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Abstract
In this paper, the problem of optimal adaptive consensus tracking control for nonlinear multi-agent systems with
prescribed performance is investigated. To address the issue of satisfying the initial value conditions in existing re-
sults, an improved performance function is employed as the prescribed performance boundary, effectively resolving
this problem. Then, by employing the error transformation function, the constrained system is converted into an
unconstrained one. Furthermore, fuzzy logic systems are employed to identify unknown system parts. By applying
the dynamic surface technique, the problem of “differential explosion”, which often occurs in backstepping, is solved.
Moreover, a distributed optimal adaptive fuzzy control protocol based on the reinforcement learning actor-critic algo-
rithm is proposed. Under the proposed control scheme, it is proved that all the signals within the closed-loop system
are bounded, and the consensus tracking errors have remained within the predefined bounds. Finally, the numerical
simulation results demonstrate the effectiveness of the proposed scheme.

Keywords: Multi-agent system, reinforcement learning, prescribed performance, optimal consensus control, actor-
critic structure
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1. INTRODUCTION
Optimal control is achieved by designing a control protocol that not only achieves the system control objectives
but also minimizes the system cost. The field of optimal control has garnered significant scholarly interest in
recent years. The optimal controller can be deduced from the solution of the Hamilton-Jacobi-Bellman (HJB)
equation [1]. For linear systems, this is actually solving the Riccati equation. However, for nonlinear systems,
the HJB equation is a partial differential equation containing multiple nonlinear terms, and it is conceivably
challenging to solve the equation directly. One approach that can be implemented is dynamic programming
(DP) [2–5]. However, this approach becomes less feasible for high-dimensional systems since it is a backward, of-
fline computational process, which significantly increases the computational complexity in high-dimensional
scenarios. As a form of machine learning, reinforcement learning (RL) arguably opens up another avenue
to solve the problem [6–9]. The most commonly used RL algorithms make use of the actor-critic structure, in
which the actor interacts with the environment, and the critic evaluates the actions of the actor and provides
feedback; in this way, the actor performs the next task again. Subsequently, RL has been employed in various
nonlinear systems for adaptive control, leading to remarkable outcomes [10–14]. For example, an optimal adap-
tive controller for nonlinear systems with control gain functions was proposed to achieve not only tracking
control but also the optimal performance of systems [10]. In [12], the problem of tracking control of nonlinear
systems with input constraints was investigated. In [14], an optimal observer-based adaptive control scheme
for nonlinear stochastic systems with input and state constraints was proposed.

In themeanwhile, sincemost physicalmodels in practical applications can be represented by nonlinear systems,
the study of nonlinear systems is very important and has yielded rich results [15–18]. In recent years, multi-agent
systems (MASs) have garnered significant attention from scholars due to their capability to perform tasks that
surpass the capabilities of a single agent. The consensus problem in MASs refers to achieving a state of agree-
ment or convergence among multiple agents through the design of control protocols, which is a fundamental
problem in the design and control ofMASs. Over the past decades, the problem of consensus control forMASs
has been extensively studied, leading to significant advancements [19–30]. In [23], a consensus control scheme
incorporating a modified disturbance observer was designed to achieve fixed-time tracking control of nonlin-
ear MASs with unknown disturbances. In [27], an event-triggered control distributed scheme was proposed to
address the problem of asymptotic tracking for nonlinear MASs with uncertain leaders. In recent times, there
has been a surge of interest in incorporating RL into MASs. It is an interesting and challenging problem and
has produced some excellent results [31–38]. For instance, in [33], an optimal backstepping consensus control
protocol based on RL was introduced for nonlinear strict-feedbackMASs, which not only exhibits algorithmic
simplicity but also relaxes the need for two general conditions: known dynamics and persistence excitation.
In [34], an optimal RL-based event-triggered controller was proposed for nonlinear stochastic systems.

On the other hand, the concept of prescribed performance control (PPC) has emerged as a prominent research
topic in the control community, initially proposed by Bechlioulis and Rovithakis [39]. Transient and steady-
state performance, which is often neglected by conventional control schemes that solely ensure closed-loop
stability, is the primary concern of prescribed performance. The PPC strategy aims to align the actual sys-
tem performance achieved after execution with the desired or prescribed performance criteria and has yielded
remarkable outcomes [40–43]. By utilizing exponential performance functions, both the nonlinear switched
systems in [40] and the non-triangularly structured systems in [42] were able to achieve the desired rate of con-
vergence. To overcome the issue of “differential explosion” caused by repeated derivation, dynamic surface
control schemes were proposed to implement the tracking control of systems in [41] and [43], respectively. Re-
cently, there has been significant research focused on integrating RL into PPC [44,45]. However, it is noticed
that all of the above results depend on the initial conditions; i.e., at the initial moment, the initial error needs
to be made within a prescribed boundary by properly setting the initial values.

Motivated by the discussions above, this article focuses on the optimal adaptive consensus tracking control
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problem for leader-follower nonlinear MASs subject to prescribed performance constraints. The main contri-
butions of the article are as follows.

(1) Based on the actor-critic structure of RL, the proposed consensus tracking control scheme can achieve
optimal control of MASs while an excellent tracking effect is guaranteed. Compared with [10–12], the proposed
algorithm is simpler to implement since it does not require system dynamic and persistent excitation condi-
tions.

(2) In contrast to existing performance functions [40–43], most of which rely on initial value conditions, an
improved performance function is introduced such that the proposed consensus tracking control scheme is
able to force the convergence of the consensus tracking error to a prescribed region without the requirement
of initial value conditions.

(3) Comparedwith the traditional backstepping control scheme [24,25], the dynamic surface technique is adopted,
which effectively avoids the problem of ”differential explosion” caused by multiple derivations of the virtual
controller and makes the control structure simpler.

2. PRELIMINARIES AND PROBLEM FORMULATION
2.1 Topology theory
In this paper, information interactions between agents are inscribed by a directed graph 𝒢 = (ℋ,𝒯,𝒜) in
whichℋ = {1, · · · , 𝑁} and𝒯 ⊆ ℋ×ℋ denote the set of notes and the set of edges, respectively. Furthermore,
𝒜 = [𝑎𝑖 𝑗 ] ∈ R𝑁×𝑁 denotes the adjacency matrix, all elements of which are non-negative, specifically 𝑎𝑖 𝑗 > 0 if
( 𝑗 , 𝑖) ∈ 𝒯 and 𝑎𝑖 𝑗 = 0 otherwise. If the agent 𝑖 has access to the information of the agent 𝑗 , there is ( 𝑗 , 𝑖) ∈ 𝒯,
and hence, the neighbors of the agent 𝑖 can be described as 𝒩𝑖 = { 𝑗 | ( 𝑗 , 𝑖) ∈ 𝒯}. The in-degree and Laplace
matrix are defined as𝒟 = 𝑑𝑖𝑎𝑔{𝑑1, · · · , 𝑑𝑁 } with 𝑑𝑖 =

∑𝑁
𝑗=1 𝑎𝑖 𝑗 andℒ = 𝒟 −𝒜. Similarly, if the agent 𝑖 has

access to the leader, there is 𝑏𝑖 = 1; otherwise, 𝑏𝑖 = 0, which forms the matrixℬ = 𝑑𝑖𝑎𝑔{𝑏1, · · · , 𝑏𝑁 }.

2.2 System formulation
Consider the following nonlinear MAS composed of N agents, where the 𝑖th agent can be modeled as:

¤𝑥𝑖, 𝑗 = 𝑥𝑖, 𝑗+1(𝑡) + 𝑓𝑖, 𝑗 (𝑥𝑖, 𝑗 (𝑡)),
¤𝑥𝑖,𝑛 = 𝑢𝑖 (𝑡) + 𝑓𝑖,𝑛 (𝑥𝑖,𝑛 (𝑡)),
𝑦𝑖 = 𝑥𝑖,1, ( 𝑗 = 1, 2, . . . , 𝑛 − 1)

(1)

where 𝑖 = 1, . . . , 𝑁 , 𝑥𝑖, 𝑗 = [𝑥𝑖,1, 𝑥𝑖,2, · · · , 𝑥𝑖, 𝑗 ]𝑇 ∈ 𝑅 𝑗 , 𝑗 = 1, . . . , 𝑛 and 𝑢𝑖 denote the state variable and control
input, respectively. 𝑓𝑖, 𝑗 represents the unknown nonlinear smooth function. 𝑦𝑖 = 𝑥𝑖,1 denotes the output
variable. c The consensus tracking error for agent 𝑖 is defined as:

𝑒𝑖 =
∑
𝑗∈𝒩𝑖

𝑎𝑖 𝑗 (𝑦𝑖 − 𝑦 𝑗 ) + 𝑏𝑖 (𝑦𝑖 − 𝑦𝑟 ), (2)

where 𝑦𝑟 is generated by the output of the leader to represent the reference signal.

Assumption 1 [24] Let the leader be the root node and the directed graph have a spanning tree.

Assumption 2The reference trajectory 𝑦𝑟 and its derivatives ¤𝑦𝑟 are continuous and bounded.

Lemma 1 [25] If a function 𝐹 (𝑥) is continuous on a compact set Φ, then for any given accuracy 𝜀 > 0, there
exists a fuzzy logic system (FLS) such that

sup
𝑥∈Φ

|𝐹 (𝑥) − 𝜗𝑇𝜙(𝑥) | ≤ 𝜀,
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where 𝜗 = [𝜗1, · · · , 𝜗𝐿]𝑇 denotes the ideal weight vector and 𝐿 > 1 indicates the number of fuzzy rules,
and 𝜙(𝑥) = [𝜙1(𝑥), · · · , 𝜙𝑛 (𝑥)]𝑇/

∑𝐿
𝑟=1 𝜙𝑟 (𝑥) denotes the basis function vector with 𝜙𝑟 (𝑥) being a Gaussian

function, i.e., for 𝑟 = 1, · · · , 𝐿, 𝜙𝑟 (𝑥) = exp[−(𝑥 − 𝚥𝑟 )𝑇 (𝑥 − 𝚥𝑟 )/ℏ2
𝑟 ], where 𝚥𝑟 = [ 𝚥𝑟1, 𝚥𝑟2, · · · , 𝚥𝑟𝑛]𝑇 is defined

as the centre vector, and ℏ𝑟 is defined as the width of the Gaussian function.

2.3 Error transformation
Define the following monotonically increasing function over the interval (−1, 1)

Γ(𝑥) =
√
𝜒𝑥

√
1 − 𝑥2

, (3)

where 𝜒 is a constant.

Define the monotonically increasing function 𝜔𝑖 (𝑡), which has the following properties:
(1) 𝜔𝑖 (0) = 1 and lim𝑡→∞ 𝜔𝑖 (𝑡) =

1
𝑙
, with 0 < 𝑙𝑖 ≤ 1 being a constant.

(2) 𝜔𝑖 is differentiable up to order n and 𝜔𝑟
𝑖 , 𝑟 = 1, · · · , 𝑛 is bounded.

To achieve a desired level of system performance, we define the following performance function

Γ(𝜑𝑖) =
√
𝜒𝜑𝑖√

1 − 𝜑2
𝑖

, (4)

where 𝜑𝑖 =
1

𝜔𝑖 (𝑡)
. Then, our control objective is to make the consensus tracking error of the system satisfy

Γ(−𝜑𝑖 (𝑡)) ≤ 𝑒𝑖 ≤ Γ(𝜑𝑖 (𝑡)).

Define the following normalized function

𝜉𝑖 (𝑒𝑖) =
𝑒𝑖√

𝜒2 + 𝑒2
𝑖

, (5)

From the above equation, we know that there exists a constant 𝜉 satisfying |𝜉𝑖 (𝑒𝑖) | ≤ 𝜉 < 1, in which case
𝑒𝑖 =

𝜉𝑖
√
𝜒√

1−𝜉𝑖
is bounded.

The following error transformation function is introduced

𝜁𝑖 (𝑡) =
𝜛𝑖 (𝑡)

1 −𝜛2
𝑖 (𝑡)

, (6)

where 𝜛𝑖 (𝑡) = 𝜔𝑖 (𝑡)𝜉𝑖 (𝑒𝑖) with 𝜛𝑖 (0) = 𝜔𝑖 (0)𝜉𝑖 (𝑒𝑖 (0)) = 𝜉𝑖 (𝑒𝑖 (0) ∈ (−1, 1). Therefore, it is clear from the
above equation that we can deduce that for any initial value of 𝜛𝑖 (0) ∈ (−1, 1), 𝜁𝑖 (𝑡) → ±∞ if and only if
𝜛𝑖 → −1 or 𝜛𝑖 → 1. This also implies that as long as 𝜁𝑖 is bounded, there exists a constant �̄� satisfying
|𝜛𝑖 | ≤ �̄� < 1.

From the above definition, it has

−𝜑𝑖 = − 1
𝜔𝑖

< − �̄�

𝜔𝑖
≤ �̄�

𝜔𝑖
<

1
𝜔𝑖

< 𝜑𝑖 . (7)

Since 𝐹 (𝑥) is a monotonically increasing function, it follows that

Γ(−𝜑𝑖) < Γ(𝜉𝑖) < Γ(𝜑𝑖). (8)

Noting that Γ(𝜉𝑖) =
√
𝜒𝜉𝑖√

1 − 𝜉2
𝑖

, we can get Γ(−𝜑𝑖 (𝑡)) ≤ 𝑒𝑖 ≤ Γ(𝜑𝑖 (𝑡)).
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3. DESIGN PROCEDURE AND MAIN RESULTS
The controller design is conducted based on the following coordinate transformations

𝑧𝑖, 𝑗 = 𝑥𝑖, 𝑗 − �̄�𝑖, 𝑗 , (9)
𝜌𝑖, 𝑗 = �̄�𝑖, 𝑗 − �̂�𝑖, 𝑗−1, 𝑗 = 2, . . . , 𝑛, (10)

where �̂�𝑖, 𝑗−1 denotes the approximate optimal virtual controller, �̄�𝑖, 𝑗 denotes the output of the first-order filter,
and 𝜌𝑖, 𝑗 is defined as the filtering error. The filtering dynamic is introduced as

𝜅𝑖, 𝑗−1 ¤̄𝛼𝑖, 𝑗 + �̄�𝑖, 𝑗 = �̂�𝑖, 𝑗−1, �̄�𝑖, 𝑗 (0) = �̂�𝑖, 𝑗−1(0), (11)

where 𝜅𝑖, 𝑗−1 is a positive constant.

To facilitate brevity, the following definitions are provided before the commencement of the design steps. For
𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · , 𝑛, 𝜃𝑎,𝑖 𝑗 = 𝜃𝑎,𝑖 𝑗 − 𝜃𝑎,𝑖 𝑗 , 𝜃𝑐,𝑖 𝑗 = 𝜃𝑐,𝑖 𝑗 − 𝜃𝑐,𝑖 𝑗 , �̃�𝑖, 𝑗 = 𝜗𝑖, 𝑗 − �̂�𝑖, 𝑗 where 𝜃𝑎,𝑖 𝑗 , 𝜃𝑐,𝑖 𝑗 , and �̂�𝑖, 𝑗 are
the estimations of 𝜃𝑎,𝑖 𝑗 , 𝜃𝑐,𝑖 𝑗 , and 𝜗𝑖, 𝑗 , respectively. 𝜆min

𝑖, 𝑗 denotes the minimum eigenvalue of 𝑆𝑖, 𝑗𝑆𝑇𝑖, 𝑗 . The set 𝛺
is the tight set that contains zero, and 𝜓(𝛺) represents the admissible control. The adaptive laws of actor FLSs
and critic FLSs, adaptive law �̂�𝑖, 𝑗 are designed to be

¤̂𝜃𝑎,𝑖 𝑗 = −𝑆𝑖, 𝑗𝑆𝑇𝑖, 𝑗 (𝜎𝑎,𝑖 𝑗 (𝜃𝑎,𝑖 𝑗 − 𝜃𝑐,𝑖 𝑗 ) + 𝜎𝑐,𝑖 𝑗𝜃𝑐,𝑖 𝑗 ), (12)
¤̂𝜃𝑐,𝑖 𝑗 = −𝜎𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗 , (13)

¤̂𝜗𝑖,1 = 𝜁𝑖𝜙𝑖,1 − 𝜎𝑖,1�̂�𝑖,1, (14)
¤̂𝜗𝑖, 𝑗 = 𝑧𝑖, 𝑗𝜙𝑖, 𝑗 − 𝜎𝑖, 𝑗 �̂�𝑖, 𝑗 , 𝑗 = 2, · · · , 𝑛 (15)

where 𝜎𝑎,𝑖 𝑗 , 𝜎𝑐,𝑖 𝑗 and 𝜎𝑖, 𝑗 are design parameters.

Step 1: Derivation with respect to 𝑒𝑖 gives

¤𝑒𝑖 = (𝑑𝑖 + 𝑏𝑖) (𝑥𝑖,2 + 𝑓𝑖,1) −
∑
𝑗∈𝒩𝑖

𝑎𝑖, 𝑗 ¤𝑦 𝑗 − 𝑏𝑖 ¤𝑦𝑟 . (16)

Define the performance index function for the first subsystem of the agent 𝑖 as

𝑉𝑖,1(𝜁𝑖) =
∫ ∞

𝑡
𝑐𝑖,1(𝜁𝑖 (𝜏), 𝛼𝑖,1(𝜁))𝑑𝜏, (17)

where 𝑐𝑖,1(𝜁𝑖 , 𝛼𝑖,1) = 𝜁2
𝑖 + 𝛼2

𝑖,1 represents the value function.

The optimal performance index function is expressed as

𝑉∗
𝑖,1(𝜁𝑖) =

∫ ∞

𝑡
𝑐𝑖,1(𝜁𝑖 (𝜏), 𝛼∗

𝑖,1(𝜁))𝑑𝜏

= min
𝛼∗
𝑖,1∈𝜓(𝛺)

(
∫ ∞

𝑡
𝑐𝑖,1(𝜁𝑖 (𝜏), 𝛼𝑖,1(𝜁))𝑑𝜏). (18)

Considering 𝑥𝑖,2 as the optimal virtual controller 𝛼∗
𝑖,1, then the HJB equation is given as

𝐻𝑖,1(𝜁𝑖 , 𝛼∗
𝑖,1, 𝑉

∗
𝑖,1) = 𝑐𝑖,1(𝜁𝑖 , 𝛼∗

𝑖,1) +
𝜕𝑉∗

𝑖,1

𝜕𝜁𝑖
¤𝜁𝑖

= 𝜁2
𝑖 + 𝛼∗2

𝑖,1 +
𝜕𝑉∗

𝑖,1

𝜕𝜁𝑖
[𝜂𝑖 ((𝑑𝑖 + 𝑏𝑖)(𝛼∗

𝑖,1 + 𝑓𝑖,1) −
∑
𝑗∈𝒩𝑖

𝑎𝑖, 𝑗 ¤𝑦 𝑗 − 𝑏𝑖 ¤𝑦𝑟 ) + 𝑣𝑖] = 0, (19)
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where 𝜂𝑖 =
𝜒√

(𝑒𝑖 + 𝜒) (𝑒𝑖 + 𝜒)
, 𝑣𝑖 =

1 +𝜛2
𝑖

(1 −𝜛2
𝑖 )2

.

Define the Bellman residual as

Θ = 𝐻𝑖,1(𝜁𝑖 , �̂�∗
𝑖,1, �̂�

∗
𝑖,1) − 𝐻𝑖,1(𝜁𝑖 , 𝛼∗

𝑖,1, 𝑉
∗
𝑖,1)

= 𝐻𝑖,1(𝜁𝑖 , �̂�∗
𝑖,1, �̂�

∗
𝑖,1). (20)

The approximate optimal virtual controller is expected to guarantee thatΘ tends to zero. The following positive
function is given by

𝐼𝑖,1 = (𝜃𝑎,𝑖1 − 𝜃𝑐,𝑖1)𝑇 (𝜃𝑎,𝑖1 − 𝜃𝑐,𝑖1). (21)

Since equation 𝐻𝑖,1(𝜁𝑖 , 𝛼∗
𝑖,1, 𝑉

∗
𝑖,1) = 0 has a unique solution, it is easy to deduce that 𝐼𝑖,1 = 0 is equivalent to

𝜕𝐻𝑖,1 (𝜁𝑖 ,𝛼∗
𝑖,1,𝑉

∗
𝑖,1)

𝜕𝜃𝑎,𝑖1
= 0. Then, from equations (12) and (13), we get

¤𝐼𝑖,1 =
𝜕𝐼𝑖,1

𝜕𝜃𝑎,𝑖1

¤̂𝜃𝑎,𝑖1 +
𝜕𝐼𝑖,1

𝜕𝜃𝑐,𝑖1

¤̂𝜃𝑐,𝑖1

= −𝜎𝑎,𝑖1

2
𝜕𝐼𝑖,1

𝜕𝜃𝑎,𝑖1
𝑆𝑖,1𝑆

𝑇
𝑖,1

𝜕𝐼𝑖,1

𝜕𝜃𝑐,𝑖1
≤ 0. (22)

Thus, the designed adaptive laws ¤̂𝜃𝑎,𝑖1 and ¤̂𝜃𝑐,𝑖1 enable 𝐻𝑖,1(𝜁𝑖 , 𝛼∗
𝑖,1, 𝑉

∗
𝑖,1) = 0 to be satisfied.

By calculating 𝜕𝐻𝑖,1
𝜕𝛼∗

𝑖,1
= 0, it yields

𝛼∗
𝑖,1 = −𝜂𝑖 (𝑑𝑖 + 𝑏𝑖)

2
𝜕𝑉∗

𝑖,1

𝜕𝜁𝑖
. (23)

To obtain the optimal virtual controller, we decompose
𝜕𝑉∗

𝑖,1
𝜕𝜁𝑖

to derive the following equation

𝜕𝑉∗
𝑖,1

𝜕𝜁𝑖
=

2𝑐𝑖,1𝜁𝑖
(𝑑𝑖 + 𝑏𝑖)2𝜂2

𝑖

+ 1
(𝑑𝑖 + 𝑏𝑖)2𝜂2

𝑖

𝑉𝑜
𝑖,1 +

2
(𝑑𝑖 + 𝑏𝑖)2𝜂2

𝑖

𝜗∗𝑇
𝑖,1𝜙𝑖,1, (24)

𝑉𝑜
𝑖,1 = (𝑑𝑖 + 𝑏𝑖)2𝜂2

𝑖

𝜕𝑉∗
𝑖,1

𝜕𝜁𝑖
− 2𝑐𝑖,1𝜁𝑖 − 2𝜗∗𝑇

𝑖,1𝜙𝑖,1. (25)

where 𝑐𝑖,1 is a design parameter.

Substituting equation (24) into equations (23), it follows that

𝛼∗
𝑖,1 = − 𝑐𝑖,1

(𝑑𝑖 + 𝑏𝑖)𝜂𝑖
𝜁𝑖 −

1
2(𝑑𝑖 + 𝑏𝑖)𝜂𝑖

𝑉𝑜
𝑖,1 −

1
(𝑑𝑖 + 𝑏𝑖)𝜂𝑖

𝜗∗𝑇
𝑖,1𝜙𝑖,1. (26)

Since 𝑉𝑜
𝑖,1 is an unknown term, by applying Lemma 2, there exists an FLS such that

𝑉𝑜
𝑖,1 = 𝜃∗𝑇𝑖,1𝑆𝑖,1 + 𝜀𝑖,1, (27)

where 𝜃∗𝑖,1 refers to the optimal weights, 𝑆𝑖,1 refers to the basis function, and 𝜀𝑖,1 is the approximation error.
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Substituting equation (27) into equations (24) and (26) results in

𝛼∗
𝑖,1 = − 𝑐𝑖,1

(𝑑𝑖 + 𝑏𝑖)𝜂𝑖
𝜁𝑖 −

1
2(𝑑𝑖 + 𝑏𝑖)𝜂𝑖

(𝜃∗𝑇𝑖,1𝑆𝑖,1 + 𝜀𝑖,1) −
1

(𝑑𝑖 + 𝑏𝑖)𝜂𝑖
𝜗∗𝑇
𝑖,1𝜙𝑖,1, (28)

𝜕𝑉∗
𝑖,1

𝜕𝜁𝑖
=

2𝑐𝑖,1𝜁𝑖
(𝑑𝑖 + 𝑏𝑖)2𝜂2

𝑖

+ 1
(𝑑𝑖 + 𝑏𝑖)2𝜂2

𝑖

(𝜃∗𝑇𝑖,1𝑆𝑖,1 + 𝜀𝑖,1) +
2

(𝑑𝑖 + 𝑏𝑖)𝜂𝑖
𝜗∗𝑇
𝑖,1𝜙𝑖,1. (29)

The 𝜃𝑎,𝑖1 and 𝜃𝑐,𝑖1 of the actor FLS and the critic FLS are used to estimate the unknownweights 𝜃∗𝑖,1, respectively,
to obtain

�̂�𝑖,1 = − 𝑐𝑖,1
(𝑑𝑖 + 𝑏𝑖)𝜂𝑖

𝜁𝑖 −
1

2(𝑑𝑖 + 𝑏𝑖)𝜂𝑖
𝜃𝑇𝑎,𝑖1𝑆𝑖,1 −

1
(𝑑𝑖 + 𝑏𝑖)𝜂𝑖

�̂�𝑇
𝑖,1𝜙𝑖,1, (30)

𝜕�̂�𝑖,1
𝜕𝜁𝑖

=
2𝑐𝑖,1𝜁𝑖

(𝑑𝑖 + 𝑏𝑖)2𝜂2
𝑖

+ 1
(𝑑𝑖 + 𝑏𝑖)2𝜂2

𝑖

𝜃𝑇𝑐,𝑖1𝑆𝑖,1 +
2

(𝑑𝑖 + 𝑏𝑖)𝜂𝑖
�̂�𝑇
𝑖,1𝜙𝑖,1. (31)

Construct the following Lyapunov candidate function

𝑉𝑖,1 =
1
2
𝜁2
𝑖 + 1

2
𝜃𝑇𝑎,𝑖1𝜃𝑎,𝑖1 +

1
2
𝜃𝑇𝑐,𝑖1𝜃𝑐,𝑖1 +

1
2
�̃�𝑇
𝑖,1�̃�𝑖,1. (32)

The derivation of 𝑉𝑖,1 yields

¤𝑉𝑖,1 = 𝜁𝑖 [𝜂𝑖 ((𝑑𝑖 + 𝑏𝑖) (𝜌𝑖,2 + �̂�𝑖,1 + 𝑧𝑖,2 + 𝑓𝑖,1) −
∑
𝑗∈𝒩𝑖

𝑎𝑖, 𝑗 ¤𝑦 𝑗 − 𝑏𝑖 ¤𝑦𝑟 ) + 𝑣𝑖]

+ 𝜃𝑎,𝑖1𝑆
𝑇
𝑖,1𝑆

𝑇
𝑖,1(𝜎𝑎,𝑖1(𝜃𝑎,𝑖1 − 𝜃𝑐,𝑖1) + 𝜎𝑐,𝑖1𝜃𝑐,𝑖1) + 𝜃𝑇𝑐,𝑖1𝜎𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1 − �̃�𝑇

𝑖,1
¤̂𝜗𝑖,1. (33)

Define 𝐹𝑖,1 to be the

𝐹𝑖,1 = 𝜂𝑖 (𝑑𝑖 + 𝑏𝑖) 𝑓𝑖,1 − 𝜂𝑖
∑
𝑗∈𝒩𝑖

𝑎𝑖, 𝑗 ¤𝑦 𝑗 − 𝜂𝑖𝑏𝑖 ¤𝑦𝑟 − 𝑣𝑖 . (34)

By Lemma 2, there exists an FLS approximation to 𝐹𝑖,1 that results in

𝐹𝑖,1 = 𝜗∗𝑇
𝑖,1𝜙𝑖,1 + 𝜖𝑖,1, (35)

where 𝜗∗
𝑖,1 is the ideal weight, 𝜙𝑖,1 is the basis function, and 𝜖𝑖,1 is the approximation error satisfying 𝜖𝑖,1 ≤ 𝜖𝑖,1

with 𝜖𝑖,1 > 0.

With the help of Young’s inequality, one has

𝜁𝑖,1𝜖𝑖,1 ≤ 1
2
𝜁2
𝑖 + 1

2
𝜖2
𝑖,1, (36)

𝜁𝑖𝜂𝑖 (𝑑𝑖 + 𝑏𝑖)𝑧𝑖,2 ≤ 1
2
𝜁2
𝑖 + 1

2
𝜂2
𝑖 (𝑑𝑖 + 𝑏𝑖)2𝑧2

𝑖,2, (37)

𝜁𝑖𝜂𝑖 (𝑑𝑖 + 𝑏𝑖)𝜌𝑖,2 ≤ 1
2
𝜁2
𝑖 + 1

2
𝜂2
𝑖 (𝑑𝑖 + 𝑏𝑖)2𝜌2

𝑖,2, (38)

Substituting equations (30), (36), (37), and (38) into equation (33) yields

¤𝑉𝑖,1 ≤ −(𝑐𝑖,1 −
3
2
)𝜁2

𝑖 + 1
2
𝜂2
𝑖 (𝑑𝑖 + 𝑏𝑖)2𝑧2

𝑖,2 +
1
2
𝜂2
𝑖 (𝑑𝑖 + 𝑏𝑖)2𝜌2

𝑖,2 +
1
2
𝜖2
𝑖,1 −

1
2
𝜁𝑖𝜃𝑎,𝑖1𝑆𝑖,1

+ 𝜎𝑖,1�̃�𝑖,1�̂�𝑖,1 + 𝜃𝑎,𝑖1𝑆
𝑇
𝑖,1𝑆

𝑇
𝑖,1(𝜎𝑎,𝑖1(𝜃𝑎,𝑖1 − 𝜃𝑐,𝑖1) + 𝜎𝑐,𝑖1𝜃𝑐,𝑖1) + 𝜃𝑇𝑐,𝑖1𝜎𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1. (39)
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According to Young’s inequality, it can be derived that

− 1
2
𝜁𝑖𝜃

𝑇
𝑎,𝑖1𝑆𝑖,1 ≤ 1

4
𝜁2
𝑖 + 1

4
𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑎,𝑖1, (40)

𝜎𝑎,𝑖1𝜃
𝑇
𝑎,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑎,𝑖1

= − 𝜎𝑎,𝑖1

2
𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑎,𝑖1 −

𝜎𝑎,𝑖1

2
𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑎,𝑖1 +

𝜎𝑎,𝑖1

2
𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑎,𝑖1, (41)

𝜎𝑐,𝑖1𝜃
𝑇
𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1

= − 𝜎𝑐,𝑖1

2
𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1 −

𝜎𝑐,𝑖1

2
𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1 +

𝜎𝑐,𝑖1

2
𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1, (42)

(𝜎𝑐,𝑖1 − 𝜎𝑎,𝑖1)𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆𝑇𝑖,1𝜃𝑐,𝑖1

≤ (𝜎𝑐,𝑖1 − 𝜎𝑎,𝑖1)
2

𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆
𝑇
𝑖,1𝜃𝑎,𝑖1 +

(𝜎𝑐,𝑖1 − 𝜎𝑎,𝑖1)
2

𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆
𝑇
𝑖,1𝜃𝑐,𝑖1, (43)

𝜎𝑖,1�̃�𝑖,1�̂�𝑖,1 ≤ 𝜎𝑖,1

2
𝜗2
𝑖,1 −

𝜎𝑖,1

2
�̃�2
𝑖,1. (44)

By means of equations (40) − (44), ¤𝑉𝑖,1 becomes

¤𝑉𝑖,1 ≤ −(𝑐𝑖,1 −
7
4
)𝜁2

𝑖 + 1
2
𝜂2
𝑖 (𝑑𝑖 + 𝑏𝑖)2𝑧2

𝑖,2 +
1
2
𝜂2
𝑖 (𝑑𝑖 + 𝑏𝑖)2𝜌2

𝑖,2

1
2
𝜖2
𝑖,1 +

𝜎𝑖,1

2
𝜗2
𝑖,1 −

𝜎𝑖,1

2
�̂�2
𝑖,1 +

𝜎𝑎,𝑖1

2
𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑎,𝑖1 +

𝜎𝑐,𝑖1

2
𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1

− (𝜎𝑎,𝑖1

2
− 1

4
)𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆𝑇𝑖,1𝜃𝑎,𝑖1 −

𝜎𝑐,𝑖1

2
𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1 − (𝜎𝑎,𝑖1 −

𝜎𝑐,𝑖1

2
)𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆𝑇𝑖,1𝜃𝑎,𝑖1

− 𝜎𝑐,𝑖1

2
𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1. (45)

Then, it can be further bounded as

¤𝑉𝑖,1 ≤ −(𝑐𝑖,1 −
7
4
)𝜁2

𝑖 + 1
2
𝜂2
𝑖 (𝑑𝑖 + 𝑏𝑖)2𝑧2

𝑖,2 +
1
2
𝜂2
𝑖 (𝑑𝑖 + 𝑏𝑖)2𝜌2

𝑖,2 + Υ𝑖,1

− 𝜎𝑖,1

2
�̃�2
𝑖,1 − (𝜎𝑎,𝑖1 −

𝜎𝑐,𝑖1

2
)𝜆min

𝑖,1 𝜃𝑇𝑎,𝑖1𝜃𝑎,𝑖1 −
𝜎𝑐,𝑖1

2
𝜆min
𝑖,1 𝜃𝑇𝑐,𝑖1𝜃𝑐,𝑖1, (46)

whereΥ𝑖,1 = 1
2 𝜖

2
𝑖,1+

𝜎𝑖,1
2 𝜗2

𝑖,1+
𝜎𝑎,𝑖1

2 𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆
𝑇
𝑖,1𝜃𝑎,𝑖1+

𝜎𝑐,𝑖1
2 𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆

𝑇
𝑖,1𝜃𝑐,𝑖1−(

𝜎𝑎,𝑖1
2 − 1

4 )𝜃𝑇𝑎,𝑖1𝑆𝑖,1𝑆𝑇𝑖,1𝜃𝑎,𝑖1−
𝜎𝑐,𝑖1

2 𝜃𝑇𝑐,𝑖1𝑆𝑖,1𝑆
𝑇
𝑖,1𝜃𝑐,𝑖1.

Step j(2 ≤ 𝑗 ≤ 𝑛 − 1): From equations (9) and (10), it holds that

¤𝑧𝑖, 𝑗 = 𝑧𝑖, 𝑗+1 + 𝜌𝑖, 𝑗+1 + 𝛼𝑖, 𝑗 + 𝑓𝑖, 𝑗 − ¤̄𝛼𝑖, 𝑗+1. (47)

The performance index function is chosen to be

𝑉𝑖, 𝑗 (𝑧𝑖, 𝑗 ) =
∫ ∞

𝑡
𝑐𝑖, 𝑗 (𝑧𝑖, 𝑗 (𝜏), 𝛼𝑖, 𝑗 (𝑧))𝑑𝜏, (48)

where 𝑐𝑖, 𝑗 (𝑧𝑖 , 𝛼𝑖, 𝑗 ) = 𝑧2
𝑖, 𝑗 + 𝛼2

𝑖, 𝑗 represents the value function.

Considering 𝑥𝑖, 𝑗+1 as the optimal virtual controller 𝛼∗
𝑖, 𝑗 , then the optimal performance index function has the

form

𝑉∗
𝑖, 𝑗 (𝑧𝑖, 𝑗 ) =

∫ ∞

𝑡
𝑐𝑖, 𝑗 (𝑧𝑖, 𝑗 (𝜏), 𝛼∗

𝑖, 𝑗 (𝑧))𝑑𝜏

= min
𝛼∗
𝑖, 𝑗∈𝜓(𝛺)

(
∫ ∞

𝑡
𝑐𝑖, 𝑗 (𝑧𝑖, 𝑗 (𝜏), 𝛼𝑖, 𝑗 (𝑧))𝑑𝜏). (49)

http://dx.doi.org/10.20517/ces.2023.27


Yue et al. Complex Eng Syst 2023;3:19 I http://dx.doi.org/10.20517/ces.2023.27 Page 9 of 18

The HJB equation can be written as

𝐻𝑖, 𝑗 (𝑧𝑖, 𝑗 , 𝛼∗
𝑖, 𝑗 , 𝑉

∗
𝑖, 𝑗 ) = 𝑐𝑖, 𝑗 (𝑧𝑖, 𝑗 , 𝛼𝑖, 𝑗 ) +

𝜕𝑉∗
𝑖, 𝑗

𝜕𝑧𝑖, 𝑗
¤𝑧𝑖, 𝑗

= 𝑧2
𝑖, 𝑗 + 𝛼∗2

𝑖, 𝑗 +
𝜕𝑉∗

𝑖, 𝑗

𝜕𝑧𝑖, 𝑗
(𝛼∗

𝑖, 𝑗 + 𝑓𝑖, 𝑗 − ¤̄𝛼𝑖, 𝑗+1) = 0. (50)

By calculating 𝜕𝐻𝑖, 𝑗

𝜕𝛼∗
𝑖, 𝑗

= 0, it yields

𝛼∗
𝑖, 𝑗 = −1

2
𝜕𝑉∗

𝑖, 𝑗

𝜕𝑧𝑖, 𝑗
. (51)

Then, decompose
𝜕𝑉∗

𝑖, 𝑗

𝜕𝑧𝑖, 𝑗
into the following two parts

𝜕𝑉∗
𝑖, 𝑗

𝜕𝑧𝑖, 𝑗
= 2𝑐𝑖, 𝑗 𝑧𝑖, 𝑗 +𝑉𝑜

𝑖, 𝑗 + 2𝜗∗𝑇
𝑖, 𝑗 𝜙𝑖, 𝑗 , (52)

𝑉𝑜
𝑖, 𝑗 =

𝜕𝑉∗
𝑖, 𝑗

𝜕𝑧𝑖, 𝑗
− 2𝑐𝑖, 𝑗 𝑧𝑖, 𝑗 − 2𝜗∗𝑇

𝑖, 𝑗 𝜙𝑖, 𝑗 , (53)

where 𝑐𝑖, 𝑗 is a design parameter.

From equation (52), it is easy to introduce

𝛼∗
𝑖, 𝑗 = −𝑐𝑖, 𝑗 𝑧𝑖, 𝑗 −

1
2
𝑉𝑜
𝑖,1 − 𝜗∗𝑇

𝑖, 𝑗 𝜙𝑖, 𝑗 . (54)

Since 𝑉𝑜
𝑖, 𝑗 is an unknown term, by applying Lemma 2, there exists an FLS such that

𝑉𝑜
𝑖, 𝑗 = 𝜃∗𝑇𝑖, 𝑗 𝑆𝑖, 𝑗 + 𝜀𝑖, 𝑗 , (55)

where 𝜃∗𝑖, 𝑗 refers to the optimal weights, 𝑆𝑖, 𝑗 refers to the basis function, and 𝜀𝑖, 𝑗 is the approximation error.

According to the above equation, we can get

𝛼∗
𝑖, 𝑗 = −𝑐𝑖, 𝑗 𝑧𝑖, 𝑗 −

1
2
(𝜃∗𝑇𝑖, 𝑗 𝑆𝑖, 𝑗 + 𝜀𝑖, 𝑗 ) − 𝜗∗𝑇

𝑖, 𝑗 𝜙𝑖, 𝑗 , (56)

𝜕𝑉∗
𝑖, 𝑗

𝜕𝑧𝑖, 𝑗
= 2𝑐𝑖, 𝑗 𝑧𝑖, 𝑗 + (𝜃∗𝑇𝑖, 𝑗 𝑆𝑖, 𝑗 + 𝜀𝑖,1) + 𝜗∗𝑇

𝑖, 𝑗 𝜙𝑖, 𝑗 . (57)

The 𝜃𝑎,𝑖 𝑗 and 𝜃𝑐,𝑖 𝑗 of the actor FLS and the critic FLS are used to estimate the unknownweights 𝜃∗𝑖, 𝑗 , respectively,
to obtain

�̂�𝑖, 𝑗 = −𝑐𝑖, 𝑗 𝑧𝑖, 𝑗 −
1
2
𝜃𝑎,𝑖 𝑗𝑆𝑖, 𝑗 − �̂�∗𝑇

𝑖, 𝑗 𝜙𝑖, 𝑗 , (58)

𝜕�̂�𝑖, 𝑗

𝜕𝑧𝑖, 𝑗
= 2𝑐𝑖, 𝑗 𝑧𝑖, 𝑗 + 𝜃𝑐,𝑖 𝑗𝑆𝑖, 𝑗 + 2�̂�∗𝑇

𝑖, 𝑗 𝜙𝑖, 𝑗 . (59)

The candidate Lyapunov function function is chosen as

𝑉𝑖, 𝑗 = 𝑉𝑖, 𝑗−1 +
1
2
𝑧2
𝑖, 𝑗 +

1
2
𝜃𝑇𝑎,𝑖 𝑗𝜃𝑎,𝑖 𝑗 +

1
2
𝜃𝑇𝑐,𝑖 𝑗𝜃𝑐,𝑖 𝑗 +

1
2
�̃�𝑇
𝑖, 𝑗 �̃�𝑖, 𝑗 +

1
2
𝜌𝑖, 𝑗 𝜌𝑖, 𝑗 . (60)
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Derivation of 𝑉𝑖, 𝑗 yields

¤𝑉𝑖, 𝑗 = ¤𝑉𝑖, 𝑗−1 + 𝑧𝑖, 𝑗 (𝑧𝑖, 𝑗+1 + 𝜌𝑖, 𝑗+1 + �̂�𝑖, 𝑗 + 𝑓𝑖, 𝑗 − ¤̄𝛼𝑖, 𝑗+1) + 𝜌𝑖, 𝑗 ¤𝜌𝑖, 𝑗
+ 𝜃𝑎,𝑖 𝑗𝑆

𝑇
𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗 (𝜎𝑎,𝑖 𝑗 (𝜃𝑎,𝑖 𝑗 − 𝜃𝑐,𝑖 𝑗 ) + 𝜎𝑐,𝑖 𝑗𝜃𝑐,𝑖 𝑗 ) + 𝜃𝑇𝑐,𝑖 𝑗𝜎𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗 − �̃�𝑇

𝑖, 𝑗
¤̂𝜗𝑖, 𝑗 . (61)

From equations (10) and (11), it holds that

¤𝜌𝑖, 𝑗 = −
𝜌𝑖, 𝑗

𝜅𝑖
− ¤̂𝛼𝑖, 𝑗−1. (62)

Define 𝑀𝑖 = − ¤̂𝛼𝑖, 𝑗−1, which is a bounded continuous function.

By Lemma 2, there exists an FLS satisfying

𝐹𝑖, 𝑗 = 𝜗∗𝑇
𝑖, 𝑗 𝜙𝑖, 𝑗 + 𝜖𝑖, 𝑗 , (63)

where 𝐹𝑖, 𝑗 = 𝑓𝑖, 𝑗 − ¤̄𝛼𝑖, 𝑗 , 𝜗∗
𝑖, 𝑗 is the ideal weight, 𝜙𝑖, 𝑗 is the basis function, and 𝜖𝑖, 𝑗 is the approximation error

satisfying 𝜖𝑖, 𝑗 ≤ 𝜖𝑖, 𝑗 with 𝜖𝑖, 𝑗 > 0.

With the help of Young’s inequality, the following inequality holds

𝑧𝑖, 𝑗 𝜖𝑖, 𝑗 ≤
1
2
𝑧2
𝑖, 𝑗 +

1
2
𝜖2
𝑖, 𝑗 , (64)

𝑧𝑖, 𝑗 𝑧𝑖, 𝑗+1 ≤ 1
2
𝑧2
𝑖, 𝑗 +

1
2
𝑧2
𝑖, 𝑗+1, (65)

𝑧𝑖, 𝑗 𝜌𝑖, 𝑗+1 ≤ 1
2
𝑧2
𝑖, 𝑗 +

1
2
𝜌2
𝑖, 𝑗+1, (66)

𝜌𝑖, 𝑗𝑀𝑖 ≤
1
2
𝜌2
𝑖, 𝑗 +

1
2
𝑀2

𝑖 . (67)

Similar to the first step, it has

− 1
2
𝑧𝑖, 𝑗𝜃

𝑇
𝑎,𝑖 𝑗𝑆𝑖, 𝑗 ≤

1
4
𝑧2
𝑖, 𝑗 +

1
4
𝜃𝑇𝑎,𝑖 𝑗𝑆𝑖,1𝑆

𝑇
𝑖, 𝑗𝜃𝑎,𝑖 𝑗 , (68)

𝜎𝑎,𝑖 𝑗𝜃
𝑇
𝑎,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑎,𝑖 𝑗

= −
𝜎𝑎,𝑖 𝑗

2
𝜃𝑇𝑎,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑎,𝑖 𝑗 −

𝜎𝑎,𝑖 𝑗

2
𝜃𝑇𝑎,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑎,𝑖 𝑗 +

𝜎𝑎,𝑖 𝑗

2
𝜃𝑇𝑎,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑎,𝑖 𝑗 , (69)

𝜎𝑐,𝑖 𝑗𝜃
𝑇
𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗

= −
𝜎𝑐,𝑖 𝑗

2
𝜃𝑇𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗 −

𝜎𝑐,𝑖 𝑗

2
𝜃𝑇𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗 +

𝜎𝑐,𝑖 𝑗

2
𝜃𝑇𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗 , (70)

(𝜎𝑐,𝑖 𝑗 − 𝜎𝑎,𝑖 𝑗 )𝜃𝑇𝑎,𝑖 𝑗𝑆𝑖, 𝑗𝑆𝑇𝑖, 𝑗𝜃𝑐,𝑖 𝑗

≤
(𝜎𝑐,𝑖 𝑗 − 𝜎𝑎,𝑖 𝑗 )

2
𝜃𝑇𝑎,𝑖 𝑗𝑆𝑖, 𝑗𝑆

𝑇
𝑖, 𝑗𝜃𝑎,𝑖 𝑗 +

(𝜎𝑐,𝑖 𝑗 − 𝜎𝑎,𝑖 𝑗 )
2

𝜃𝑇𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆
𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗 , (71)

𝜎𝑖, 𝑗 �̃�𝑖, 𝑗 �̂�𝑖, 𝑗 ≤
𝜎𝑖, 𝑗

2
𝜗2
𝑖, 𝑗 −

𝜎𝑖, 𝑗

2
�̃�2
𝑖, 𝑗 . (72)
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From equations (58), (62), and (64)-(72), ¤𝑉𝑖, 𝑗 can be directly bounded as

¤𝑉𝑖, 𝑗 ≤ −(𝑐𝑖,1 −
7
4
)𝜁2

𝑖 − (𝑐𝑖,2 −
7
4
−

(𝑑𝑖 + 𝑏𝑖)2𝜂2
𝑖

2
)𝑧2

𝑖,2 −
𝑗∑

𝑚=3
(𝑐𝑖,𝑚 − 9

4
)𝑧2

𝑖,𝑚 + 1
2
𝑧2
𝑖, 𝑗+1 +

1
2
𝜘𝑖𝜌

2
𝑖, 𝑗+1

− ( 1
𝜅𝑖

− 1
2
−

(𝑑𝑖 + 𝑏𝑖)2𝜂2
𝑖

2
)𝜌2

𝑖,2 −
𝑗∑

𝑚=3
( 1
𝜅𝑖

− 1)𝜌2
𝑖,𝑚 −

𝑗∑
𝑚=1

𝜎𝑖,𝑚

2
�̃�2
𝑖,𝑚 −

𝑗∑
𝑚=1

𝜆min
𝑖,𝑚 (𝜎𝑎,𝑖𝑚 − 𝜎𝑐,𝑖𝑚

2
)𝜃𝑇𝑎,𝑖𝑚𝜃𝑎,𝑖𝑚

−
𝑗∑

𝑚=1
𝜆min
𝑖,𝑚

𝜎𝑐,𝑖𝑚

2
𝜃𝑇𝑐,𝑖𝑚𝜃𝑐,𝑖𝑚 +

𝑗∑
𝑚=1

Υ𝑖,𝑚 , (73)

whereΥ𝑖, 𝑗 = 1
2 𝜖

2
𝑖, 𝑗+

𝜎𝑖, 𝑗

2 𝜗2
𝑖, 𝑗+

𝜎𝑎,𝑖 𝑗

2 𝜃𝑇𝑎,𝑖 𝑗𝑆𝑖, 𝑗𝑆
𝑇
𝑖, 𝑗𝜃𝑎,𝑖 𝑗+

𝜎𝑐,𝑖 𝑗

2 𝜃𝑇𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆
𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗−(

𝜎𝑎,𝑖 𝑗

2 − 1
4 )𝜃𝑇𝑎,𝑖 𝑗𝑆𝑖, 𝑗𝑆𝑇𝑖, 𝑗𝜃𝑎,𝑖 𝑗−

𝜎𝑐,𝑖 𝑗

2 𝜃𝑇𝑐,𝑖 𝑗𝑆𝑖, 𝑗𝑆
𝑇
𝑖, 𝑗𝜃𝑐,𝑖 𝑗+

1
2𝑀

2
𝑖 and 𝜘𝑖 =

{ (𝑑𝑖+𝑏𝑖)2𝜂2
𝑖

2 , 𝑗 = 1,
1, 𝑗 = 2, · · · , 𝑛 − 1.

Step n: The performance index function for the last subsystem is defined as

𝑉𝑖,𝑛 (𝑧𝑖,𝑛) =
∫ ∞

𝑡
𝑐𝑖,𝑛 (𝑧𝑖,𝑛 (𝜏), 𝑢∗𝑖 (𝑧))𝑑𝜏, (74)

where 𝑐𝑖,𝑛 (𝑧𝑛, 𝛼𝑖,𝑛) = 𝑧2
𝑖,𝑛 + 𝑢∗2𝑖 represents the value function.

The optimal performance index function is

𝑉∗
𝑖, 𝑗 (𝑧𝑖,𝑛) =

∫ ∞

𝑡
𝑐𝑖,𝑛 (𝑧𝑖,𝑛 (𝜏), 𝑢∗𝑖 (𝑧))𝑑𝜏

= min
𝑢∗𝑖 ∈𝜓(𝛺)

(
∫ ∞

𝑡
𝑐𝑖,𝑛 (𝑧𝑖,𝑛 (𝜏), 𝑢𝑖 (𝑧))𝑑𝜏). (75)

The HJB equation is introduced as

𝐻𝑖,𝑛 (𝑧𝑖,𝑛, 𝑢∗𝑖 , 𝑉∗
𝑖,𝑛) = 𝑐𝑖,𝑛 (𝑧𝑖,𝑛, 𝑢∗𝑖 ) +

𝜕𝑉∗
𝑖,𝑛

𝜕𝑧𝑖,𝑛
¤𝑧𝑖,𝑛

= 𝑧2
𝑖,𝑛 + 𝑢∗2𝑖 +

𝜕𝑉∗
𝑖,𝑛

𝜕𝑧𝑖,𝑛
(𝑢∗𝑖 + 𝑓𝑖,𝑛 − ¤̄𝛼𝑖,𝑛) = 0. (76)

By calculating 𝜕𝐻𝑖,𝑛

𝜕𝑢∗𝑖
= 0, we get

𝑢∗𝑖 = −1
2
𝜕𝑉∗

𝑖,𝑛

𝜕𝑧𝑖,𝑛
. (77)

𝜕𝑉∗
𝑖,𝑛

𝜕𝑧𝑖,𝑛
can be decomposed into

𝜕𝑉∗
𝑖,𝑛

𝜕𝑧𝑖,𝑛
= 2𝑐𝑖,𝑛𝑧𝑖,𝑛 +𝑉𝑜

𝑖,𝑛 + 2𝜗∗𝑇
𝑖,𝑛𝜙𝑖,𝑛, (78)

𝑉𝑜
𝑖,𝑛 =

𝜕𝑉∗
𝑖,𝑛

𝜕𝑧𝑖,𝑛
− 2𝑐𝑖,𝑛𝑧𝑖,𝑛 − 2𝜗∗𝑇

𝑖,𝑛𝜙𝑖,𝑛. (79)

where 𝑐𝑖,𝑛 is a design parameter. Since 𝑉𝑜
𝑖,𝑛 is an unknown term, by applying Lemma 2, one gets

𝑉𝑜
𝑖,𝑛 = 𝜃∗𝑇𝑖,𝑛𝑆𝑖,𝑛 + 𝜀𝑖,𝑛. (80)
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Then, the facts below are easily available

𝑢∗𝑖 = −𝑐𝑖,𝑛𝑧𝑖,𝑛 −
1
2
(𝜃∗𝑇𝑖,𝑛𝑆𝑖,𝑛 + 𝜀𝑖,𝑛) − 𝜗∗𝑇

𝑖,𝑛𝜙𝑖,𝑛, (81)

𝜕𝑉∗
𝑖,𝑛

𝜕𝑧𝑖,𝑛
= 2𝑐𝑖,𝑛𝑧𝑖,𝑛 + (𝜃∗𝑇𝑖,𝑛𝑆𝑖,𝑛 + 𝜀𝑖,𝑛) + 2𝜗∗𝑇

𝑖,𝑛𝜙𝑖,𝑛 (82)

The 𝜃𝑎,𝑖𝑛 and 𝜃𝑐,𝑖𝑛 of the actor FLS and the critic FLS are used to estimate the unknownweights 𝜃∗𝑖,𝑛, respectively,
to obtain

�̂�𝑖 = −𝑐𝑖,𝑛𝑧𝑖,𝑛 −
1
2
𝜃𝑇𝑎,𝑖𝑛𝑆𝑖,𝑛 − �̂�𝑇

𝑖,𝑛𝜙𝑖,𝑛, (83)

𝜕�̂�𝑖,𝑛
𝜕𝑧𝑖,𝑛

= 2𝑐𝑖,𝑛𝑧𝑖,𝑛 + 𝜃𝑇𝑐,𝑖𝑛𝑆𝑖,𝑛 + 2�̂�𝑖,𝑛𝜙𝑖,𝑛. (84)

Candidate Lyapunov function is chosen to be the

𝑉𝑖,𝑛 = 𝑉𝑖,𝑛−1 +
1
2
𝑧2
𝑖,𝑛 +

1
2
𝜃𝑇𝑎,𝑖𝑛𝜃𝑎,𝑖𝑛 +

1
2
𝜃𝑇𝑐,𝑖𝑛𝜃𝑐,𝑖𝑛 +

1
2
�̃�𝑇
𝑖,𝑛�̃�𝑖,𝑛 +

1
2
𝜌𝑖,𝑛𝜌𝑖,𝑛. (85)

The time derivative of 𝑉𝑖,𝑛 is given by

¤𝑉𝑖,𝑛 = ¤𝑉𝑖,𝑛−1 + 𝑧𝑖,𝑛 (�̂�𝑖 + 𝑓𝑖,𝑛 − ¤̄𝛼𝑖,𝑛) + 𝜌𝑖,𝑛 ¤𝜌𝑖,𝑛 (86)

+ 𝜃𝑎,𝑖𝑛𝑆
𝑇
𝑖,𝑛𝑆

𝑇
𝑖,𝑛 (𝜎𝑎,𝑖𝑛 (𝜃𝑎,𝑖𝑛 − 𝜃𝑐,𝑖𝑛) + 𝜎𝑐,𝑖𝑛𝜃𝑐,𝑖𝑛) + 𝜃𝑇𝑐,𝑖𝑛𝜎𝑐,𝑖𝑛𝑆𝑖,𝑛𝑆

𝑇
𝑖,𝑛𝜃𝑐,𝑖𝑛 − �̃�𝑇

𝑖,𝑛
¤̂𝜗𝑖,𝑛.

By Lemma 2, there exists an FLS satisfying

𝐹𝑖,𝑛 = 𝜗∗𝑇
𝑖,𝑛𝜙𝑖,𝑛 + 𝜖𝑖,𝑛, (87)

where 𝐹𝑖,𝑛 = 𝑓𝑖,𝑛 − ¤̄𝛼𝑖,𝑛, and 𝜖𝑖,𝑛 ≤ 𝜖𝑖,𝑛 with 𝜖𝑖,𝑛 > 0.

Similar to the previous steps, ¤𝑉𝑖,𝑛 can be bounded as

¤𝑉𝑖,𝑛 ≤ −(𝑐𝑖,1 −
7
4
)𝜁2

𝑖 − (𝑐𝑖,2 −
7
4
−

(𝑑𝑖 + 𝑏𝑖)2𝜂2
𝑖

2
)𝑧2

𝑖,2 −
𝑛∑

𝑚=3
(𝑐𝑖,𝑚 − 9

4
)𝑧2

𝑖,𝑚 −
𝑛∑

𝑚=3
( 1
𝜅𝑖

− 1)𝜌2
𝑖,𝑚

− ( 1
𝜅𝑖

− 1
2
−

(𝑑𝑖 + 𝑏𝑖)2𝜂2
𝑖

2
)𝜌2

𝑖,2 −
𝑛∑

𝑚=1

𝜎𝑖,𝑚

2
�̃�2
𝑖,𝑚 −

𝑛∑
𝑚=1

(𝜎𝑎,𝑖𝑚 − 𝜎𝑐,𝑖𝑚

2
)𝜆min

𝑖,𝑚 𝜃𝑇𝑎,𝑖𝑚𝑆𝑖,𝑚𝑆
𝑇
𝑖,𝑚𝜃𝑎,𝑖𝑚

−
𝑛∑

𝑚=1
𝜆min
𝑖,𝑚

𝜎𝑐,𝑖𝑚

2
𝜃𝑇𝑐,𝑖𝑚𝜃𝑐,𝑖𝑚 +

𝑛∑
𝑚=1

Υ𝑖,𝑚 , (88)

whereΥ𝑖,𝑛 = 1
2 𝜖

2
𝑖,𝑛+

𝜎𝑖,𝑛

2 𝜗2
𝑖,𝑛+

𝜎𝑎,𝑖𝑛

2 𝜃𝑇𝑎,𝑖𝑛𝑆𝑖,𝑛𝑆
𝑇
𝑖,𝑛𝜃𝑎,𝑖𝑛+

𝜎𝑐,𝑖𝑛

2 𝜃𝑇𝑐,𝑖𝑛𝑆𝑖,𝑛𝑆
𝑇
𝑖,𝑛𝜃𝑐,𝑖𝑛−(

𝜎𝑎,𝑖𝑛

2 − 1
4 )𝜃𝑇𝑎,𝑖𝑛𝑆𝑖,𝑛𝑆𝑇𝑖,𝑛𝜃𝑎,𝑖𝑛−

𝜎𝑐,𝑖𝑛

2 𝜃𝑇𝑐,𝑖𝑛𝑆𝑖,𝑛𝑆
𝑇
𝑖,𝑛𝜃𝑐,𝑖𝑛+

1
2𝑀

2
𝑖 .

Define 𝐸𝑖 = min{𝑐𝑖,1 − 7
4 , 𝑐𝑖,2 −

7
4 − (𝑑𝑖+𝑏𝑖)2𝜂2

𝑖

2 , 𝑐𝑖,𝑚 − 9
4 ,

𝜎𝑖,𝑚

2 , (𝜎𝑎,𝑖𝑚 − 𝜎𝑐,𝑖𝑚

2 )𝜆min
𝑖,𝑚 , 𝜆min

𝑖,𝑚
𝜎𝑐,𝑖𝑚

2 𝜃𝑇𝑐,𝑖𝑚},Υ𝑖 =
∑𝑛

𝑚=1 Υ𝑖,𝑚 ,
¤𝑉𝑖,𝑛 can then be written as

¤𝑉𝑖,𝑛 ≤ −𝐸𝑖𝑉𝑖,𝑛 + Υ𝑖 , (89)
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Theorem 1: Consider a nonlinear MAS under Assumptions 1-2, with the optimal virtual controller choice of
equations (30), (58), and (83), the adaptive laws of equations (14) and (15), the actor FLS choice of equation
(12), and the critic FLS choice of (13). Then, we select the parameter 𝜎𝑎,𝑖𝑚 >

𝜎𝑐,𝑖𝑚

2 >
𝜎𝑎,𝑖𝑚

2 > 0, 𝑐𝑖,1 > 7
4 , 𝑐𝑖,2 >

7
4 + (𝑑𝑖+𝑏𝑖)2𝜂2

𝑖

2 , 𝑐𝑖,𝑚 > 9
4 ,

1
𝜅𝑖

> 1
2 + (𝑑𝑖+𝑏𝑖)2𝜂2

𝑖

2 , 1
𝜅𝑖

> 1. Thus, we can conclude the following results:
(1) All signals in the closed-loop system are bounded.
(2) Consensus tracking error is within predefined bounds.

Proof: The total Liapunov function for all agents is selected to be

𝑉 =
𝑁∑
𝑖=1

𝑉𝑖,𝑛. (90)

The derivative of V with respect to time is

¤𝑉 ≤ −𝐸𝑉 + Υ, (91)

where 𝐸 = min 𝐸𝑖 , 𝑖 = 1, 2, · · · , 𝑁,Υ = 𝛴𝑁
𝑖=1Υ𝑖 .

Obviously, it can be inferred that

0 ≤ 𝑉 (𝑡) ≤ 𝑒−𝐸𝑡 (𝑉 (0) − Υ
𝐸
) + Υ

𝐸
. (92)

From (91), we know that 𝜁𝑖 is bounded by

𝜁𝑖 ≤
√

2Υ
𝐸

(93)

This means that the consensus tracking error can be bounded within prescribed bounds, i.e., Γ(−𝜑(𝑡)) ≤ 𝑒𝑖 ≤
Γ(𝜑(𝑡)). Then, we can easily confirm | |𝑦 − 1̄𝑦𝑟 | | ≤ | |Γ(𝜑(𝑡)) | |

𝜎(ℒ+ℬ) , where 𝜎(ℒ +ℬ) represents the smallest singular
value of the matrixℒ +ℬ.

On the other hand, it is known from equation (92) that 𝜃𝑎,𝑖 𝑗 , 𝜃𝑇𝑐,𝑖 𝑗 , �̃�𝑖, 𝑗 , 𝜌𝑖, 𝑗 , and 𝑧𝑖, 𝑗 are bounded. Since �̂�𝑖, 𝑗 is
a function consisting of bounded signals, �̂�𝑖, 𝑗 is bounded. Based on the definition of 𝜃𝑎,𝑖 𝑗 = 𝜃𝑎,𝑖 𝑗 − 𝜃𝑎,𝑖 𝑗 , 𝜃𝑐,𝑖 𝑗 =
𝜃𝑐,𝑖 𝑗 − 𝜃𝑐,𝑖 𝑗 , �̃�𝑖, 𝑗 = 𝜗𝑖, 𝑗 − �̂�𝑖, 𝑗 , it is evident that 𝜃𝑎,𝑖 𝑗 , 𝜃𝑐,𝑖 𝑗 , and �̂�𝑖, 𝑗 are bounded. Thus, it can be concluded that
all signals are bounded.

4. SIMULATION EXAMPLES
Consider the nonlinear MASs with four following agents and a leader, whose dynamics model is represented
as {

¤𝑥𝑖,1 = 𝑥𝑖+1,2(𝑡),
¤𝑥𝑖,2 = 𝑢𝑖 (𝑡) + 𝑓𝑖,2(𝑥𝑖.2(𝑡)),

(94)

where 𝑖 = 1, 2, 3, 4, 𝑓𝑖,2 = 0.01 sin(0.5(𝑥𝑖,1 − 𝑥𝑖,2)). The reference output trajectory is set to 𝑦𝑟 = sin(0.5𝑡). The
communication topology is displayed in Figure 1, through which the Laplace matrixℒ is easily obtained as

ℒ =


0 0 0 0
−1 2 0 −1
−1 0 1 0
0 −1 0 1


.
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Figure 1. The communication topology.

Figure 2. The trajectories of the system output state 𝑦𝑖 (𝑖 = 1, 2, 3, 4) and the reference signal 𝑦𝑟 .

Select the fuzzy membership function as

𝜇𝐹𝑘
𝑖, 𝑗

= 𝑒−
(𝑥𝑖, 𝑗+𝑙)2

2 , 𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2,

𝑘 = 9, 7, 5, 3, 1, 0,−1,−3,−5,−7, 9.

The time-varying function 𝜔𝑖 (𝑡) is chosen as 𝜔𝑖 (𝑡) =
1

(1 − 𝑙𝑖) exp(−1.5𝑡) + 𝑙𝑖
. The initial state values are

selected as 𝑥𝑖,1(0) = [0.11, 0.09, 0.13, 0.1], 𝑥𝑖,2(0) = [0.11, 0.2, 0.18, 0.11], 𝜃𝑐,𝑖1(0) = [0.2, 0.2, 0.22, 0.12],
𝜃𝑐,𝑖2(0) = [0.2, 0.2, 0.12, 0.12], 𝜃𝑎,𝑖1(0) = [1.4, 1, 1, 1], 𝜃𝑎,𝑖2(0) = [1.2, 1.2, 1, 1], �̂�𝑖, 𝑗 (0) = 1, �̄�𝑖, 𝑗 (0) = 0. The
design parameters are selected as 𝑙𝑖 = 0.2, 𝜒 = 5, 𝑐𝑖, 𝑗 = 9, 𝜅𝑖,2 = 0.02, 𝜎𝑐,𝑖 𝑗 = 7, 𝜎𝑎,𝑖 𝑗 = 5, 𝜎11 = 𝜎12 =
𝜎21 = 𝜎22 = 𝜎31 = 21, and 𝜎32 = 𝜎41 = 𝜎42 = 11. The resulting simulations are presented in Figures 2-
6. Figure 2 depicts the output trajectories of follower agents and the reference trajectory, demonstrating the
guaranteed well-tracking performance under the designed control protocol. Figure 3 shows the consensus
tracking errors of agents and performance constraint bounds, from which it can be seen that the constraint
has never been violated. Figure 4 provides the designed control protocol. Figure 5 depicts the trajectories
of adaptive parameter 𝜃𝑐,𝑖 𝑗 . Figure 6 portrays the trajectories of adaptive parameters 𝜃𝑎,𝑖 𝑗 . The trajectories
of adaptive parameter 𝜗𝑖, 𝑗 is plotted in Figure 7. The above leads show that adaptive parameters 𝜃𝑐,𝑖 𝑗 , 𝜃𝑎,𝑖 𝑗 ,
and 𝜗𝑖, 𝑗 are bounded. Based on the aforementioned results, it is evident that our control objectives have been
successfully achieved.
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Figure 3. System consensus tracking error 𝑒𝑖 (𝑖 = 1, 2, 3, 4) and constraint functions Γ (𝜑 (𝑡 ) ) , Γ (−𝜑 (𝑡 ) ).

Figure 4. The trajectories of the control protocols 𝑢𝑖 (𝑖 = 1, 2, 3, 4).

Figure 5. Responses of 𝜃𝑐,𝑖 𝑗 (𝑖 = 1, 2, 3, 4; 𝑘 = 1, 2).

5. CONCLUSIONS
In this paper, the problem of optimal adaptive consensus tracking control for nonlinear MASs with prescribed
performance has been addressed. Firstly, a time-varying scalar function is introduced such that the designed
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Figure 6. Responses of 𝜃𝑎,𝑖 𝑗 (𝑖 = 1, 2, 3, 4; 𝑘 = 1, 2).

Figure 7. Responses of 𝜗𝑖, 𝑗 (𝑖 = 1, 2, 3, 4; 𝑘 = 1, 2).

performance function bypasses the initial value conditions. Based on the error transformation function, an
unconstrained system is obtained. Subsequently, a RL-based consensus control scheme based on optimal
control theory and dynamic surface technique has been proposed. Finally, it is shown that the stability of the
closed-loop system and the error constraints are not violated. In practice, the systems are always subject to
various uncertain constraints, such as actuator faults and input dead zones, which will have a large impact on
the performance of systems. Therefore, designing a properly performance-constrained optimal control scheme
considering the above situations is a topic for further research in the future.
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