, the optimal PSC synthesized in this work achieves a higher FF, Voc 
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Figure 9. (A) PCE versus bandgap energy of eight perovskites. The filled symbols represent predicted results from ML, while the empty 
symbol represents experimental data. Copyright from Wiley[64]. (B) J-V curves of undoped and 3% KI-doped  PSCs. Copyright from 
Springer Nature[65]. (C) Contribution of features under different temperatures. The feature importance is calculated from GBT 
regression and SHAP assessment, where aging_temp denotes aging temperature, dep_method denotes deposition method, Ost 
denotes over-stoichiometric with excess iodide, and α-δ denotes the probability of phase transition in humid air. The purple and orange 
color indicates low and high values of a given feature. Copyright from Springer Nature[66]. PCE: Power conversion efficiency; PSCs: 
perovskite solar cells; GBT: gradient boosting tree; SHAP: shapley additional explaining.

and Jsc compared to the undoped MAPbI3 device and the PCE is improved from 16.01% to 20.91%, as 
shown in Figure 9B. This work demonstrated that ML is a reliable and powerful tool to optimize the doping 
method for hybrid perovskites.

Zhao et al.[66] developed an automated robotic system to search for stable perovskite solar cells. In this work, 
there was a learning cycle for the compositional screening of mixed-cation ABX3-type perovskites, where A 
denotes a monovalent cation (Cs, Rb, K, MA, or FA), B denotes lead, and X denotes a halide. Sixty-four 
compositions were selected and synthesized under different conditions. In total, over 1400 samples were 
synthesized and characterized by the robot. After that, a gradient boosting tree (GBT) model was used to 
explore the importance of each feature for stability at different temperatures. The results are shown in 
Figure 9C, which illustrates that the contributions of features are distinct under different temperatures, thus 
finding the optimal compositions for the different operating temperatures of PSCs. They further performed 
first-principles calculations for the perovskites to examine the thermal stability. Considering the T80 [the 
time for a 20% decay of photoluminescence (PL)] and thermal stability, MAxCs0.15-xFA0.85PbI3 PSCs were 
fabricated with an n-i-p structure. The average PCE of MAxCs0.15-xFA0.85PbI3 with x = 5% and 10% increased 
from 17.5% to 19.1% and 18.3% compared with the MA-free perovskite. The PCE loss of 5%-10% of MA 
devices is less than 5% under 85 °C after 1400 h, while the MA-free one suffers ~25%. The MAxCs0.15-xFA0.85
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PbI3-based device could even maintain 90% of its peak PCE value after 1800 h of continuous operation.

ACCELERATED SYNTHESIS FOR PEROVSKITES
Accelerated synthesis process through ML
Due to the complex parameter space of its structure, perovskite synthesis is a sophisticated process with 
high time costs and strict requirements for reaction conditions, especially for perovskite nanostructures[67]. 
This problem hinders the exploration of new perovskites because traditional trial-and-error requires vast 
amounts of experiments. Even though simulation-based methods like DFT could help estimate parameters, 
the expensive computation resources and long calculation time drastically reduce their practicality. After AI 
extends its application in the experimental field, it offers a highly efficient method to develop, characterize 
and optimize devices, saving time and effort by avoiding numerous manual experiments[31]. One of the 
popular methods in previous research was to use ML to guide or control the synthesis process.

For example, Braham et al.[68] used SVM classification and regression models to control the synthesis of 
perovskite halide nanoplatelets by determining the high-yielded quantum-confined CsPbBr3 nanoplatelets 
from the design space. Yang et al.[69] combined ML models with DFT calculations to obtain excellent double 
PMs from 16400 candidates, ideal for high-performing PSCs. They first used the gradient boosting decision 
tree (GBDT) model to predict the bandgap of 16400 candidates and then select proper structures for DFT 
calculations based on the bandgap, tolerance factor, octahedral factor, and atom at the X site. Finally, 61 
possible structures were chosen, and the DFT results showed that ten of them fulfilled the requirement. To 
improve the stability of energy harvesting and conversion using halide perovskites, Sun et al.[70] developed a 
closed-loop Bayesian optimization framework to search stable composition of CsxMAyFA1-x-yPbI3. Only 
sampling 1.8% of the discretized compositional space, the model found an FA-rich and Cs-poor region 
centered with > 17-fold stability. The authors built an ML-based method using the ideal of high throughput 
experimentation (HTE) to synthesize and identify the lead-free perovskite composition with a Eg between 
1.2 and 2.4 eV, which is desired for energy-harvesting applications[54]. This work finally investigated 75 
different perovskite compositions spanning ABX3, A3B2X9, ABX4 and A2BIBIIIX6.

In recent years, with the rise of the above-mentioned AI-assisted synthesis methods, automated 
experimental systems inspired by AI have been proposed by researchers[71]. The automated experimental 
systems, integrating the concepts of HTE, robot automation systems, and ML models, significantly reduced 
the experimental time cost and improved the quality of reaction products. Typically, compared to only ML-
based methods, these systems have a closed loop of experiment execution and self-learning to optimize the 
synthesis process[72]. Thus, they are more suitable for perovskite discovery. Kirman et al.[47] developed an 
ML-assisted perovskite discovery framework with automatic synthesis and automated characterization. The 
workflow is shown in Figure 10A. The framework includes two ML models: an image recognition model for 
crystal classification and a predictive regression model. A CNN was first trained with a dataset containing 
25000 crystal images to distinguish between good crystal formation and no crystal formation. An ML 
regression model was then used to predict the likelihood of crystallization in the experimental space. The 
successful experiment rate doubled only after one experimental cycle with the classifier, distinctly avoiding 
the time-consuming synthesis process duplication. Additionally, they found a new structure (3-PLA)2PbCI4 

that showed a solid blue emission using the framework.

There are many examples of successfully-constructed automated platforms for the research and 
development of PMs. Li et al.[73] built a high-throughput robotic system for controlling the growth of metal 
halide perovskite crystals. They combined high-throughput experimentation and an ML model to build an 
automated perovskite synthesis platform, which could optimize the reaction parameters itself to obtain 



Page 18 of Liang et al. Energy Mater 2022;2:200016 https://dx.doi.org/10.20517/energymater.2022.1426

Figure 10. (A) Workflow for high-throughput synthesis of single-crystal perovskites and the image-recognition classification model. 
Copyright from Elsevier[47]. (B) Prediction accuracy vs. the number of training experiments for PUFK-SVM models of different 
crystallization systems. Solid lines show mean accuracy, and shaded bands indicate the standard deviation from five-fold CV results for 
each system. Copyright from ACS Publications[73]. (C) Workflow of ML-guide robot-based MHPs synthesis system.  Copyright from 
ACS Publications[77]. (D) Schematic of the developed intelligent modular fluidic microprocessor for autonomous synthetic path 
discovery and optimization of colloidal QDs and the process flow diagram detailing its operation. Copyright from Wiley[78].

suitable crystals (> 0.1 mm) for single-crystal X-ray diffraction. The system records the experiment 
conditions and results. It can form a dataset to train specific binary classification models (SVM, k-NN, and 
RDF) to distinguish the high-quality single crystals. The accuracy of the model increased with the number 
of experiments, as shown in Figure 10B. Although this system has certain limitations in practice, it 
successfully carried out 8172 perovskite synthesis reactions ten times faster than human labor and 
discovered two novel perovskite species, AcetPbI3 and (CHMA)2PbI4.

A robotic system constructed by Chen et al.[74] automatically enabled the synthesis and characterization of 
perovskites, which helped them identify four perovskite compositions from 95 tested targets with an optical 
Eg ≈ 1.75 eV and sufficient stability. Another robotic-based system developed by Gu et al.[75] provided a deep 
insight into the antisolvent effect for lead halide perovskites. Higgins et al.[76] developed an automated 
perovskite discovery system to search for PMs with long-term stability. The system could synthesize 
perovskites and measure the PL spectra without an operator. With non-negative matrix factorization and 
Gaussian process regression, the system can determine the most stable region in the phase diagram by 
analyzing the photoluminescent behavior. They further utilized their system to investigate the effect of 
antisolvents on multicomponent metal halide perovskites (MHPs), which are used to fabricate high-quality 
MHP films[77]. Figure 10C shows how the robot synthesized 1100 compositions. The sample was doubled 
using two different antisolvents, namely, toluene and chloroform. The ML model then learned from the 
characterization data and interpreted that the selection of antisolvents would influence the 
photoluminescence behavior of MHPs. Epps et al.[78] designed an artificial chemist that could synthesize 
perovskite quantum dots (QDs) and learn and discover synthesis routes by itself. A pre-trained NNE model 
was used to form a closed loop, as shown in Figure 10D. The system could synthesize colloidal QDs and 
measure their PL quantum yield (PLQY), emission linewidth (EFWHM), and peak emission energy (EP), whilst 
recording the information on reaction flow and properties of QDs as training data for the synthesis route 
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optimization in the NNE model to obtain the product with desirable properties. After 25 loops, the system 
obtained high-quality perovskite QDs within 1 meV of 11 target EP.

Indeed, ML-led automated laboratories offer a better perovskite synthesis solution to labor-intense trial-
and-error exploration in the complex space of perovskite structures. Moreover, this ideal has been used for 
related studies like hole transport materials (HTMs) used for PSCs[79] and organic photovoltaics[80], thus 
boosting the energy harvesting ability of PMs. However, it is noteworthy that the startup cost of an ML-led 
automated laboratory is high.

Accelerated PM synthesis through cloud laboratories
Generally, each ML-based or automated experiment requires expensive hardware and computational 
resources, resulting in a limitation for studies. Cloud laboratories have thus become an ideal solution for 
digital chemical experiments. Since the concept of cloud computing was established about 20 years ago, it 
has become a buzzword in the IT industry[81]. It is an on-demand self-service model for broad network 
access to a pool of computing resources, including storage, memory, and processing, which can be rapidly 
provisioned and released[82]. Nowadays, well-built cloud-based laboratories exist, such as Transcriptic and 
Emerald Cloud Laboratories[83]. Inspired by these achievements, material scientists have developed cloud 
labs for perovskite discovery.

In 2020, Li et al.[84] constructed an intelligent cloud lab for optically active perovskite nanocrystal (IPNC) 
discovery, which is an update of their previous work[85]. Figures 11A and B illustrate the architecture of this 
cloud lab. A central platform, materials acceleration operating system in the cloud (MAOSIC), is used to 
connect the automated experimental system to cloud servers. The MAOSIC platform works as a multi-
functional interface that allows users to control the hardware, obtain experiment data, observe experiment 
status and help the system optimize the reaction parameters. The wireless 5G network and an encrypted 
tunnel were applied for data transmission regarding the stability and security problems[86]. The users can 
only access the server by the key-built socket shell (SSH) tunnel, thereby improving security and efficiency. 
For the experiment part, SNOBFIT algorithms combine random search and gradient descent method is 
used to explore the high circular dichroism (CD) intensity region in the synthesis parameter space 
(temperature and concentration). Compared to the automated system introduced in the above section, 
cloud laboratories overcome the limitations of equipment and resources, offering users a more 
straightforward method to experiment while keeping the advantages of high operation speed, self-learning, 
and high accuracy. It has laid a solid foundation for the application of AI-assisted perovskite research 
systems. Novel PMs sometimes show interesting phenomena and extend the PM application field. It was the 
first time that chirality absorbance was found in an inorganic PM, and the PM was discovered and 
synthesized by an automatic MAOSIC system. This work shows that with the help of AI and robotic 
systems, more novel energy materials, especially PMs, are waiting for discovery and will contribute to 
human lives in the future. All abbreviations used in this review are collected in Table 2 for reference.

CONCLUSION AND OUTLOOK
This review has summarized the perspectives of AI-assisted discovery methods of PMs and reviewed how 
AI improves PMs in energy harvesting devices. The effects of AI can be mainly divided into three parts: 
property prediction, synthesis acceleration, and device design. We list AI assistances in different PM types, 
including ABX3, A3B2X9, ABX4, A2BIBIIIX6, AXB1-XCX3 and ABXC1-XX3. In PM research and development, AI 
shares the tasks of theoreticians, experimental platforms, and practical operators, which ML, cloud 
laboratories, and robotic systems respectively realize. The usage of ML can be divided into four parts: singe-
model ML method, multi-model cooperation, NNs, and physics computation-assisted ML. The two 
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Table 2. Abbreviation used in this review

Abbreviation Full meaning

AI Artificial Intelligence

ANN Artificial Neural Network

AUC Area under the ROC curve

CD Circular Dichroism

CGCNN Crystal Graph Convolutional Neural Network

CMR Computational Materials Repository

CNN Convolutional Network

COD Crystallography Open Database

CSD Cambridge Structural Database

DBSCAN Density-based spatial clustering of applications with noise

DFT Density Functional Theory

EFWHM Emission Linewidth

Eg Bandgap Energy

EP Peak Emission Energy

ETL Electron Transport Layer

FF Fill Factor

GA Genetic Algorithm

GBDT Gradient Boosting Decision Tree

GBRT Gradient Boosting Regression Tree

GBT Gradient Boosting Tree

GPR Gaussian Process Regression

HOIP Hybrid Organic-Inorganic Perovskite

HTE High Throughput Experimentation

HTL Hole Transport Layer

HTM Hole Transport Material

ICSD Inorganic Crystal Structure Database

IPNC Intelligent Cloud Lab for Optically Perovsktie Nanocrystals

Jsc Short-circuit Current

k-fold CV l-fold Cross-Validation

LOOCV Leave-One-Out Cross-Validation

MAE Mean Absolute Error

MAOSIC Materials Acceleration Operation System in Cloud

MHP Metal Halide Perovskite

ML Machine Learning

MSE Mean Square Error

NN Neural Network

OQMD Open Quantum Materials Database

PCA Principal Component Analysis

PCE Power Conversion Efficiency

PL Photoluminescence

PLQY PL Quantum Yield

PM Perovskite Materialss

PSC Perovskite Solar Cell

QD Quantum Dot

R Regression correlation coefficient

R2 coefficient of determination

RF Random Forest

RFE Recyrsuve Feature Elimination

RMSE Root Mean Square Error
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ROC Receiver Operating Characteristic Curve

SHAP Shapley Additional Explaining

SOFC Solid Oxide Fuel Cell

SSH Socket Shell

SVD Singular Value Decomposition

SVM Support Vector Machine

SVR Support Vector Regressor

Tc Curie temperature

Voc Open-circuit Voltage

VASP Vienna ab initio Simulation Package

Figure 11. (A) Cloud lab architecture: the central platform MAOSIC allowed remoted users to control the (B) automated robot system 
through the cloud server. Copyright from Springer Nature[84]. SSH: Socket shell; CD: circular dichroism.
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approaches, DFT and GW, help organize the training for the last type. The critical points for a successful 
ML model are new training data, feature engineering, and model selection. ML has already discovered new 
PMs with desired properties, which show outstanding performance in devices, and more preciously, the 
interpretable ML models show theoretical consistency. Cloud laboratories remove the barriers of the limited 
research budget, while robotic systems commit to the precise synthesis of specific PMs. Due to the 
complexity and diversity of PMs and device architecture, the trend of AI-assisted PM discovery and 
improvement will be unstoppable in the future.

Despite these achievements, there still exist some problems in AI-assisted PM applications. Along with 
reliable solutions to the following challenges, PM discovery and applications should become more integral 
for energy-harvesting missions:

1. Currently, ML and NN procedures in PMs and correlated devices lack data. Many present ML models for 
PMs use only thousands of perovskite structures with properties. Thousands are small compared to ML for 
general inorganic and organic structures, like oxides and specific molecules. Data shortage may come from 
the limited options of A, B, and X in the perovskite formula, although doping can enrich the diversity. DFT 
calculations are also costly because the unit cell of perovskite usually contains dozens of atoms, and detailed 
parameters need to be set for high accuracy. For inorganic-organic perovskites, it is not easy to calculate 
specific properties using DFT or GW. To improve prediction performance, enlarging the perovskite 
database is essential.

2. Detailed interpretation and consistency with theory are essential. This problem is less severe in ML 
methods, but NNs are black boxes. Although NNs can almost restore the relationship between PM features 
and properties (large R2 and small MAE and RMSE), its interpretation is not implementable. Despite some 
visualization methods to see the feature weights of each layer, the contribution to the final prediction value 
is still hard to interpret. Physical-endorsed ML[87] and NNs[88] partially solve this problem, contributing to 
perovskite AI approaches.

3. The improvements in accuracy should occur along with the synthesis of new structures and 
characterization methods. ML approaches are commonly used for property predictions, like bandgaps, 
thermodynamic stability, and absorbance. New structures should be predicted and synthesized to accelerate 
new PM discovery, besides improving the scores on prediction tasks. Meanwhile, characterization methods 
should be updated to evaluate new PM performance. It is also encouraged to construct devices based on 
new PMs and test the improvements.
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