
Anada J Surveill Secur Saf 2024;5:160-83 DOI:
10.20517/jsss.2024.08

Journal of Surveillance,
Security and Safety

Research Article Open Access

Decentralized multi-authority anonymous credential
system with bundled languages on identifiers in
bilinear groups

Hiroaki Anada1,2

1Department of Software and Information Technology, Aomori University, Aomori 030-0943, Japan.
2Department of Mathematical Informatics, Meiji Gakuin University, Yokohama 244-8539, Japan.

Correspondence to: Prof. Hiroaki Anada, Department of Mathematical Informatics, Meiji Gakuin University, 1518, Kamikurata-cho,
Totsuka-ku, Yokohama 244-8539, Japan. E-mail: hiroaki.anada@mi.meijigakuin.ac.jp

How to cite this article: Anada H. Decentralized multi-authority anonymous credential system with bundled languages on identi-
fiers in bilinear groups. J Surveill Secur Saf 2024;5:160-83. http://dx.doi.org/10.20517/jsss.2024.08

Received: 28 Mar 2024 First Decision: 19 Jul 2024 Revised: 2 Sep 2024 Accepted: 2 Sep 2024 Published: 20 Sep 2024

Academic Editors: Qiong Huang, Josef Pieprzyk Copy Editor: Dong-Li Li Production Editor: Dong-Li Li

Abstract
We propose a multi-show decentralized multi-authority attribute-based anonymous credential system (dACS). Re-
ferring to previous work, we give a new syntax and three security notions: unforgeability, anonymity and unlinkability.
Especially, corruption of authorities is considered to reflect a real scenario. Then we give a generic construction of
dACS. In our dACS, an attribute authority who issues a private secret key to an entity only has to sign the entity’s
identifier. Then, according to the principle of “commit-to-identifier”, the entity generates a proof of knowing creden-
tials. There are two building blocks: the structure-preserving signature scheme and the Groth-Sahai non-interactive
proof system, both ofwhich are in asymmetric bilinear groups. The principle is realizedwith a bundled language that is
simultaneous pairing-product equations on the identifier. There, the bundled language works for preventing collusion
attacks. Finally, we instantiate our generic dACS under the Symmetric External Diffie-Hellman (SXDH) assumption,
compare the instantiated scheme with previous work, and evaluate the performance.

Keywords: Anonymous credential system, decentralized multi-authority, Groth-Sahai proofs, structure-preserving
signatures

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.jsssjournal.com

https://creativecommons.org/licenses/by/4.0/
www.jsssjournal.com
http://crossmark.crossref.org/dialog/?doi=10.20517/jsss.2024.08&domain=pdf
https://orcid.org/0000-0002-4472-0662

Page 161 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

INTRODUCTION
A global identifier is a string of a digital identity that is linked to an entity in our cyberspace. An e-mail
address issued by a reliable organization and a universally unique identifier (UUID) stipulated by ISO/IEC
11578:1996 [1] can be a global identifier. Global identifiers are registered by authorities and used by entities to
execute some rights in the space. An anonymous credential system (ACS) that was first proposed by Chaum is
a system in which an entity with an identifier is given a credential of a right issued by an authority [2]. Then the
entity can prove possession of the credential to a verifier, which is typically a service provider, without leaking
its identity information. Thus, a primary aim of ACS is privacy protection in transactions in which a right of
an entity is checked.

Towards real applications, ACS has been studied for efficiency in themathematical structures of Rivest-Shamir-
Adleman (RSA), discrete logarithm, bilinear groups, lattices, etc. [3–6]. As for functions of ACS, whether anony-
mous credentials are single-show or multi-show [3] is critical. A single-show ACS was introduced firstly by
Brands [7], in which a credential can be proven only once; if it is proven more than once, then those proofs
are possibly linked to avoid double spending. On the other hand, a multi-show ACS was introduced firstly
by Camenisch-and-Lysyanskaya [3], in which a credential can be proven more than once keeping unlink-
ability. Another function of importance is to treat attribute credentials. Tan-and-Groß [8] introduced an
attribute-based ACS (abACS), in which an entity can prove possession of a number of credentials simulta-
neously. For instance, it can prove possession of its attributes such as age = 30 AND gender = female
AND nationality = USA. Further, Chan and Yuen developed an attributed-based ACS which supports both
single-show and multi-show selectively [9]. In the design of such abACS, a primary target is efficiency from
the viewpoints of computational amount and data length of a proof that an entity is in possession of claimed
attribute credentials. Since a naive construction with linear complexity is easy because a simultaneous show-
ing of their proofs suffices the need, asymptotic behavior smaller than linear complexity was pursued [8,9]. In
contrast, a decentralized multi-authority ACS (dACS) that was introduced by Garman et al. is a different di-
rection of study [10]. In a dACS, there are a number of authorities of issuing attribute credentials, and there is
no central authority among them. Each authority is responsible for each attribute, and once a global identifier
is linked to an entity, the authority is able to issue its attribute credential to the identifier.

A challenging task in the design of dACS is to attain collusion resistance. That is, in the case of dACS, the
verifier should resist collusion attacks by adversaries who bring together their attribute credentials issued to
different global identifiers. Note that the collusion resistance has been studied in attribute-based cryptographic
primitives such as attribute-based encryption [11] and signatures [12], but in the case of dACS, it has not been
studied yet. Another challenging task is to design dACS so that it is capable of treating any given formula for
fine-grained access control, such as a monotone formula over attributes. Actually, the notion of “attributed-
based” was initially introduced in the case of encryption and decryption by Sahai and Waters [13], and was
developed by the subsequent work by, for example, Goyal et al. [14], Chase-and-Chow [15], etc. The anonymity,
collusion resistance and fine-grained access control are three properties that need appropriate (and subtle)
design techniques.

Our contribution
In this paper, we propose a multi-show dACS, which is able to treat any given all-AND formula. We first
give syntax of our dACS. Then we give three security notions. One is existential unforgeability (EUF) against
collusion attacks. There, we introduce corruption of authorities reflecting a real scenario that an adversary
can corrupt some of the authorities and get their master secret keys. The second and third are anonymity and
unlinkability of proofs. In our definitions, anonymity means that any probabilistic polynomial-time (PPT)
adversary including the issuer can get only a negligible amount of information on identifiers from given proofs.
On the other hand, unlinkability means that any PPT adversary cannot distinguish two cases; the first case is
that two given proofs are generated by a single entity and the second case is that the two proofs are generated by

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 162

two entities with different identifiers. Thus, the unlinkability of proofs is a stronger notion than the anonymity
in our definitions, and we will prove the implication.

We then give a generic construction of dACS. In our dACS, a feature is that an attribute authority who issues
a private secret key to an entity only has to sign the entity’s identifier. At that time, the authority uses a set
of common public parameters in a standard like NIST FIPS 186-4 [16]. Then, according to the principle of
“commit-to-identifier”, the entity generates a proof of knowing credentials. There are two building blocks in
the construction. One is the structure-preserving signature scheme [17] and the other is the Groth-Sahai non-
interactive proof system [18,19], where both blocks are based on Type 3 asymmetric bilinear groups [20]. In the
construction, the principle is realized with a bundled language that is simultaneous pairing-product equations
on the entity’s identifier and a structure-preserving signature on the identifier. Thus, the bundled language
works for preventing collusion attacks. Thebundled language is a special case of simultaneous equation systems.
It would be natural to consider a generalization into the case of more than one common variable. The study of
this direction is of independent interest.

In the succeeding section, we instantiate our generic dACS under the Symmetric External Diffie-Hellman
(SXDH) assumption [17–19] on the Type 3 pairings. Then we compare features of our instantiated dACSsxdh
with previous work and evaluate efficiency. As a result, it turns out that “decentralized multi-authority, security
in the standard model and unforgeability under the (simple) SXDH assumption” is a positive aspect, as well
as security considering partial corruption of authorities. Efficiency evaluation of our dACSsxdh shows that,
when the number of attribute credentials involved in a proof is two, the data length of a proof is 68k bytes, and
generation and verification times are 2.8 and 1.8 s, respectively. Since the proof size is linear in the number of
attribute credentials involved in a proof, a construction with smaller asymptotic behavior should be our future
work.

Related recent work
From the viewpoint of issuing authorities, the work by Garman et al. is the first ACS with decentralized multi-
authority in the attribute-based setting (dACS, for short), which is capable of treating all-AND formulas [10].
Our dACS, in addition, is proven secure even when some of the authorities are corrupted (i.e., the master
secret keys of them are leaked to adversaries).

Collusion attacks are also considered in the work by Garman et al., but the security claim is in the random
oracle model [10]. As for collusion resistance in the standardmodel, Camenisch et al. proposed a dACS that has
the property [21]. Moreover, the ACS [21] has the security of the universal composability [22,23]. Our dACSsxdh
instantiated under the SXDH assumption is also universally composable due to the universal composability
of the Groth-Sahai proof system [18,19]. We note that, though the dACS [21] and our dACSsxdh attain similar
properties, the ACS by Camenisch et al. needs more assumptions than our dACSsxdh in the security proof of
unforgeability [21].

As for fine-grained access control, the abACS by Sadiah et al. is capable of treatingmonotone formulas, though
the proof size is exponential to the number of attributes appearing in the formula [24]. The abACS by Okishima-
and-Nakanishi [25] is capable of treatingConjunctiveNormal Form (CNF) formulas. The abACS by Fuchsbauer
et al. is capable of treating all-and formulas with an advantage of prover anonymity at issuing phase [26]. We
note that these three abACSs have not been studied in a security experiment of collusion resistance. Though
the two abACSs by Tan and Groß [8] and Chan and Yuen [9] mentioned above are capable of treating monotone
formulas and have collusion resistance, they are not in the setting of decentralized multi-authority. Concern-
ing the attributes issued under each authority, our dACS can treat any access policy of an all-AND formula that
covers plural attributes for each authority (and the number of authorities is more than one). From the view-
point, designing a decentralized multi-authority abACS with more fine-grained access policies, for instance,
any monotone formulas, is a challenging problem.

http://dx.doi.org/10.20517/jsss.2024.08

Page 163 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

Replay attack is one of the most typical threats to authentication systems. In a replay attack, an attacker in-
tercepts valid data that are transmitted from a prover to a verifier. Then it maliciously re-sends them, af-
ter some time intervals, to make the verifier accept the prover. Thus, the aim of a replay attack is to cause
mis-authentication that leads to potential stronger security breaches. It is also possibly applicable to ACSs,
especially because of anonymity. One of the typical countermeasures against replay attack is introducing in-
teractive proofs. That is, the verifier generates a random challenge message at every session of authentication
to reject a re-sent response message. As for non-interactive proofs, in recent privacy-preserving systems [27,28]

in which proofs are non-interactive, permissioned blockchains are employed, which is in contrast with the
permissionless blockchain employed in Bitcoin [29]. A permissioned blockchain fits our dACS because transac-
tions including anonymous credentials are permitted by the authorities. In the systems, the replay attack can
be detected by the authorities.

Finally, we note here recent studies that developed more functions than our dACS. Au et al. proposed a dy-
namic 𝑘-times anonymous authentication (𝑘-TAA) scheme, which allows members of a group to be authenti-
cated anonymously by application providers for a bounded number of times, where application providers can
independently and dynamically grant or revoke access rights to members in their own group [30]. Concerning
a revocation mechanism that is needed for real usage, Ma and Chow [31] proposed updatable anonymous cre-
dentials with revocation and reputationmanagement. Extending these concepts to multi-authority systems (as
discussed in its appendix) would provide a broader context for our dACS. As for threshold signatures, Doerner
et al. proposed an ACS with threshold issuance by constructing a secure multiparty signing protocol for the
BBS+ signature scheme [32]. Wong et al. proposed a secure multiparty computation of threshold signatures,
which presented an efficient threshold Elliptic Curve Digital Signature Algorithm (ECDSA) protocol [33].

Our work in this paper is a significantly extended version of the proceeding paper presented at SecITC 2020 [34].
Especially the sections of “Introduction”, “Instantiation” and “Feature Comparison and Efficiency Evaluation”
are totally expanded.

Organization of the paper
In Section “PRELIMINARIES”, we fix notations and summarize the needed notions for later sections. In
Section “BUNDLED LANGUAGE”, we explain our ideas, which is for the Groth-Sahai proofs. In Section
“DECENTRALIZED MULTI-AUTHORITY ANONYMOUS CREDENTIAL SYSTEM”, we propose the syn-
tax and security definitions of our dACS. In Section “GENERIC CONSTRUCTION”, we give a construction of
our dACS employing the Groth-Sahai proof system and a structure-preserving signature scheme. In Section
“INSTANTIATION”, we concretely describe our dACS under the SXDH assumption. In Section “FEATURE
COMPARISON AND EFFICIENCY EVALUATION”, we compare the features of our instantiated dACSsxdh
with those of the previous abACSs. Then we evaluate efficiency of our dACSsxdh by partial implementation
and estimation. In Section “CONCLUSION”, we summarize our work and state future directions.

PRELIMINARIES
N denotes the set of natural numbers. [𝑛] represents the subset {1, . . . , 𝑛} ⊂ N. Z𝑝 indicates the residue class
ring of integers modulo a prime number 𝑝. 𝜆 stands for the security parameter, where 𝜆 ∈ N. A function
𝑃(𝜆) is said to be negligible in 𝜆 if for any given positive polynomial poly(𝜆) 𝑃(𝜆) < 1/poly(𝜆) for sufficiently
large 𝜆. Two functions 𝑃(𝜆) and 𝑄(𝜆) are said to be computationally indistinguishable in 𝜆 if |𝑃(𝜆) − 𝑄(𝜆) |
is negligible in 𝜆, which we denote 𝑃(𝜆) ≈c 𝑄(𝜆). 𝑎 ∈𝑅 𝑆 denotes a uniform random sampling of an element
𝑎 from a set 𝑆. 𝑎 =? 𝑏 points to a boolean decision, which returns 1 if 𝑎 = 𝑏 and 0 otherwise. 𝑧 ← 𝐴(𝑎; 𝑟)
denotes that 𝑧 is returned by a probabilistic algorithm 𝐴 with an input 𝑎 and a randomness 𝑟 on a random

http://dx.doi.org/10.20517/jsss.2024.08

Anada. J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 164

tape. 𝑆𝑡 corresponds to the inner state of an algorithm. (𝑐𝑖)𝑖 abbreviates a vector 𝑐 = (𝑐𝑖)𝑖∈𝐼 . Similarly, (𝑐𝑎)𝑎
abbreviates a vector 𝑐 = (𝑐𝑎)𝑎∈𝐴, and (𝑐𝑎𝑖)𝑎𝑖 abbreviates a vector 𝑐 = (𝑐𝑎𝑖)𝑎∈𝐴𝑖∈𝐼 .

Bilinear groups
Let BG be a generation algorithm of bilinear groups [20]: BG(1𝜆) → (𝑝, Ĝ, Ǧ,T, 𝑒, �̂�, �̌�). Here 𝑝 is a prime
number of bit-length 𝜆, Ĝ, Ǧ and T are cyclic groups of order 𝑝, and �̂� and �̌� are generators of Ĝ and Ǧ,
respectively. We denote operations in Ĝ, Ǧ and Tmultiplicatively. 𝑒 is the bilinear map Ĝ × Ǧ→ T. 𝑒 should
have the following two properties: Non-degeneracy: 𝑒(�̂�, �̌�) ≠ 1T, and Bilinearity: ∀𝑎 ∈ Z𝑝 ,∀𝑏 ∈ Z𝑝 ,∀�̂� ∈
Ĝ,∀𝑌 ∈ Ǧ, 𝑒(�̂�𝑎 , 𝑌 𝑏) = 𝑒(�̂�, 𝑌)𝑎𝑏 . Hereafter we denote an element in Ĝ and Ǧ with hat “ ˆ ” and check “ ˇ ” ,
respectively. Then, according to the previous work by Escala and Groth [19], we introduce the following linear
algebra-friendly additive notations.

∀𝑥1,∀𝑥2 ∈ Ĝ 𝑥1 + 𝑥2
def
= 𝑥1𝑥2, ∀�̌�1,∀�̌�2 ∈ Ǧ �̌�1 + �̌�2

def
= �̌�1 �̌�2, (1)

∀𝑥 ∈ Ĝ∀𝑎 ∈ Z𝑝 𝑥𝑎
def
= 𝑥𝑎 , ∀�̌� ∈ Ǧ,∀𝑏 ∈ Z𝑝 𝑏�̌�

def
= �̌�𝑏 , (2)

∀𝑥 ∈ Ĝ,∀�̌� ∈ Ǧ 𝑥 · �̌� def
= 𝑒(𝑥, �̌�), (3)

∀𝑧1,∀𝑧2 ∈ T 𝑧1 + 𝑧2
def
= 𝑧1𝑧2. (4)

Then, for further simplicity, we introduce the following notation.

∀𝑥 ∈ Ĝ,∀𝑎 ∈ Z𝑝 ,∀�̌� ∈ Ǧ 𝑥𝑎�̌�
def
= 𝑥𝑎 · �̌� = 𝑥 · 𝑎�̌�. (5)

Then it is easy to see that the following equality holds.

∀𝑥1,∀𝑥2 ∈ Ĝ,∀𝑎,∀𝑏,∀𝑐,∀𝑑 ∈ Z𝑝 ,∀�̌�1,∀�̌�2 ∈ Ǧ

(𝑥1, 𝑥2)
(
𝑎𝑐 𝑎𝑑

𝑏𝑐 𝑏𝑑

)
(�̌�1, �̌�2)⊤ = 𝑒(𝑥𝑎1𝑥

𝑏
2 , �̌�

𝑐
1 �̌�

𝑑
2) ∈ T. (6)

Finally, we extend the notation [Equation (3)] to a vector and a matrix form in the following way.

∀𝑥1,∀𝑥2 ∈ Ĝ,∀�̌�1,∀�̌�2 ∈ Ǧ(
𝑥1
𝑥2

)
· (�̌�1, �̌�2) =

(
𝑒(𝑥1, �̌�1) 𝑒(𝑥1, �̌�2)
𝑒(𝑥2, �̌�1) 𝑒(𝑥2, �̌�2)

)
∈ T2×2, (7)

and

∀𝑥1,∀𝑥2,∀𝑥3,∀𝑥4 ∈ Ĝ,∀�̌�1,∀�̌�2, �̌�3,∀�̌�4 ∈ Ǧ(
𝑥1,1 𝑥1,2
𝑥2,1 𝑥2,2

)
·
(
�̌�1,1 �̌�1,2
�̌�2,1 �̌�2,2

)
=

(
𝑒(𝑥1,1, �̌�1,1)𝑒(𝑥1,2, �̌�2,1) 𝑒(𝑥1,1, �̌�1,2)𝑒(𝑥1,2, �̌�2,2)
𝑒(𝑥2,1, �̌�1,1)𝑒(𝑥2,2, �̌�2,1) 𝑒(𝑥2,1, �̌�1,2)𝑒(𝑥2,2, �̌�2,2)

)
∈ T2×2. (8)

Structure-preserving signature scheme
The structure-preserving signature scheme [17,35] Sig consists of four PPT algorithms: Sig = (Sig.Setup,
Sig.KG, Sig.Sign, Sig.Vrf).

Sig.Setup(1𝜆) → pp. On input the security parameter 1𝜆, this PPT algorithm executes the generation algo-
rithm of bilinear groups, and it sets the output as a set of public parameters: BG(1𝜆) → (𝑝, Ĝ, Ǧ,T, 𝑒, �̂�, �̌�) =:
pp. It returns pp.

Sig.KG() → (PK, SK). Based on the set of public parameters pp, this PPT algorithm generates a signing key
SK and the corresponding public key PK. It returns (PK, SK).

http://dx.doi.org/10.20517/jsss.2024.08

Page 165 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

Sig.Sign(PK, SK, 𝑚) → 𝜎. On input the public key PK, the secret key SK and amessage𝑚 ∈ Ĝ or Ǧ, this PPT
algorithm generates a signature 𝜎. In the case of the structure-preserving signatures, 𝜎 consists of elements
(𝑉𝑖)𝑖 where 𝑉𝑖 is in either Ĝ or Ǧ. It returns 𝜎 := (𝑉𝑖)𝑖 .

Sig.Vrf(PK, 𝑚, 𝜎) → 𝑑. On input the public key PK, a message 𝑚 ∈ Ĝ or Ǧ and a signature 𝜎 = (𝑉𝑖)𝑖 , this
deterministic algorithm returns a boolean decision 𝑑.

The correctness should hold for the scheme Sig: For any security parameter 1𝜆, any set of public pa-
rameters pp ← Sig.Setup(1𝜆) and any message 𝑚, Pr[𝑑 = 1 | (PK, SK) ← Sig.KG(), 𝜎 ←
Sig.Sign(PK, SK, 𝑚), 𝑑 ← Sig.Vrf(PK, 𝑚, 𝜎)] = 1.

Adaptive chosen-message attack of an existential forgery on the scheme Sig by a forger algorithm F is defined
by the following algorithm of an experiment.

Expeuf-cma
Sig,F (1𝜆) :

pp← Sig.Setup(1𝜆), (PK, SK) ← Sig.KG()
(𝑚∗, 𝜎∗) ← FSignO(PK,SK,·) (pp, PK)
If 𝑚∗ ∉ {𝑚 𝑗 }1≤ 𝑗≤𝑞s and Sig.Vrf(PK, 𝑚∗, 𝜎∗) = 1,
then Return Win else Return Lose

In the above experiment, F issues a query 𝑚 𝑗 to its signing oracle SignO(PK, SK, ·). Then F receives a valid
signature 𝜎𝑗 as a reply. The queries are at most 𝑞s times (1 ≤ 𝑗 ≤ 𝑞s), and are bounded by a polynomial in 𝜆.
After receiving the replies, F returns a message-signature pair (𝑚∗, 𝜎∗). A restriction is imposed on F that the
message 𝑚∗ of the forgery should not be contained in the set of queries {𝑚 𝑗 }1≤ 𝑗≤𝑞s . The advantage of F over
Sig is defined as Adveuf-cma

Sig,F (𝜆) := Pr[Expeuf-cma
Sig,F (1𝜆) returns Win].

Definition 1 (EUF-CMA [36]) The scheme Sig is said to be existentially unforgeable against adaptive chosen-
message attacks (EUF-CMA) if, for any PPT algorithm F, the advantage Adveuf-cma

Sig,F (𝜆) is negligible in 𝜆.

Non-interactive commit-and-prove scheme for structure-preserving signatures
According to the “fine-tuning Groth-Sahai proofs” system [19], we survey here the non-interactive commit-
and-prove scheme on pairing-product equations, though we treat them in their additive forms. A commit-
and-prove scheme CmtPrv consists of six PPT algorithms: CmtPrv = [CmtPrv.Setup,Cmt =
(Cmt.KG,Cmt.Com,Cmt.Vrf),Π = (Prv.P,Prv.V)]. Intuitively, there are three parts in CmtPrv and
they function as follows. The first part CmtPrv.Setup generates a set of public parameters pp. The second,
commit-part, provides a set of tools that realize a “cryptographic envelope” from a sender to a receiver, which
is along the technique of “dual-mode” commitment [18]. The third, prove-part, is for a prover to generate a
proof to a verifier, which is to prove that the prover knows the data committed by the commit-algorithm of
the commit-part, in a witness-indistinguishable way.

Language
We first describe the language for which our scheme will work. The language is dependent on the type of
verification equations of the Groth-Sahai proofs (group-dependent languages [18]). For this purpose, we first
fix the set of public parameters.

• CmtPrv.Setup(1𝜆) → pp. On input the security parameter 1𝜆, this PPT algorithm executes a gen-
eration algorithm of bilinear groups BG, and it sets the output as the public parameters pp: BG(1𝜆) →
(𝑝, Ĝ, Ǧ,T, 𝑒, �̂�, �̌�) =: pp. It returns pp.

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 166

Let 𝑛 ∈ N be a constant. Suppose that we are given an equation system with 𝑛 equations and with variables
(�̂�𝑖)𝑖 and (𝑌 𝑗) 𝑗 :

∑
𝑖 �̂�𝑖 · �̌�1𝑖 +

∑
𝑗 �̂�1 𝑗 · 𝑌 𝑗 +

∑
𝑖

∑
𝑗 �̂�𝑖𝛾1𝑖 𝑗𝑌 𝑗 = 𝑡T1,

...∑
𝑖 �̂�𝑖 · �̌�𝑛𝑖 +

∑
𝑗 �̂�𝑛 𝑗 · 𝑌 𝑗 +

∑
𝑖

∑
𝑗 �̂�𝑖𝛾𝑛𝑖 𝑗𝑌 𝑗 = 𝑡T𝑛.

(9)

Let 𝐿 denote the set of coefficients of the equation system [Equation (9)] and𝑊 (𝑥) denote the set of solutions
for 𝑥 ∈ 𝐿:

𝐿 := {𝑥 ∈ (
∏
𝑖

Ĝ ×
∏
𝑗

Ǧ ×
∏
𝑖

∏
𝑗

Z𝑝)𝑛 | 𝑥 = ((�̌�𝑘𝑖)𝑖 , (�̂�𝑘 𝑗) 𝑗 , (𝛾𝑘𝑖 𝑗)𝑖, 𝑗)𝑛𝑘=1}, (10)

𝑊 (𝑥) := {𝑤 ∈
∏
𝑖

Ĝ ×
∏
𝑗

Ǧ | 𝑤 = ((�̂�𝑖)𝑖 , (�̌� 𝑗) 𝑗) satisfies (9) for 𝑥}, (11)

𝑅 := {(𝑥, 𝑤) ∈ (
∏
𝑖

Ĝ ×
∏
𝑗

Ǧ ×
∏
𝑖

∏
𝑗

Z𝑝)𝑛 ×
∏
𝑖

Ĝ ×
∏
𝑗

Ǧ

| (𝑥, 𝑤) = (((�̌�𝑘𝑖)𝑖 , (�̂�𝑘 𝑗) 𝑗 , (𝛾𝑘𝑖 𝑗)𝑖, 𝑗)𝑛𝑘=1, ((�̂�𝑖)𝑖 , (�̌� 𝑗) 𝑗)) satisfies (9)}. (12)

For a fixed parameter set pp, we call 𝐿,𝑊 (𝑥) and 𝑅 the group-dependent language with pp, the witness space
of 𝑥 with pp and the relation with pp, respectively.

Commit-part
The commit-part [18,19] Cmt = (Cmt.KG,Cmt.Com,Cmt.Vrf) is described as follows.

• Cmt.KG(mode) → key. On input a string mode, this PPT algorithm generates a key. If mode = nor,
then key = ck which is a commitment key. If mode = ext, then key = (ck, xk) which is a pair of ck and an
extraction key xk. If mode = sim, then key = (ck, tk) which is a pair of ck and a trapdoor key tk. It returns
key.

We put pp := (pp, ck). Note here that the commitment key ck, which is a common reference string (CRS) in
the term of non-interactive proof systems [18,19], is treated as one of the public parameters.

• Cmt.Com(𝑤; 𝑟) → (𝑐, 𝑟). On input a message 𝑤 (which will be a witness in the proof-part), this PPT
algorithm generates a commitment 𝑐 with a randomness 𝑟 . 𝑟 will also be a verification key. It returns (𝑐, 𝑟).
When 𝑤 is a vector 𝑤 = (𝑤𝑖)𝑖 , 𝑐 and 𝑟 are also vectors of the same number of components: 𝑐 = (𝑐𝑖)𝑖 and
𝑟 = (𝑟𝑖)𝑖 . Note that computation is executed in the componentwise way;Cmt.Com(𝑤𝑖; 𝑟𝑖) → (𝑐𝑖 , 𝑟𝑖).

• Cmt.Vrf(𝑐, 𝑤, 𝑟) → 𝑑. On input a commitment 𝑐, a message 𝑤 and a verification key 𝑟 , this deterministic
algorithm generates a boolean decision 𝑑. It returns 𝑑.

The commit-part Cmt of the Groth-Sahai proof system has the four properties [19]: (1) perfect correctness,
(2) dual mode, (3) perfectly binding and (4) perfectly hiding. We remark here that the properties (3) and (4)
cannot stand simultaneously in principle (see “Commitment Scheme” [37], etc.). The trick is that, when the
mode is ext, the key is (ck, xk) and the property (3) “perfectly binding” holds. When the mode is sim, the
key is (ck, tk) and the property (4) “perfectly hiding” holds. Importantly for security proofs, the two modes of
commitment keys (cks) are assumed to be computationally indistinguishable under an appropriate assumption.
The detailed definitions are given in Definition 3.

Prove-part
The prove-part [18,19] Π = (Prv.P,Prv.V) is described as follows.

http://dx.doi.org/10.20517/jsss.2024.08

Page 167 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

• Prv.P(𝑥, 𝑐, 𝑤, 𝑟) → 𝜋. On input a statement 𝑥, a commitment 𝑐, a witness 𝑤 and a randomness 𝑟 which was
used to generate a commitment 𝑐, this PPT algorithm executes the proof-generation algorithm of the Groth-
Sahai proof system to obtain a proof 𝜋 (see ref [19] for the details and ref [17,38] for instantiations). It returns
𝜋.

• Prv.V(𝑥, 𝑐, 𝜋) → 𝑑. On input a statement 𝑥, a commitment 𝑐 and a proof 𝜋, this deterministic algorithm
executes the verification algorithm of the Groth-Sahai proof system to obtain a boolean decision 𝑑 (see ref [19]

for the details). It returns 𝑑.

The proof-part (CmtPrv.Setup,Π) of the Groth-Sahai proof system has the four properties [19]: (1) per-
fect correctness, (2) perfect soundness, (3) perfect 𝐹-knowledge and (4) composable witness-indistinguishability
[especially (4) means perfect witness-indistinguishability]. The detailed definitions are given later.

Four properties of commit-part
Definition 2 (Correctness [18,19]) A commitment schemeCmt is said to be correct if it satisfies the following con-
dition: For any security parameter 1𝜆, any set of public parameters pp← CmtPrv.Setup(1𝜆), any commitment
key ck← Cmt.KG(mode) where mode = nor or ext or sim, and any message 𝑤,

Pr[𝑑 = 1 | (𝑐, 𝑟) ← Cmt.Com(𝑤), 𝑑 ← Cmt.Vrf(𝑐, 𝑤, 𝑟)] = 1.

Definition 3 (Dual Mode [18]) A commitment scheme Cmt is said to be dual mode if it satisfies the following
condition: For any security parameter 1𝜆, any set of public parameters pp← CmtPrv.Setup(1𝜆) and any PPT
algorithm A,

Pr[A(pp, ck) = 1 | ck← Cmt.KG(nor)] = Pr[A(pp, ck) = 1 | (ck, xk) ← Cmt.KG(ext)], (13)
Pr[A(pp, ck) = 1 | ck← Cmt.KG(nor)] ≈c Pr[A(pp, ck) = 1 | (ck, tk) ← Cmt.KG(sim)] . (14)

From Equation (13), the computational indistinguishability [(Equation (14)] is equivalent to the following: For
any security parameter 1𝜆, for any set of public parameters pp← CmtPrv.Setup(1𝜆) and any PPT algorithm
A, the advantage Advind-dualCmt,A (𝜆) of A overCmt defined by the difference below is negligible in 𝜆:

Advind-dualCmt,A (𝜆)
def
= | Pr[A(pp, ck) = 1 | (ck, xk) ← Cmt.KG(ext)]

−Pr[A(pp, ck) = 1 | (ck, tk) ← Cmt.KG(sim)] |. (15)

The indistinguishability [Equation (15)] holds, for example, for an instance of the Groth-Sahai proof system
under the SXDH assumption [18,19].

Definition 4 (Perfectly Binding [18]) A commitment scheme Cmt is said to be perfectly binding if it satisfies the
following condition for some unbounded algorithm Cmt.Open: For any security parameter 1𝜆, any set of public
parameters pp← CmtPrv.Setup(1𝜆), any commitment key ck← Cmt.KG(nor) and any message 𝑤,

Pr[𝑤 = 𝑤′ | (𝑐, 𝑟) ← Cmt.Com(𝑤; 𝑟), 𝑤′← Cmt.Open(𝑐)] = 1.

Definition 5 (Perfectly Hiding [18]) A commitment scheme Cmt is said to be perfectly hiding if it satisfies the
following condition: For any security parameter 1𝜆, any set of public parameters pp← CmtPrv.Setup(1𝜆), any
commitment key ck s.t. (ck, tk) ← Cmt.KG(sim) and any PPT algorithm A,

Pr[A(𝑆𝑡, 𝑐) = 1 | (𝑤, 𝑤′, 𝑆𝑡) ← A(pp, ck, tk), (𝑐, 𝑟) ← Cmt.Com(𝑤)]
= Pr[A(𝑆𝑡, 𝑐′) = 1 | (𝑤, 𝑤′, 𝑆𝑡) ← A(pp, ck, tk), (𝑐′, 𝑟′) ← Cmt.Com(𝑤′)] . (16)

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 168

Four properties of prove-part
Definition 6 (Perfect Correctness [18]) A commit-and-prove scheme CmtPrv is said to be perfectly correct
if it satisfies the following condition: For any security parameter 1𝜆, any set of public parameters pp ←
CmtPrv.Setup(1𝜆), any commitment key ck ← Cmt.KG(mode) where mode = nor or ext or sim with
pp := (pp, ck), and any PPT algorithm A,

Pr[Prv.V(𝑥, 𝑐, 𝜋) = 1 if (ck, 𝑥, 𝑤) ∈ 𝑅 |
(𝑥, 𝑤) ← A(pp), (𝑐, 𝑟) ← Cmt.Com(𝑤),
𝜋 ← Prv.P(𝑥, 𝑐, 𝑤, 𝑟)] = 1.

Definition 7 (Perfect Soundness [18]) A commit-and-prove scheme CmtPrv is said to be perfectly sound if it
satisfies the following condition for some unbounded algorithm Cmt.Open: For any security parameter 1𝜆, any
set of public parameters pp ← CmtPrv.Setup(1𝜆), any commitment key ck ← Cmt.KG(nor) and any PPT
algorithm A,

Pr[Prv.V(𝑥, 𝑐, 𝜋) = 0 or (ck, 𝑥, 𝑤) ∈ 𝑅 |
(𝑥, 𝑐, 𝜋) ← A(pp), 𝑤 ← Cmt.Open(𝑐)] = 1.

Let Cck be the set of commitments under ck to some message 𝑤.

Definition 8 (Perfect Knowledge Extraction [18]) A commit-and-prove scheme CmtPrv is said to be perfectly
knowledge extractable if it satisfies the following condition for some PPT algorithm Cmt.Ext: For any secu-
rity parameter 1𝜆, any set of public parameters pp ← CmtPrv.Setup(1𝜆), any commitment key (ck, xk) ←
Cmt.KG(ext) and any PPT algorithm A,

Pr[𝑐 ∉ Cck or Cmt.Ext(xk, 𝑐) = Cmt.Open(𝑐) | 𝑐 ← A(pp, ck, xk)] = 1.

Definition 9 (Composable Witness-Indistinguishability [18]) A commit-and-prove scheme CmtPrv is said to
be composably witness-indistinguishable if it satisfies the following condition: For any security parameter 1𝜆, any
set of public parameters pp← CmtPrv.Setup(1𝜆) and any PPT algorithm A, the following holds.

Pr[(ck, 𝑥, 𝑤), (ck, 𝑥, 𝑤′) ∈ 𝑅 and A(𝑆𝑡, 𝜋) = 1 | (ck, tk) ← Cmt.KG(sim), pp := (pp, ck),

(𝑥, 𝑤, 𝑤′, 𝑆𝑡) ← ACmt.Com(·) (pp, ck, tk), (𝑐, 𝑟) ← Cmt.Com(𝑤), 𝜋 ← Prv.P(𝑥, 𝑐, 𝑤, 𝑟)]
= Pr[(ck, 𝑥, 𝑤), (ck, 𝑥, 𝑤′) ∈ 𝑅 and A(𝑆𝑡, 𝜋′) = 1 | (ck, tk) ← Cmt.KG(sim), pp := (pp, ck),

(𝑥, 𝑤, 𝑤′, 𝑆𝑡) ← ACmt.Com(·) (pp, ck, tk), (𝑐′, 𝑟′) ← Cmt.Com(𝑤′), 𝜋′← Prv.P(𝑥, 𝑐′, 𝑤′, 𝑟′)] . (17)

Especially, perfect witness-indistinguishability holds from Equation (17).

BUNDLED LANGUAGE
In this section, we define a notion of a bundled language in the case of a group-dependent language that is
pairing-product equations. Intuitively, the notion is a simultaneous equation system whose coefficients form a
language.

For a polynomially bounded integer 𝑞, we first prepare for 𝑞 independent copies of an equation system with
variables (�̂�𝑎

𝑖)𝑖 and (𝑌 𝑎
𝑗) 𝑗 , as follows. (We remark that 𝑎 is an index.)

For 𝑎 ∈ [𝑞],
∑

𝑖 �̂�
𝑎
𝑖 · �̌�𝑎

1𝑖 +
∑

𝑗 �̂�
𝑎
1 𝑗 · 𝑌

𝑎
𝑗 +

∑
𝑖

∑
𝑗 �̂�

𝑎
𝑖 𝛾

𝑎
1𝑖 𝑗𝑌

𝑎
𝑗 = 𝑡𝑎

T1,
...∑

𝑖 �̂�
𝑎
𝑖 · �̌�𝑎

𝑛𝑖 +
∑

𝑗 �̂�
𝑎
𝑛 𝑗 · 𝑌 𝑎

𝑗 +
∑

𝑖

∑
𝑗 �̂�

𝑎
𝑖 · 𝑌 𝑎

𝑗 = 𝑡𝑎T𝑛.

(18)

http://dx.doi.org/10.20517/jsss.2024.08

Page 169 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

Now we impose a constraint that the above 𝑞 equation systems have a common variable. For simplicity, we
enforce that

�̂�1
1 = · · · = �̂�

𝑞
1 = �̂�1. (19)

Definition 10 (Bundled language) Let 𝐿 be the language [Equation (10)]. For a polynomially bounded integer
𝑞, put 𝐴 := [𝑞]. The 𝑞-bundled language∏bnd

𝑎∈𝐴 𝐿 of the languages 𝐿 is the subset of the 𝑞-Cartesian product of 𝐿
with the constraint [Equation (19)]:

bnd∏
𝑎∈𝐴

𝐿
def
= {(𝑥𝑎)𝑎∈𝐴 ∈

∏
𝑎∈𝐴

𝐿 | �̂�1
1 = · · · = �̂�

𝑞
1 = �̂�1}. (20)

DECENTRALIZED MULTI-AUTHORITY ANONYMOUS CREDENTIAL SYSTEM
In this section, we provide syntax and security definitions of dACS. We introduce three security definitions.
The first is EUF against collusion attacks that cause mis-authentication, the other two are anonymity and
unlinkability of proofs.

Syntax
Our dACS consists of five PPT algorithms, (Setup, AuthKG, PrivKG, Prover, Verifier). Intuitively,
Setup generates a set of common public parameters pp. In a real use, it is executed only once by an entity that
maintains a standard like NIST FIPS 186-4 [16]. Then a key-issuing authority of an attribute executesAuthKG
to generate its master secret key and public key. Then, the authority, being asked by an entity possessing an
attribute, generates and issues a private secret key of the attribute for the entity. By using the private secret
key(s), the entity executes Prover to generate a proof of knowing the key(s) of attribute(s). Receiving the
proof, any verifier executes Verifier and decides whether the proof is valid to confirm the knowledge of
attribute(s) or not.

• Setup(1𝜆) → pp. This PPT algorithm is needed to generate a set of public parameters pp. On input the
security parameter 1𝜆, it generates the set pp. It returns pp.

•AuthKG(𝑎) → (PK𝑎 ,MSK𝑎). This PPT algorithm is executed by a key-issuing authority indexed by 𝑎. On
input the authority index 𝑎, it generates the 𝑎-th public key PK𝑎 of the authority and the corresponding 𝑎-th
master secret key MSK𝑎 . It returns (PK𝑎 ,MSK𝑎).

• PrivKG(PK𝑎 ,MSK𝑎 ,i) → sk𝑎i. This PPT algorithm is executed by the 𝑎-th key-issuing authority. On input
the 𝑎-th public and master secret keys (PK𝑎 ,MSK𝑎) and an element i ∈ Ĝ (that is an identifier of a prover), it
generates a private secret key sk𝑎i of a prover. It returns sk

𝑎
i.

• Prover((PK𝑎)𝑎∈𝐴′ ,i, (sk𝑎i)𝑎∈𝐴
′) → 𝜋. This PPT algorithm is executed by a prover who is to be authenti-

cated, where 𝐴′ denotes a subset of the set 𝐴. On input the public keys (PK𝑎)𝑎∈𝐴′ , an identity element i and
the corresponding private secret keys (sk𝑎i)𝑎∈𝐴

′ , it returns a proof 𝜋.

• Verifier((PK𝑎)𝑎∈𝐴′ , 𝜋) → 𝑑. This deterministic polynomial-time algorithm is executed by a verifier who
confirms that the prover certainly knows the secret keys for indices 𝑎 ∈ 𝐴′. On input the public keys (PK𝑎)𝑎∈𝐴′

and the proof 𝜋, it returns 𝑑 := 1 (“accept”) or 𝑑 := 0 (“reject”).

Security definitions
Wedefine three security notions for ourACS dACS; EUF against collusion attacks, anonymity and unlinkability
of proofs. Hereafter, the notation “(algorithm name)+O” means the oracle that functions as the algorithm.

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 170

EUF against collusion attack
Formally, we define the following experiment on dACS and an adversary algorithm A.

Expeuf-coll
dACS,A(1

𝜆, 1𝜇) :

pp← Setup(1𝜆), 𝐴 := [𝜇], For 𝑎 ∈ 𝐴 : (PK𝑎 ,MSK𝑎) ← AuthKG(𝑎)

(�̃�, 𝑆𝑡) ← A(pp, (PK𝑎)𝑎∈𝐴), ¯̃𝐴 := 𝐴\�̃�

(𝜋∗, 𝐴∗) ← APrivKO(PK· ,MSK· ,·) (𝑆𝑡, (MSK𝑎)𝑎∈ �̃�)
Verifier((PK𝑎)𝑎∈𝐴∗ , 𝜋∗) → 𝑑

If 𝑑 = 1 then return Win else return Lose

Intuitively, the above experiment describes the attack as follows. On input the public keys (PK𝑎)𝑎∈𝐴, A outputs
a set �̃� of indices of corrupted authorities. Then A issues a query of the form (𝑎,i 𝑗), where 𝑎 ∈ ¯̃𝐴 := 𝐴\�̃� and
i 𝑗 ∈ Ĝ for 𝑗 ∈ [𝑞sk] to the private secret key oraclePrivKO(PK·,MSK·, ·). We denote by 𝐴 𝑗 the set of authority
indices for which the private secret key queries were issued with i 𝑗 . That is, 𝐴 𝑗 := {𝑎 ∈ 𝐴 | A is given sk𝑎i 𝑗

} ⊂
¯̃𝐴. We note that the maximum number of private secret key queries is 𝜇 · 𝑞sk. We require that the numbers 𝜇
and 𝑞sk are bounded by a polynomial in 𝜆. At the end A returns a forgery proof 𝜋∗ together with the target set
of authority indices 𝐴∗ that is a subset of ¯̃𝐴: 𝐴∗ ⊂ ¯̃𝐴. If the decision 𝑑 on 𝜋∗ byVerifier is 1 under (PK𝑎)𝑎∈𝐴∗ ,
then the experiment returns Win; otherwise, it returns Lose.

A restriction is imposed on the adversary A: the queried i 𝑗 s are pairwise different, and any 𝐴 𝑗 is a proper
subset of the target set 𝐴∗:

i 𝑗1 ≠ i 𝑗2 for 𝑗1, 𝑗2 ∈ [𝑞sk], 𝑗1 ≠ 𝑗2, (21)
𝐴 𝑗 ⊊ 𝐴∗, 𝑗 ∈ [𝑞sk] . (22)

These restrictions are because, otherwise, the adversary A can trivially succeed in causing forgery.

The advantage of an adversary A over an ACS dACS in the experiment is defined as: Adveuf-colldACS,A(𝜆, 𝜇)
def
=

Pr[Expeuf-coll
dACS,A(1𝜆, 1𝜇) = Win].

Definition 11 A scheme dACS is said to be existentially unforgeable against collusion attacks if, for any PPT
algorithm A, the advantage Adveuf-coll

dACS,A
(𝜆, 𝜇) is negligible in 𝜆.

Anonymity of proofs
Formally, we define the following experiment on dACS and an adversary algorithm A.

Expano-prf
dACS,A(1

𝜆, 1𝜇) :

pp← Setup(1𝜆), 𝐴 := [𝜇], For 𝑎 ∈ 𝐴 : (PK𝑎 ,MSK𝑎) ← AuthKG(𝑎)
(i0,i1, 𝑆𝑡) ← A(pp, (PK𝑎)𝑎∈𝐴)
For 𝑎 ∈ 𝐴 : For 𝑖 = 0, 1 : sk𝑎i𝑖

← PrivKG(PK𝑎 ,MSK𝑎 ,i𝑖)

𝑏 ∈𝑅 {0, 1}, 𝑏′← AProver((PK𝑎)𝑎∈𝐴,i𝑏 ,(sk𝑎i𝑏)
𝑎∈𝐴) (𝑆𝑡, (MSK𝑎 , sk𝑎i0

, sk𝑎i1
)𝑎∈𝐴)

If 𝑏 = 𝑏′ then return Win, else return Lose

Intuitively, the above experiment describes the attack as follows. On input the set of public parameters pp and
the issued public keys (PK𝑎)𝑎∈𝐴, A designates two identity elements i0 and i1, and A is given two kinds of
private secret keys (sk𝑎i0

, sk𝑎i1
) for all 𝑎 ∈ 𝐴. Next, for randomly chosen 𝑏 ∈ {0, 1}, which is hidden from A,

A does oracle-access to a prover Prover that is on input the identity i𝑏 and the private secret keys (sk𝑎i𝑏
)𝑎∈𝐴.

If the decision 𝑏′ of A is equal to 𝑏, then the experiment returns Win; otherwise, it returns Lose.

http://dx.doi.org/10.20517/jsss.2024.08

Page 171 AnadaJ Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

The advantage of an adversary A over an ACS dACS in the experiment is defined as: Advano-prf
dACS,A

(𝜆, 𝜇) def
=��Pr[Expano-prf

dACS,A(1
𝜆, 1𝜇) = Win] − (1/2)

��.
Definition 12 An ACS dACS is said to have anonymity of proofs if, for any PPT algorithm A, the advantage
Advano-prf

dACS,A
(𝜆, 𝜇) is negligible in 𝜆.

Unlinkability of proofs
Formally we define the following experiment on dACS and an adversary algorithm A.

Expunlink-prf
dACS,A (1

𝜆, 1𝜇) :

pp← Setup(1𝜆), 𝐴 := [𝜇], For 𝑎 ∈ 𝐴 : (PK𝑎 ,MSK𝑎) ← AuthKG(𝑎)
(i0,i1, 𝑆𝑡) ← A(pp, (PK𝑎)𝑎∈𝐴)
For 𝑎 ∈ 𝐴 : For 𝑖 = 0, 1 : sk𝑎i𝑖

← PrivKG(PK𝑎 ,MSK𝑎 ,i𝑖)
𝑏 ∈𝑅 {0, 1}

If 𝑏 = 0 then 𝑆𝑡 ← AProver((PK𝑎)𝑎∈𝐴,i0,(sk𝑎i0
)𝑎∈𝐴) (𝑆𝑡, (MSK𝑎 , sk𝑎i0

, sk𝑎i1
)𝑎∈𝐴)

𝑑 ← AProver((PK𝑎)𝑎∈𝐴,i1,(sk𝑎i1
)𝑎∈𝐴) (𝑆𝑡)

else 𝑆𝑡 ← AProver((PK𝑎)𝑎∈𝐴,i0,(sk𝑎i0
)𝑎∈𝐴) (𝑆𝑡, (MSK𝑎 , sk𝑎i0

, sk𝑎i1
)𝑎∈𝐴)

𝑑 ← AProver((PK𝑎)𝑎∈𝐴,i0,(sk𝑎i0
)𝑎∈𝐴) (𝑆𝑡)

If 𝑏 = 𝑑 then return Win, else return Lose

Intuitively, the above experiment resembles the experiment of anonymity Expano-prf
dACS,A(1

𝜆, 1𝜇). The difference
is that, in the above experiment, the adversary A has to distinguish whether the proofs (𝜋) are of the same
entity or of the other entity.

The advantage of an adversary A over an ACS dACS in the experiment is defined as: Advunlink-prf
dACS,A

(𝜆, 𝜇) def
=��Pr[Expunlink-prf

dACS,A (1
𝜆, 1𝜇) = Win] − (1/2)

��.
Definition 13 An ACS dACS is said to have unlinkability of proofs if, for any PPT algorithm A, the advantage
Advunlink-prf

dACS,A
(𝜆, 𝜇) is negligible in 𝜆.

Proposition 1 (Unlinkability Implies Anonymity) For any PPT algorithm A that is in accordance with the
experiment Expano-prfdACS,A(1

𝜆, 1𝜇), there exists a PPT algorithm B that is in accordance with the experiment
Expunlink-prfdACS,B (1

𝜆, 1𝜇) and the following inequality holds.

Advano-prf
dACS,A

(𝜆, 𝜇) ≤ Advunlink-prf
dACS,B

(𝜆, 𝜇).

Proof. Suppose that any PPT algorithm A that is in accordance with the experiment Expano-prf
dACS,A(1

𝜆, 1𝜇) is
given. Then we construct a PPT algorithm A that is in accordance with the experiment Expunlink-prf

dACS,B (1
𝜆, 1𝜇) as

follows. B employs 𝐴 as a subroutine. B is able to generate A’s input by using B’s input and A’s output. Also, B
is able to answer to A’s queries by issuing queries to B’s oracle and using the answers. Finally, when A outputs
𝑏′, B sets 𝑑 := 𝑏′. □

GENERIC CONSTRUCTION
In this section, we provide a generic construction of the scheme dACS. Here we employ two building blocks.
One is the structure-preserving signature scheme [17,35]. The other is the commit-and-prove scheme of the

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 172

“fine-tuning Groth-Sahai proofs” system [18,19] on pairing-product equations of our “bundled language”.

Construction
According to our syntax, the scheme dACS consists of five PPT algorithms: dACS = (Setup, AuthKG,

PrivKG, Prover,Verifier).

• Setup(1𝜆) → pp. On input the security parameter 1𝜆, it runs the generation algorithm of bilinear groups,
and it sets the output as a set of public parameters: BG(1𝜆) → (𝑝, Ĝ, Ǧ,T, 𝑒, �̂�, �̌�) =: pp. Note that pp is
common for both the structure-preserving signature schemeSig and the commit-and-prove schemeCmtPrv.
Besides, it runs the generation algorithm of commitment key: Cmt.KG(nor) → ck. It returns pp := (pp, ck).

• AuthKG(𝑎) → (PK𝑎 ,MSK𝑎). On input an authority index 𝑎, it executes the key-generation algorithm
Sig.KG() to obtain (PK, SK). It sets PK𝑎 := PK and MSK𝑎 := SK. It returns (PK𝑎 ,MSK𝑎).

• PrivKG(PK𝑎 ,MSK𝑎 ,i) → sk𝑎i. On input PK𝑎 , MSK𝑎 and an element i ∈ Ĝ, it sets PK := PK𝑎 and
SK := MSK𝑎 and 𝑚 := �̂� := i. It executes the signing algorithm Sig.Sign(PK, SK, 𝑚) to obtain a signature
𝜎. It sets sk𝑎i := 𝜎. It returns sk𝑎i.

• Prover((PK𝑎)𝑎∈𝐴′ ,i, (sk𝑎i)𝑎∈𝐴
′) → 𝜋. On input (PK𝑎)𝑎∈𝐴′ , i and (sk𝑎i)𝑎∈𝐴

′ , it first commits to i:

𝑐0 ← Cmt.Com(i; 𝑟0).

Second, for each 𝑎 ∈ 𝐴′, it commits to the components (𝜎𝑎
𝑘)𝑘 of the signature 𝜎

𝑎 in the componentwise way.

(𝑐𝑎𝑘)𝑘 ← Cmt.Com((𝜎𝑎
𝑘)𝑘 ; (𝑟

𝑎
𝑘)𝑘).

Then, for each authority index 𝑎 it sets 𝑥𝑎 := PK𝑎 . It also sets 𝑐𝑎 := (𝑐0, (𝑐𝑎𝑘)𝑘),𝑤
𝑎 := (𝑤0, (𝑤𝑎

𝑘)𝑘) := (i, (𝜎𝑎
𝑘)𝑘)

and 𝑟𝑎 := (𝑟0, (𝑟𝑎𝑘)𝑘). It executes the prove-algorithm to obtain a proof:

𝜋𝑎 ← Prv.P(𝑥𝑎 , 𝑐𝑎 , 𝑤𝑎 , 𝑟𝑎), 𝑎 ∈ 𝐴′.

It sets �̄�𝑎 := ((𝑐𝑎𝑘)𝑘 , 𝜋
𝑎) for each 𝑎 ∈ 𝐴′, and it merges all the �̄�𝑎s and the commitment 𝑐0 as 𝜋 := (𝑐0, (�̄�𝑎)𝑎∈𝐴

′).
It returns 𝜋.

•Verifier((PK𝑎)𝑎∈𝐴′ , 𝜋) → 𝑑. On input ((PK𝑎)𝑎∈𝐴′ , 𝜋), it sets 𝑥𝑎 := PK𝑎 and it sets 𝑐𝑎 := (𝑐0, (𝑐𝑎𝑘)) for each
𝑎 ∈ 𝐴′. Then it executes the verify-algorithm for each 𝑎 ∈ 𝐴′ to obtain the decisions:

𝑑𝑎 ← Prv.V(𝑥𝑎 , 𝑐𝑎 , 𝜋𝑎), 𝑎 ∈ 𝐴′.

If all the decisions 𝑑𝑎s are 1, then it returns 𝑑 := 1; otherwise, it returns 𝑑 := 0.

Security proofs
Theorem 1 (EUF against Collusion Attacks) For any PPT algorithm A that is in accordance with the experi-
ment Expeuf-colldACS,A(1

𝜆, 1𝜇), there exists a PPT algorithm F that is in accordance with the experiment Expeuf-cma
Sig,F (1

𝜆)
and the following inequality holds.

Adveuf-coll
dACS,A

(𝜆, 𝜇) = 𝜇 · Adveuf-cma
Sig,F (𝜆).

Theorem 1 means that, if the structure-preserving signature scheme Sig is existentially unforgeable against
adaptive chosen-message attacks, then our dACS is EUF against collusion attacks.

Proof. Given any PPT algorithmA that is in accordance with the experiment Expeuf-coll
dACS,A(1𝜆, 1𝜇), we construct

a PPT algorithm F that generates an existential forgery of Sig according to the experiment Expeuf-cma
Sig,F (1𝜆). F

http://dx.doi.org/10.20517/jsss.2024.08

Page 173 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

is given as input the set of public parameters pp and a public key PKSig. F is also given an auxiliary input 𝜇.
F executes Cmt.KG(ext) to obtain a pair (ck, xk). F sets pp := (pp, ck). F invokes the algorithm A with
1𝜆 to obtain the number 𝜇 and 𝑆𝑡. F chooses a target index 𝑎† from the set 𝐴 := [𝜇] uniformly at random. F
executes the generation algorithm of an authority key honestly for 𝑎 ∈ 𝐴 except the target index 𝑎†. As for 𝑎†,
F uses the input public key:

For 𝑎 ∈ 𝐴, 𝑎 ≠ 𝑎† : (PK𝑎 ,MSK𝑎) ← AuthKG(𝑎),

For 𝑎 = 𝑎† : PK𝑎† := PKSig.

F inputs 𝑆𝑡 and the public keys (PK𝑎)𝑎∈𝐴 into A. Then F obtains a set of corrupted authority indices �̃� from
A. F sets ¯̃𝐴 := 𝐴\�̃�. If 𝑎† ∈ ¯̃𝐴 (the case TgtIdx1), then 𝑎† is not in �̃� and F is able to input [𝑆𝑡, (MSK𝑎)𝑎∈ �̃�]
into A. Otherwise, F aborts.

Simulation of private secret key oracle. When A issues a private secret key query with 𝑎 ∈ 𝐴 𝑗 ⊊
¯̃𝐴 and i 𝑗 ∈

Z𝑝 (𝑗 = 1, . . . , 𝑞sk), F executes the generation algorithm of private secret key with i 𝑗 honestly for 𝑎 ∈ ¯̃𝐴 such
that 𝑎 ≠ 𝑎†. As for 𝑎 = 𝑎†, F issues a signing query to its oracle with i 𝑗 :

For 𝑎 ∈ ¯̃𝐴 s.t. 𝑎 ≠ 𝑎† : sk𝑎i 𝑗
← PrivKG(PK𝑎 ,MSK𝑎 ,i 𝑗),

For 𝑎 = 𝑎†, sk𝑎
†
i 𝑗
← SignO(PK, SK,i 𝑗).

F replies to A with the secret key sk𝑎i 𝑗
. This is a perfect simulation.

At the end A returns a forgery proof and the target set of authority indices (𝜋∗, 𝐴∗). Note here that 𝐴∗ ⊂ ¯̃𝐴 as
in the definition.

Generating Existential Forgery. Next, F runs a Verifier with an input [(PK𝑎)𝑎∈𝐴∗ , 𝜋∗]. If the decision 𝑑

of Verifier is 1, then F executes for each 𝑎 ∈ 𝐴∗ the extraction algorithm Cmt.Ext(xk, 𝑐𝑎) to obtain a
committed message (𝑤𝑎)∗ = ((𝑤𝑎

0)
∗, ((𝑤𝑎

𝑘)
∗)𝑘) (see Definition 8). Note here that, for all 𝑎 ∈ 𝐴∗, (𝑤𝑎

0)
∗ is

equal to a single element (𝑤0)∗ in Ĝ. This is because of the perfectly binding property of Cmt. Then F sets
i∗ := (𝑤0)∗. Here the restriction [Equations (21)and (22)] assures that, if 𝑞sk > 0, then there exists at least one
�̂� ∈ (𝐴∗\𝐴 𝑗) for some 𝑗 ∈ [𝑞sk]. If 𝑞sk = 0, then there exists at least one �̂� ∈ 𝐴∗. F chooses one such �̂� and
sets 𝜎∗ := (𝜎�̂�)∗ := [(𝑤�̂�

𝑘)
∗]𝑘 . F returns a forgery pair of a message and a signature (i∗, 𝜎∗). This completes

the description of F.

Probability evaluation. The probability that the returned value (i∗, 𝜎∗) is actually an existential forgery is
evaluated as follows. We name the events in the above F as:

Acc : 𝑑 = 1,
Ext : Cmt.Ext returns a witness (𝑤𝑎)∗

TgtIdx : �̂� = 𝑎†,

Forge : (i∗, 𝜎∗) is an existential forgery on Sig.

We have the following equalities.

Adveuf-colldACS,A(𝜆, 𝜇) = Pr[Acc], (23)

Pr[Acc, Ext,TgtIdx] = Pr[Forge], (24)

Pr[Forge] = Adveuf-cma
Sig,F (𝜆). (25)

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 174

The left-hand side of the equality [Equation (24)] is expanded as follows.

Pr[Acc, Ext,TgtIdx] = Pr[TgtIdx] · Pr[Acc, Ext]
= Pr[TgtIdx] · Pr[Acc] · Pr[Ext | Acc] . (26)

Claim 1

Pr[TgtIdx] = 1/|𝐴| = 1/𝜇. (27)

Proof. �̂� coincides with 𝑎† with probability 1/|𝐴| because 𝑎† is chosen uniformly at random from 𝐴 by F and
no information of 𝑎† is leaked to A. □
Claim 2 If TgtIdx occurs, then i∗ is not queried by F to its oracle SignO.

Proof. This is because of the restriction [Equations (21) and (22)]. □
Claim 3

Pr[Ext | Acc] = 1. (28)

Proof. This is because of the perfect knowledge extraction of Π (see Definition 8). □

Combining Equations (23)-(28) we have:

Adveuf-colldACS,A(𝜆, 𝜇) = 𝜇 · Adveuf-cma
Sig,F (𝜆), (29)

as is claimed in Theorem 1. □
Theorem 2 (Unlinkability of Proofs) For any PPT algorithm A that is in accordance with the experiment
Expunlink-prfdACS,A (1

𝜆, 1𝜇), there exists a PPT algorithm D and the following inequality holds.

Advunlink-prf
dACS,A

(𝜆, 𝜇) ≤ Advind-dualCmt,D (𝜆).

[For the definition of Advind-dualCmt,D (𝜆), see Definition 3.]

Theorem 2 means that, if the dual-mode commitment keys are indistinguishable, then our dACS has unlinka-
bility.

Proof. Suppose that any PPT algorithm A that is in accordance with the experiment Expunlink-prf
dACS,A (1

𝜆, 1𝜇)
is given. We set a sequence of games, Game0 and Game1, as follows. Game0 is exactly the same as
Expunlink-prf

dACS,A (1
𝜆, 1𝜇). Note that when a set of public parameters pp = (pp′, ck) is given to A where pp′ is for

bilinear groups, the commitment key ck is chosen as a commitment key ck of the mode nor. We denote the
probability thatGame0 returns Win as Pr[Win0].

Game1 is the same as Game0 except that, when a set of public parameters pp = (pp′, ck) is given to A,
the commitment key ck is chosen as a commitment key ck of the mode sim. We denote the probability that
Game1 returns Win as Pr[Win1]. The values in Game1 are distributed identically for both i0 and i1 due
to the perfectly hiding property [Equation (16)] and the perfect witness-indistinguishability [Equation (17)].
Therefore, Pr[Win1] = 1/2.

Employing A as a subroutine, we construct a PPT distinguisher algorithm D as follows. Given an input pp, ck,
D reads out the security parameter. D simulates the environment of A inGame0 orGame1 honestly except

http://dx.doi.org/10.20517/jsss.2024.08

Page 175 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

that D sets pp := (pp, ck) instead of executing Setup(1𝜆). If 𝑏 = 𝑏′, then D returns 1, and otherwise, 0.
By Equations (13) and (14) (see Definition 3), Pr[D(pp, ck) = 1 | ck ← Cmt.KG(nor)] = Pr[Win0] and
Pr[D(pp, ck) = 1 | (ck, tk) ← Cmt.KG(sim)] = Pr[Win1], and

Advind-dualCmt,D (𝜆) = | Pr[Win0] − Pr[Win1] |. (30)

Therefore,

Advunlink-prf
dACS,A

(𝜆, 𝜇) = | Pr[Win0] − (1/2) |

≤ | Pr[Win0] − Pr[Win1] | + | Pr[Win1] − (1/2) |
= Advind-dualCmt,D (𝜆) + 0 = Advind-dualCmt,D (𝜆), (31)

as is claimed in Theorem 2. □

INSTANTIATION
In this section, we instantiate our dACS in bilinear groups of Type 3 pairing [20]. The security properties are
guaranteed under the SXDH assumption [35,38]. In accordance with the generic construction in the previous
section, we employ two building blocks. One is the structure-preserving signature scheme by Abe et al. [17],
and the other is the commit-and-prove scheme of the “fine-tuning Groth-Sahai proofs” system by Escala-and-
Groth [19] on the pairing-product equations of our bundled language, which is a simultaneous verification
equation system of the structure-preserving signatures on an identity element i.

Construction
According to our syntax, our instantiated scheme dACSsxdh consists of five PPT algorithms: dACSsxdh =
(Setup,AuthKG, PrivKG, Prover,Verifier).

• Setup(1𝜆) → pp. On input the security parameter 1𝜆, it runs the generation algorithm of bilinear groups,
and it sets the output as a set of public parameters: BG(1𝜆) → (𝑝, Ĝ, Ǧ,T, 𝑒, �̂�, �̌�) =: pp. Note that pp is
common for both the commit-and-prove schemeCmtPrv and the structure-preserving signature schemeSig.
Besides, it runs the generation algorithm of a commitment key: Cmt.KG(nor) → ck. That is, it generates
a CRS of mode nor for the Groth-Sahai NIZK proof system [19] as Diffie-Hellman tuples, as follows. It first
samples 𝜒, 𝜉, 𝜒′, 𝜉′ ∈𝑅 Z𝑝 , and it computes �̂� := 𝜒�̂�, �̂� := 𝜉�̂�, �̂� := 𝜒𝜉�̂�, �̌� := 𝜒′�̌�, �̌� := 𝜉′�̌�, �̌� := 𝜒′𝜉′�̌�.
Then it sets

ˆcrsΠ :=
[
�̂� �̂�

�̂� �̂�

]
, ˇcrsΠ :=

[
�̌� �̌�

�̌� �̌� ,

]
, (32)

and it sets

ck := (ˆcrsΠ , ˇcrsΠ).

It returns pp := (pp, ck).

• AuthKG(𝑎) → (PK𝑎 ,MSK𝑎). On input an authority index 𝑎, it executes the key-generation algorithm of
the structure-preserving signature scheme [17],Sig.KG(1𝜆), to obtain (PK, SK). Precisely, it generates a CRS of
mode nor for the Groth-Sahai proof systems [19] ΠSig,0 and ΠSig,1 as Diffie-Hellman tuples, as follows. (Note
that the authority index 𝑎 is omitted for simplicity). That is, for 𝑖 = 0, 1, it first samples 𝜒𝑖 , 𝜉𝑖 , 𝜒′𝑖 , 𝜉

′
𝑖 ∈𝑅 Z𝑝 , and

it computes �̂�𝑖 := 𝜒𝑖�̂�, �̂�𝑖 := 𝜉𝑖�̂�, �̂�𝑖 := 𝜒𝑖𝜉𝑖�̂�, �̌�𝑖 := 𝜒′𝑖 �̌�, �̌�𝑖 := 𝜉′𝑖 �̌�, �̌�𝑖 := 𝜒′𝑖 𝜉
′
𝑖 �̌�. Then it sets

ˆcrs0 :=
[
�̂� �̂�0
�̂�0 �̂�0

]
, ˆcrs1 :=

[
�̂� �̂�1
�̂�1 �̂�1

]
, ˇcrs1 :=

[
�̌� �̌�1
�̌�1 �̌�1

]
. (33)

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 176

Then it generates exponent values as

𝑥0 ∈𝑅 Z𝑝 , 𝑥1 := 𝑥2 := 0. (34)

Then it generates the secret keys of the ElGamal encryption as

𝑦0, 𝑦1, 𝑦2 ∈𝑅 Z𝑝 , 𝑌0 := 𝑦0�̌�,𝑌1 := 𝑦1�̌�,𝑌2 := 𝑦2�̌�. (35)

Then it generates commitments as

ˆ[𝑥0]0 := Com(ˆcrs0, 𝑥0; 𝑟𝑥00), ˆ[𝑥1]0 := Com(ˆcrs0, 𝑥1; 𝑟𝑥10),
ˇ[𝑥2]1 := Com(ˇcrs1, 𝑥2; 𝑟𝑥21), ˆ[𝑦0]0 := Com(ˆcrs0, 𝑦0; 𝑟𝑦00),
ˆ[𝑦0]1 := Com(ˆcrs1, 𝑦0; 𝑟𝑦01), ˆ[𝑦1]1 := Com(ˆcrs1, 𝑦1; 𝑟𝑦11),
ˇ[𝑦2]1 := Com(ˇcrs1, 𝑦2; 𝑟𝑦21), (36)

where [x̂]𝑖 and [y̌] 𝑗 (𝑖 = 0, 1, 𝑗 = 0, 1) are computed as follows.

ˆ[x]𝑖 := Com(ˆcrs𝑖 , x; 𝑟x𝑖) := (x�̂�𝑖 + 𝑟x𝑖 �̂�, x(�̂�𝑖 + �̂�) + 𝑟x𝑖 �̂�𝑖),
ˇ[y] 𝑗 := Com(ˇcrs 𝑗 ,y; 𝑟y𝑖) := (y�̌� 𝑗 + 𝑟y𝑖 �̌�,y(�̌� 𝑗 + �̌�) + 𝑟y𝑖 �̌� 𝑗).

Then it generates a basis of messages as

𝜔 ∈𝑅 Z𝑝 , �̌�𝑟 := 𝜔�̌�, 𝛾1 ∈𝑅 Z𝑝 , �̌�1 := 𝛾1�̌�𝑟 . (37)

Finally, it sets

PK := (ˆcrs0, ˆcrs1, ˇcrs1, 𝑌0, 𝑌1, 𝑌2, ˆ[𝑥0]0, ˆ[𝑥1]0, ˇ[𝑥2]1, ˆ[𝑦0]0, ˆ[𝑦0]1, ˆ[𝑦1]1, ˇ[𝑦2]1, �̌�𝑟 , �̌�1), (38)
SK := (𝑥0, 𝑦0, 𝑦1, 𝑦2, 𝑟𝑥00 , 𝑟𝑥10 , 𝑟𝑥21 , 𝑟𝑦00 , 𝑟𝑦01 , 𝑟𝑦11 , 𝑟𝑦21 , 𝜔, 𝛾1). (39)

It sets PK𝑎 := PK and MSK𝑎 := SK. It returns (PK𝑎 ,MSK𝑎).

• PrivKG(PK𝑎 ,MSK𝑎 ,i) → sk𝑎i. On input PK𝑎 , MSK𝑎 and an element i ∈ Ĝ, it sets PK := PK𝑎 and
SK := MSK𝑎 and 𝑚 := �̂� := i. It executes the signing algorithm Sig.Sign(PK, SK, 𝑚) to obtain a signature
𝜎 on i. Precisely, it generates a one-time key pair 𝛼 ∈𝑅 Z∗𝑝 and �̌� := 𝛼�̂�, and it generates a one-time signature
(�̂� , �̂�) as

𝜌 ∈𝑅 Z𝑝 , �̂� := (𝛼 − 𝜌𝜔)�̂�, �̂� := 𝜌�̂� − 𝛾1�̂�. (40)

Then it encrypts 𝑧0 = 𝑧1 := 𝑥0 and 𝑧2 := 0 as

𝑠 ∈𝑅 Z𝑝 , (�̌�𝑧0 , �̌�𝑧1 , �̌�𝑠) := (𝑧0�̌� + 𝑠𝑌0, 𝑧1�̌� + 𝑠𝑌1, 𝑠�̌�), (41)
𝑡 ∈𝑅 Z𝑝 , (�̂�𝑧2 , �̂�𝑡) := (𝑧2�̂� + 𝑡𝑌2, 𝑡�̂�). (42)

Then it generates commitments as

ˇ[𝑧0]0 := Com(ˇcrs0, 𝑧0; 𝑟𝑧00),
ˇ[𝑧0]1 := Com(ˇcrs1, 𝑧0; 𝑟𝑧01),
ˇ[𝑧1]1 := Com(ˇcrs1, 𝑧1; 𝑟𝑧11), (43)
ˆ[𝑧2]1 := Com(ˆcrs1, 𝑧2; 𝑟𝑧21). (44)

where ˆ[𝑧2]1, ˇ[𝑧0]0, ˇ[𝑧0]1 and ˇ[𝑧1]1 are computed as follows.

ˇ[𝑧0]0 := Com(ˇcrs0, 𝑧0; 𝑟𝑧00) = (𝑧0�̌�0 + 𝑟𝑧00�̌�, 𝑧0(�̌�0 + �̌�) + 𝑟𝑧00�̌�0),
ˇ[𝑧0]1 := Com(ˇcrs1, 𝑧0; 𝑟𝑧01) = (𝑧0�̌�1 + 𝑟𝑧01�̌�, 𝑧0(�̌�1 + �̌�) + 𝑟𝑧01�̌�1),
ˇ[𝑧1]1 := Com(ˇcrs1, 𝑧1; 𝑟𝑧11) = (𝑧1�̌�1 + 𝑟𝑧11�̌�, 𝑧1(�̌�1 + �̌�) + 𝑟𝑧11�̌�1),
ˆ[𝑧2]1 := Com(ˆcrs1, 𝑧2; 𝑟𝑧21) = (𝑧2�̂�1 + 𝑟𝑧21�̂�, 𝑧2(�̂�1 + �̂�) + 𝑟𝑧21�̂�1). (45)

http://dx.doi.org/10.20517/jsss.2024.08

Page 177 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

Then it generates commitments as

ˆ[1]0 := Com(ˆcrs0, 1; 0) = (�̂�0, �̂�0 + �̂�),
ˆ[1]1 := Com(ˆcrs1, 1; 0) = (�̂�1, �̂�1 + �̂�),
ˇ[1]1 := Com(ˇcrs1, 1; 0) = (�̌�1, �̌�1 + �̌�). (46)

Then it generates Groth-Sahai proofs as

𝜌0,0 := 𝜋0,0,

𝜌0,1 := 𝜋0,1,

𝜌1,0 := (𝜃1,0,1, 𝜃1,0,2, 𝜋1,0,1, 𝜋1,0,2),
𝜌1,1 := 𝜋1,1,

𝜌1,2 := 𝜋1,2,

𝜌1,3 := 𝜋1,3, (47)

where 𝜋0,0, 𝜋0,1, 𝜃1,0,1, 𝜃1,0,2, 𝜋1,0,1, 𝜋1,0,2, 𝜋1,1, 𝜋1,2 and 𝜋1,3 are computed as follows.

𝜋0,0 := 𝑟𝑧00�̌� − 𝑟𝑥00�̌� − 𝑟𝑥10 �̌�,

𝜋0,1 := 0�̌�𝑧0 − 𝑟𝑧00�̌� − 𝑟𝑦00 �̌�𝑠,

𝜃1,0,1 := (𝑧0(𝑟𝑥21 − 𝑟𝑧21) − 𝑧1(𝑟𝑥21 − 𝑟𝑧21))�̂�1 + ((𝑥2 − 𝑧2)(𝑧0 − 𝑧1) − 𝜓)�̂�,

𝜃1,0,2 := (𝑧0(𝑟𝑥21 − 𝑟𝑧21) − 𝑧1(𝑟𝑥21 − 𝑟𝑧21)) (�̂�1 + �̂�) + ((𝑥2 − 𝑧2) (𝑧0 − 𝑧1) − 𝜓)�̂�1,

𝜋1,0,1 := (𝑥2(𝑟𝑧01 − 𝑟𝑧11) − 𝑧2(𝑟𝑧01 − 𝑟𝑧11))�̌�1 + 𝜓�̌�,

𝜋1,0,2 := (𝑥2(𝑟𝑧01 − 𝑟𝑧11) − 𝑧2(𝑟𝑧01 − 𝑟𝑧11)) (�̌�1 + �̌�) + 𝜓�̌�1,

𝜋1,1 := 0�̌�𝑧0 − 𝑟𝑧01�̌� − 𝑟𝑦01 �̌�𝑠,

𝜋1,2 := 0�̌�𝑧1 − 𝑟𝑧11�̌� − 𝑟𝑦11 �̌�𝑠,

𝜋1,3 := 0�̂�𝑧2 − 𝑟𝑧21�̂� − 𝑟𝑦21 �̂�𝑡 . (48)

Then it sets

𝜎 := (�̌�, �̂� , �̂�, �̌�𝑧0 , �̌�𝑧1 , �̌�𝑠, �̂�𝑧2 , �̂�𝑡 , ˇ[𝑧0]0, ˇ[𝑧0]1, ˇ[𝑧1]1, ˆ[𝑧2]1, 𝜌0,0, 𝜌0,1, 𝜌1,0, 𝜌1,1, 𝜌1,2, 𝜌1,3). (49)

It sets sk𝑎i := 𝜎. It returns sk𝑎i.

• Prover((PK𝑎)𝑎∈𝐴′ ,i, (sk𝑎i)𝑎∈𝐴
′) → 𝜋. According to the previous work on the structure-preserving signa-

tures [17], verification equations are given as an equation system below. In the equation system, we denote
(�̂�x,1, �̂�x,2)𝑖 = [x̂]𝑖 and (�̌�y,1, �̌�y,2) 𝑗 = [y̌] 𝑗 for a variable x,y and the indices 𝑖, 𝑗 . Also note that we put an
index 𝑎 to distinguish each equation for 𝑎 ∈ 𝐴′, while the identity element �̂� (= 𝑚 = i) is simultaneous for

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 178

those equations.

For ∀𝑎 ∈ 𝐴′ (where 𝑎 is not an exponent but an index)
// To check the one-time key, message and one-time signature (�̌�𝑎 , �̂�, (�̂�𝑎 , �̂�𝑎)) :
�̂� · �̌�𝑎 = �̂�𝑎 · �̌� + �̂�𝑎 · �̌�𝑟 + �̂� · �̌�1, (50)

// To check the proof 𝜌𝑎0,0 = 𝜋𝑎0,0 :

(�̂�𝑎
𝑧0,1 − �̂�

𝑎
𝑥0,1) · �̌� − �̂�

𝑎
𝑥1,1 · �̌�

𝑎 = �̂� · 𝜋𝑎0,0,
(�̂�𝑎

𝑧0,2 − �̂�
𝑎
𝑥0,2) · �̌� − �̂�

𝑎
𝑥1,2 · �̌�

𝑎 = �̂�𝑎
0 · 𝜋

𝑎
0,0, (51)

// To check the proof 𝜌𝑎0,1 = 𝜋𝑎0,1 :

�̂�𝑎
𝑧0,1 · �̌�

𝑎
𝑧0 − �̂�

𝑎
𝑥0,1 · �̌� − �̂�

𝑎
𝑥1,1 · �̌�

𝑎
𝑠 = �̂� · 𝜋𝑎0,1,

�̂�𝑎
𝑧0,2 · �̌�

𝑎
𝑧0 − �̂�

𝑎
𝑥0,2 · �̌� − �̂�

𝑎
𝑥1,2 · �̌�

𝑎
𝑠 = �̂�𝑎

0 · 𝜋
𝑎
0,1, (52)

// To check the proof 𝜌𝑎1,0 = (𝜋𝑎1,0,1, 𝜋
𝑎
1,0,2, 𝜃

𝑎
1,0,1, 𝜃

𝑎
1,0,2) :

(�̂�𝑎
𝑧0,1 − �̂�

𝑎
𝑧1,1) · (�̌�

𝑎
𝑥2,1 + �̌�

𝑎
𝑧2,1) = �̂� · 𝜋𝑎1,0,1 + 𝜃

𝑎
1,0,1 · �̌�,

(�̂�𝑎
𝑧0,2 − �̂�

𝑎
𝑧1,2) · (�̌�

𝑎
𝑥2,1 + �̌�

𝑎
𝑧2,1) = �̂�𝑎

1 · 𝜋
𝑎
1,0,1 + 𝜃

𝑎
1,0,2 · �̌�,

(�̂�𝑎
𝑧0,1 − �̂�

𝑎
𝑧1,1) · (�̌�

𝑎
𝑥2,2 + �̌�

𝑎
𝑧2,2) = �̂� · 𝜋𝑎1,0,2 + 𝜃

𝑎
1,0,1 · �̌�

𝑎
1 ,

(�̂�𝑎
𝑧0,2 − �̂�

𝑎
𝑧1,2) · (�̌�

𝑎
𝑥2,2 + �̌�

𝑎
𝑧2,2) = �̂�𝑎

1 · 𝜋
𝑎
1,0,2 + 𝜃

𝑎
1,0,2 · �̌�

𝑎
1 , (53)

// To check the proof 𝜌𝑎1,1 = 𝜋𝑎1,1 :

�̂�𝑎
𝑧0,1 · �̌�

𝑎
𝑧0 − �̂�

𝑎
𝑥0,1 · �̌� − �̂�

𝑎
𝑥1,1 · �̌�

𝑎
𝑠 = �̂� · 𝜋𝑎1,1,

�̂�𝑎
𝑧0,2 · �̌�

𝑎
𝑧0 − �̂�

𝑎
𝑥0,2 · �̌� − �̂�

𝑎
𝑥1,2 · �̌�

𝑎
𝑠 = �̂�𝑎

0 · 𝜋
𝑎
1,1, (54)

// To check the proof 𝜌𝑎1,2 = 𝜋𝑎1,2 :

�̂�𝑎
𝑧0,1 · �̌�

𝑎
𝑧1 − �̂�

𝑎
𝑥0,1 · �̌� − �̂�

𝑎
𝑥1,1 · �̌�

𝑎
𝑠 = �̂� · 𝜋𝑎1,2,

�̂�𝑎
𝑧0,2 · �̌�

𝑎
𝑧1 − �̂�

𝑎
𝑥0,2 · �̌� − �̂�

𝑎
𝑥1,2 · �̌�

𝑎
𝑠 = �̂�𝑎

0 · 𝜋
𝑎
1,2, (55)

// To check the proof 𝜌𝑎1,3 = 𝜋𝑎1,3 :

�̂�𝑎
𝑧2 · �̌�

𝑎
𝑧0,1 − �̂� · �̌�

𝑎
𝑥0,1 − �̂�𝑎

𝑡 · �̌�𝑎
𝑥1,1 = 𝜋𝑎1,3 · �̌�,

�̂�𝑎
𝑧2 · �̌�

𝑎
𝑧0,2 − �̂� · �̌�

𝑎
𝑥0,2 − �̂�𝑎

𝑡 · �̌�𝑎
𝑥1,2 = 𝜋𝑎1,3 · �̌�

𝑎
1 . (56)

We note that each of the Equations (50)-(56) can be transformed into the following canonical form.

�̂� = (𝑥1, . . . , 𝑥𝑚), �̌� = (�̌�1, . . . , �̌�𝑛)⊤, 𝛤 ∈ Z𝑚×𝑛𝑝 , (57)

�̂�𝛤 �̌� = 0T. (58)

Then the Prover algorithm applies the Groth-Sahai NIZK proof system to Equation (58), as follows. First, by
using ˆcrsΠ and ˇcrsΠ , set

�̂� := (�̂�, �̂�)⊤, �̂� := (�̂� , �̂�)⊤, �̌� := (�̌�, �̌�), �̌� := (�̌� , �̌�). (59)

Also, set scalar vectors as

𝒆 := (0, 1) ∈ Z2
𝑝 , 𝒓𝑥 , 𝒔𝑥 ∈𝑅 Z𝑚𝑝 , 𝒓𝑦 , 𝒔𝑦 ∈𝑅 Z𝑛𝑝 . (60)

Then, generate commitments as follows.

𝒄 ← 𝒆⊤�̂� + �̂� 𝒓𝑥 + �̂�𝒔𝑥 ∈ Ĝ2×𝑚 , (61)
𝒅 ← �̌�𝒆 + 𝒓⊤𝑦 �̌� + 𝒔⊤𝑦 �̌� ∈ Ǧ𝑛×2. (62)

http://dx.doi.org/10.20517/jsss.2024.08

Page 179 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

We stress that, in the computation of the commitment 𝒄 for the equation Equation (50), the randomness to
compute the commitment 𝒄0(∈ Ĝ2×1) to �̂� (= i) is common over all 𝑎 ∈ 𝐴′, and hence the randomness is
sampled only once. This is why a single identity i∗ is extracted in the security proof of unforgeability against
collusion attacks.

Then, from Equations (58), (61) and (62), generate

�̌�′�̂� := 𝒓𝑥𝛤𝒅 ∈ Ǧ1×2, �̌�′�̂� := 𝒔𝑥𝛤𝒅 ∈ Ǧ1×2, (63)
�̂�′�̌� := (𝒄 − �̂� 𝒓𝑥 − �̂�𝒔𝑥)𝛤 𝒓𝑦 ∈ Ĝ2×1, �̂�′�̌� := (𝒄 − �̂� 𝒓𝑥 − �̂�𝒔𝑥)𝛤𝒔𝑦 ∈ Ĝ2×1. (64)

Finally, obtain a Groth-Sahai proof (�̌��̂� , �̌��̂� , �̂��̌� , �̂��̌�) by randomizing Equations (64) and (65), as follows.

𝛼, 𝛽, 𝛾, 𝛿 ∈𝑅 Z𝑝 ,
�̌��̂� := �̌�′�̂� + 𝛼�̌� + 𝛽�̌� ∈ Ǧ1×2, �̌��̂� := �̌�′�̂� + 𝛾�̌� + 𝛿�̌� ∈ Ǧ1×2, (65)
�̂��̌� := �̂�′�̌� − �̂�𝛼 − �̂�𝛽 ∈ Ĝ2×1, �̂��̌� := �̂�′�̌� − �̂�𝛾 − �̂�𝛿 ∈ Ĝ2×1. (66)

To summarize, the Prover algorithm obtains Groth-Sahai proofs by computing (𝒄, 𝒅, �̌��̂� , �̌��̂� , �̂��̌� , �̂��̌�) for each
of the fifteen equations in Equations (50)-(56). We distinguish them by double index (𝑎, 𝑘), where 𝑎 ∈ 𝐴′ and
𝑘 ∈ [15]. Then the algorithm returns all the commitments and proofs as 𝝅, but the commitment �̂�0 to i(= �̂�)
is especially placed at the first entry. That is,

𝝅 := (𝒄0, (𝒄𝑎,𝑘 , 𝒅𝑎,𝑘 , �̌�𝑎,𝑘
�̂� , �̌�𝑎,𝑘

�̂� , �̂�𝑎,𝑘
�̌� , �̂�𝑎,𝑘

�̌�)
𝑎∈𝐴′,𝑘∈[15]). (67)

• Verifier((PK𝑎)𝑎∈𝐴′ , 𝜋) → 𝑑. On input ((PK𝑎)𝑎∈𝐴′ , 𝝅), this verification algorithm does the checks the
following evaluation.

For 𝑎 ∈ 𝐴′ :
For 𝑘 ∈ [15] :

𝑑𝑎,𝑘 := (𝒄𝑎,𝑘𝛤𝒅𝑎,𝑘 =? �̂� · �̌�𝑎,𝑘
�̂� + �̂� · �̌�

𝑎,𝑘
�̂� + �̂�

𝑎,𝑘
�̌� · �̌� + �̂�

𝑎,𝑘
�̌� · �̌�) (as four equations in T

2×2) (68)
𝑑𝑎 := ∧𝑘∈[15]𝑑

𝑎,𝑘

Return 𝑑 := ∧𝑎∈𝐴′𝑑𝑎 .

Theorem 3 (EUF against Collusion Attacks) For any PPT algorithm A that is in accordance with the experi-
ment Expeuf-colldACS,A(1

𝜆, 1𝜇), our instantiated 𝑑𝐴𝐶𝑆𝑠𝑥𝑑ℎ is EUF against collusion attacks under the SXDH assump-
tion.

Theorem 4 (Unlinkability of Proofs) For any PPT algorithm A that is in accordance with the experiment
Expunlink-prfdACS,A (1

𝜆, 1𝜇), our instantiated 𝑑𝐴𝐶𝑆𝑠𝑥𝑑ℎ is unlinkable under the SXDH assumption.

FEATURE COMPARISON AND EFFICIENCY EVALUATION
In this section, we compare the features of our instantiated dACSsxdh with those of the previous abACS. Then
we evaluate efficiency of our dACSsxdh by partial implementation and estimation.

In Table 1, “Multi-Authority”means whether the issuing function is decentralizedmulti-authority or not. “Col-
lusion Resistance” means whether the system has collusion resistance or not. “Formula of Proof ” means the
type of boolean formulas associated with the proofs. “R.O.”, “Std.” and “Gen.Grp.” mean that the security proof
is in the random oracle model, the standard model and the generic group model, respectively. “all-AND”,
“CNF”, and “monotone” mean all-AND, CNF and monotone formulas, respectively. “Unlinkability” means

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 180

Table 1. Feature comparison of our dACSsxdh with previous work

ACS/Feature
Multi- formulas Security Unlink- Unforge- Collusion Size of

authority for proofs model ability ability resistance a proof
GGM14 [10] ✓ All-AND R.O. ✓ SRSA & DL ✓ O(1)
CDHK15 [21] ✓ All-AND Std. ✓ SXDH,𝐽-RootDH, etc. ✓ O(|𝐴′ |)
SNBF17 [24] - Monotone Std. ✓ 𝑡-co-DL, - O(2|𝐴′ |)
ON19 [25] - CNF Std. ✓ DLIN,𝑞-SFP,𝑛-DHE - O(1)
FHS19 [26] - All-AND Gen.Grp. ✓ 𝑡-co-DL, - O(1)
TG20 [8] - Monotone Std. ✓ (co-)SDH ✓ O(|𝐴′ |)
CY22 [9] - Monotone Std. ✓ (co-)SDH ✓ O(|𝐴′ |)

Our dACSsxdh ✓ All-AND Std. ✓ SXDH ✓ O(|𝐴′ |)

ACS: Anonymous credential system; dACS: decentralized multi-authority attribute-based anonymous credential sys-
tem.

Table 2. Number of elements in (𝒄𝑎,𝑘 , 𝒅𝑎,𝑘)

𝑘 1 2 3 4 · · · 15
(𝑚, 𝑛) (4, 4) (4, 3) (4, 3) (4, 4) · · · (4, 4)

#elem.∈ Ĝ × Ǧ (8, 8) (8, 6) (8, 6) (8, 8) · · · (8, 8)

Table 3. Number of elements in (�̌�𝑎,𝑘
�̂� , �̌�𝑎,𝑘

�̂� , �̂�𝑎,𝑘
�̌� , �̂�𝑎,𝑘

�̌�)

𝑘 1 . . . 15
#elem.∈ Ǧ × Ǧ × Ĝ × Ĝ (2, 2, 2, 2) · · · (2, 2, 2, 2)

Table 4. Total number of elements in 𝝅 = (𝒄𝑎,𝑘 , 𝒅𝑎,𝑘 , �̌�𝑎,𝑘
�̂� , �̌�𝑎,𝑘

�̂� , �̂�𝑎,𝑘
�̌� , �̂�𝑎,𝑘

�̌�)

𝑘 1 2 3 4 · · · 15 Further total over all 𝑘
#elem.∈ Ĝ × Ǧ (12, 12) (12, 10) (12, 10) (12, 12) · · · (12, 12) (180, 176)

whether unlinkability of proofs is assured or not. “Unforgeability” means the assumptions under which un-
forgeability is assured. “Size of a Proof ” means asymptotic behavior of data length of a proof of credentials.
dACSsxdh means our instantiated dACS under the SXDH assumption. For each “Unforgeability Assumption”,
see the cited references.

Along with Table 1, feature comparison is explained at “Related Recent Work” in Introduction. We add a few
remarks about the three decentralized multi-authority abACS (dACSs) in Table 1. The dACS by Garman et
al. has good features, and especially it shows asymptotic behavior of a constant size of a proof [10]. However,
its security model is in the random oracle model. The security model of the dACS by Camenisch et al. and
our dACSsxdh is the standard model [21]. Both of them have similar features, and especially they show the same
asymptotic behavior of linear complexity in the number of proven attribute credentials, |𝐴′ |. The difference lies
in their unforgeability assumptions. Actually, in addition to the SXDH assumption, the dACS by Camenisch
et al. needs more assumptions of 𝐽-RootDH, 𝑛-BSDH, 𝑞-SDH, XDLIN, co-CDH, and DBP [21].

Then, we show a concrete evaluation about computational amount of our dACSsxdh. The number of group
elements in a proof 𝝅 is estimated as follows. 𝝅 consists of components Equation (67), where the indices 𝑎 and
𝑘 run in |𝐴′ | and [15], respectively. In Equation (67), the commitments 𝒄𝑎,𝑘 and 𝒅𝑎,𝑘 consist of group elements
in Ĝ and Ǧ, and the number of the elements is decided by 𝑚 and 𝑛, respectively. Table 2 shows the number
of the elements. As for the Groth-Sahai proofs �̌�𝑎,𝑘

�̂� , �̌�𝑎,𝑘
�̂� , �̂�𝑎,𝑘

�̌� and �̂�𝑎,𝑘
�̌� , each of them consists of two group

elements in Ĝ and Ǧ [Table 3]. Therefore, as summarized in Table 4, the number of group elements in our
proof 𝝅 is (180, 176) ∈ (Ĝ, Ǧ) for |𝐴′ | = 1. As an example, when |𝐴′ | = 2, it is (358, 352), where we subtract
two group elements ∈ Ĝ because the commitment 𝒄0 to �̂� (= i) is reused. When we use the TEPLA pairing
library [39] that is in the C language, an element in Ĝ is 65 bytes and an element in Ǧ is 129 bytes. Therefore,
the data length of 𝝅 is 34k bytes for |𝐴′ | = 1 and 68k byte for |𝐴′ | = 2.

Further, we estimate the execution time of the Prover and Verifier algorithms. Using TEPLA [39] in C, we

http://dx.doi.org/10.20517/jsss.2024.08

Page 181 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

Table 5. Time of scalar-multiplication and pairing

Curve Computation Average (ms)(*2)

ECBN254a
�̂�𝛼 0.30
𝛽�̌� 1.60

�̂� · �̌�(*1) 2.74
(*1) �̂� · �̌� = 𝑒 (�̂�, �̌�); (*2) Intel Core i7-7600U CPU of 2.80 GHz.

Table 6. Estimated time of Prvr and Vrfr: |𝐴′ | = 2

Curve Algorithm Estimation (s)

ECBN254a
Prover 2.8
Verifier 2.4

implement the scalar-multiplications in Ĝ and Ǧ and the bilinear map 𝑒 : Ĝ × Ǧ → T because the execution
time of Prover is mostly occupied by them. The elliptic curve used is CBN254a known as the BN curve with
128 bit intended security (𝜆 = 128), which is one of the pairing-friendly curves. As for our hardware, CPU of
2.80 GHz andDRAMof 4 GB are used. Table 5 shows the result. One execution of elliptic scalar-multiplication
in Ĝ, that is, �̂�𝛼 for 𝛼 ∈𝑅 Z𝑝 , needs about 0.30 ms on average. one execution in Ǧ, that is, 𝛽�̌� for 𝛽 ∈𝑅 Z𝑝 ,
needs about 1.60ms on average. On the other hand, one execution of the pairing 𝑒, that is, �̂� ·𝑌 (= 𝑒(�̂�, 𝑌)) for
random �̂� and 𝑌 , needs about 2.74 ms on average. Then we count the number of computations of the scalar-
multiplications and the bilinear map to generate a proof 𝝅 in a similar way to count the number of group
elements. By a naive counting, it turns out that Prover needs (324, 934) scalar-multiplications in (Ĝ, Ǧ), and
Verifier needs 120 scalar-multiplication in Ĝ and 292 computations of the bilinear map 𝑒. As an example,
(Prover,Verifier) need about (1.4, 1.2) s for |𝐴′ | = 1 and (2.8, 2.4) s for |𝐴′ | = 2 [Table 6].

CONCLUSION
We propose a multi-show decentralized multi-authority abACS, dACS. One of the features in the security
definitions is that corruption of authorities is introduced. As for the construction of our dACS, an attribute
authority who issues a private secret key to an entity only has to sign the entity’s identifier. Then the en-
tity generates a proof of knowing credentials according to the “commit-to-identifier” principle. The generic
construction actually employs the structure-preserving signature scheme and the Groth-Sahai non-interactive
proof system in asymmetric bilinear groups. There the principle turns into a bundled language, which is si-
multaneous equations on the identifier, for verification of the structure-preserving signatures. Actually the
bundled language works for preventing collusion attacks.

A negative aspect of our dACS is that the proof size is linear in the number of attribute credentials involved in
a proof. Therefore, a construction with smaller asymptotic behavior, hopefully of constant size, should be our
future work.

DECLARATIONS
Acknowledgments
The author would like to express his sincere thanks to the three anonymous reviewers as well as the associated
editor for their helpful comments from their technical and editorial viewpoints. Part of this workwas presented
at Innovative Security Solutions for Information Technology and Communications - 13th International Con-
ference, SecITC 2020 (Bucharest, Romania, November 19-20, 2020, pp.71-90) [34], and the sole author agrees
to submit and publish it in this new article.

Authors’ contributions
The author contributed solely to the article.

http://dx.doi.org/10.20517/jsss.2024.08

Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08 Page 182

Availability of data and materials
Not applicable.

Financial support and sponsorship
This work was supported by JSPS KAKENHI Grant Number JP23K11106.

Conflicts of interest
The author declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author (s) 2024.

REFERENCES
1. ISO/IEC 11578:1996(en). Available from: https://www.iso.org/obp/ui/#iso:std:iso-iec:11578:ed-1:v1:en. [Last accessed on 6 Sep 2024]
2. Chaum D. Security without identification: transaction systems to make big brother obsolete. Commun ACM 1985;28:1030-44. DOI
3. Camenisch J, Lysyanskaya A. An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In:

Pfitzmann B, editor. Advances in Cryptology - EUROCRYPT 2001. Lecture notes in computer science. Berlin, Heidelberg: Springer;
2001. pp. 93-118. DOI

4. Camenisch J, Lysyanskaya A. Signature schemes and anonymous credentials from bilinear maps. In: Advances in Cryptology - CRYPTO
2004. Lecture notes in computer science. Berlin, Heidelberg: Springer; 2004. pp. 56-72. DOI

5. Camenisch J, GroßT. Efficient attributes for anonymous credentials. In: CCS’08: Proceedings of the 15th ACM Conference on Computer
and Communications Security. New York, NY, USA: ACM; 2008. pp. 345-56. DOI

6. Sudarsono A, Nakanishi T, Funabiki N. Efficient proofs of attributes in pairing-based anonymous credential system. In: Fischer-Hübner
S, Hopper N, editors. Privacy enhancing technologies. PETS 2011. Lecture notes in computer science. Berlin, Heidelberg: Springer; 2011.
pp. 246-63. DOI

7. Brands SA. Rethinking public key infrastructures and digital certificates: building in privacy. 1st ed. Cambridge-London: MIT Press;
2000. Available from: http://www.credentica.com/the_mit_pressbook.html. [Last accessed on 6 Sep 2024]

8. Tan S, Groß T. MoniPoly - an expressive q-SDH-based anonymous attribute-based credential system. In: Moriai S, Wang H, editors.
Advances in Cryptology - ASIACRYPT 2020. Lecture notes in computer science. Cham: Springer; 2020. pp. 498-526. DOI

9. Chan KY, Yuen TH. Attribute-based anonymous credential: optimization for single-use and multi-use. In: Beresford AR, Patra A, Bellini
E, editors. Cryptology and network security. CANS 2022. Lecture notes in computer science. Cham: Springer; 2022. pp. 89-121. DOI

10. Garman C, Green M, Miers I. Decentralized anonymous credentials. Available from: https://www.ndss-symposium.org/ndss2014/decent
ralized-anonymous-credentials. [Last accessed on 6 Sep 2024]

11. Lewko A, Waters B. Decentralizing attribute-Based encryption. In: Paterson KG, editor. Advances in Cryptology - EUROCRYPT 2011.
Lecture notes in computer science. Berlin, Heidelberg: Springer; 2011. pp. 568-88. DOI

12. Okamoto T, Takashima K. Decentralized attribute-based signatures. In: Kurosawa K, Hanaoka G, editors. Public-Key Cryptography -
PKC 2013. Lecture notes in computer science. Berlin, Heidelberg: Springer; 2013. pp. 125-42. DOI

13. Sahai A, Waters B. Fuzzy identity-based encryption. In: Cramer R, editor. Advances in Cryptology - EUROCRYPT 2005. Lecture notes
in computer science. Berlin, Heidelberg: Springer; 2005. pp. 457-73. DOI

14. Goyal V, Pandey O, Sahai A, Waters B. Attribute-based encryption for fine-grained access control of encrypted data. In: CCS’06: Pro-
ceedings of the 13th ACM Conference on Computer and Communications Security. New York, NY, USA: Association for Computing
Machinery; 2006. pp. 89-98. DOI

15. Chase M, Chow SSM. Improving privacy and security in multi-authority attribute-based encryption. In: CCS’09: Proceedings of the
2009 ACM Conference on Computer and Communications Security. New York, NY, USA: Association for Computing Machinery; 2009.
pp. 121-30. DOI

16. NIST. Digital signature standard (DSS). 2013. Available from: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf. [Last ac-
cessed on 6 Sep 2024]

17. Abe M, Hofheinz D, Nishimaki R, Ohkubo M, Pan J. Compact structure - preserving signatures with almost tight security. In: Katz J,
Shacham H, editors. Advances in Cryptology - CRYPTO 2017. Lecture notes in computer science. Cham: Springer; 2017. pp. 548-80.
DOI

http://dx.doi.org/10.20517/jsss.2024.08
https://www.iso.org/obp/ui/#iso:std:iso-iec:11578:ed-1:v1:en
http://dx.doi.org/10.1145/4372.4373
http://dx.doi.org/10.1007/3-540-44987-6_7
http://dx.doi.org/10.1007/978-3-540-28628-8_4
http://dx.doi.org/10.1145/1455770.1455814
http://dx.doi.org/10.1007/978-3-642-22263-4_14
http://www.credentica.com/the_mit_pressbook.html
http://dx.doi.org/10.1007/978-3-030-64840-4_17
http://dx.doi.org/10.1007/978-3-031-20974-1_5
https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials
https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1007/978-3-642-36362-7_9
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1145/1180405.1180418
http://dx.doi.org/10.1145/1653662.1653678
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://dx.doi.org/10.1007/978-3-319-63715-0_19

Page 183 Anada J Surveill Secur Saf 2024;5:160-83 I http://dx.doi.org/10.20517/jsss.2024.08

18. Groth J, Sahai A. Efficient non-interactive proof systems for bilinear groups. In: EUROCRYPT’08: Proceedings of the Theory and
Applications of Cryptographic Techniques 27thAnnual International Conference onAdvances in Cryptology. Berlin, Heidelberg: Springer-
Verlag; 2008. pp. 415-32. Available from: http://dl.acm.org/citation.cfm?id=1788414.1788438. [Last accessed on 6 Sep 2024]

19. Escala A, Groth J. Fine-tuning groth-Sahai Proofs. In: Krawczyk H, editor. Public-Key Cryptography - PKC 2014. Lecture notes in
computer science. Berlin: Springer; 2014. pp. 630-49. DOI

20. Galbraith SD, Paterson KG, Smart NP. Pairings for cryptographers. Discret Appl Math 2008;156:3113-21. DOI
21. Camenisch J, Dubovitskaya M, Haralambiev K, Kohlweiss M. Composable and modular anonymous credentials: definitions and practical

constructions. In: Iwata T, Cheon J, editors. Advances in Cryptology - ASIACRYPT 2015. Lecture notes in computer science. Berlin:
Springer; 2015. pp. 262-88. DOI

22. Canetti R. Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on
Foundations of Computer Science; 2001 Oct 8-11; Newport Beach, CA, USA. IEEE; 2001. pp. 136-45. DOI

23. Canetti R. Universally composable security. J ACM 2020;67:1-94. DOI
24. Sadiah S, Nakanishi T, Begum N, Funabiki N. Accumulator for monotone formulas and its application to anonymous credential system.

J Inf Process 2017;25:949-61. DOI
25. Okishima R, Nakanishi T. An anonymous credential system with constant-size attribute proofs for CNF formulas with negations. In:

Attrapadung N, Yagi T, editors. Advances in information and computer security. IWSEC 2019. Lecture notes in computer science. Cham:
Springer; 2019. pp. 89-106. DOI

26. Fuchsbauer G, Hanser C, Slamanig D. Structure-preserving signatures on equivalence classes and constant-size anonymous credentials.
J Cryptology 2019;32:498-546. DOI

27. Resisting replay attacks efficiently in a permissioned and privacy-preserving blockchain network. US 20170149819 A1, United States
Patent and Trademark Office. Available from: https://patents.google.com/patent/US20170149819A1/en. [Last accessed on 10 Sep 2024]

28. Limited AGH. System and method for detecting replay attack. US 20200128043 A1, United States Patent and Trademark Office. Available
from: https://patents.google.com/patent/US20200128043A1/en. [Last accessed on 10 Sep 2024]

29. Nakamoto S. Bitcoin: a peer-to-peer electronic cash system. 2009. Available from: http://www.bitcoin.org/bitcoin.pdf. [Last accessed on
6 Sep 2024]

30. Au MH, Susilo W, Mu Y, Chow SSM. Constant-size dynamic K-times anonymous authentication. IEEE Syst J 2013;7:249-61. DOI
31. Ma JPK, Chow SSM. SMART credentials in the multi-queue of slackness (or secure management of anonymous reputation traits without

global halting). In: 2023 IEEE 8th European Symposium on Security and Privacy EuroS&P; 2023 Jul 3-7; Delft, Netherlands. IEEE;
2023. pp. 896-912. DOI

32. Doerner J, Kondi Y, Lee E, Shelat A, Tyner L. Threshold BBS+ signatures for distributed anonymous credential issuance. In: 2023 IEEE
Symposium on Security and Privacy SP; 2023 May 21-25; San Francisco, CA, USA. IEEE; 2023. pp. 773-89. DOI

33. Wong HWH, Ma JPK, Chow SSM. Secure multiparty computation of threshold signatures made more efficient. Available from: https:
//www.ndss-symposium.org/wp-content/uploads/2024-601-paper.pdf. [Last accessed on 6 Sep 2024]

34. Anada H. Decentralized multi-authority anonymous credential system with bundled languages on identifiers. In: Maimut D, Oprina
AG, Sauveron D, editors. Innovative security solutions for information technology and communications. SecITC 2020. Lecture notes in
computer science. Cham: Springer; 2020. pp. 71-90. DOI

35. Abe M, Fuchsbauer G, Groth J, Haralambiev K, Ohkubo M. Structure-preserving signatures and commitments to group elements. In:
Rabin T, editor. Advances in Cryptology - CRYPTO 2010. Lecture notes in computer science. Berlin, Heidelberg: Springer; 2010. pp.
209-36. DOI

36. Goldwasser S, Micali S, Rivest RL. A digital signature scheme secure against adaptive chosen-message attacks. SIAM J Comput
1988;17:281-308. DOI

37. Wikipedia. Commitment scheme. Available from: https://en.wikipedia.org/wiki/Commitment_scheme. [Last accessed on 6 Sep 2024]
38. Abe M, Fuchsbauer G, Groth J, Haralambiev K, Ohkubo M. Structure-preserving signatures and commitments to group elements. J

Cryptol 2016;29:363-421. DOI
39. TEPLA(University of Tsukuba Elliptic Curve and Pairing Library). (in Japanese) Available from: http://www.cipher.risk.tsukuba.ac.jp/te

pla/doc/tepladoc2_0_0.pdf. [Last accessed on 6 Sep 2024]

http://dx.doi.org/10.20517/jsss.2024.08
http://dl.acm.org/citation.cfm?id=1788414.1788438
http://dx.doi.org/10.1007/978-3-642-54631-0_36
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1007/978-3-662-48800-3_11
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1145/3402457
http://dx.doi.org/10.2197/ipsjjip.25.949
http://dx.doi.org/10.1007/978-3-030-26834-3_6
http://dx.doi.org/10.1007/s00145-018-9281-4
https://patents.google.com/patent/US20170149819A1/en
https://patents.google.com/patent/US20200128043A1/en
http://www.bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1109/JSYST.2012.2221931
http://dx.doi.org/10.1109/EUROSP57164.2023.00057
http://dx.doi.org/10.1109/SP46215.2023.10179470
https://www.ndss-symposium.org/wp-content/uploads/2024-601-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2024-601-paper.pdf
http://dx.doi.org/10.1007/978-3-030-69255-1_6
http://dx.doi.org/10.1007/978-3-642-14623-7_12
http://dx.doi.org/10.1137/0217017
https://en.wikipedia.org/wiki/Commitment_scheme
http://dx.doi.org/10.1007/s00145-014-9196-7
http://www.cipher.risk.tsukuba.ac.jp/tepla/doc/tepladoc2_0_0.pdf
http://www.cipher.risk.tsukuba.ac.jp/tepla/doc/tepladoc2_0_0.pdf

	Introduction
	Our contribution
	Related recent work
	Organization of the paper

	Preliminaries
	Bilinear groups
	Structure-preserving signature scheme
	Non-interactive commit-and-prove scheme for structure-preserving signatures
	Language
	Commit-part
	Prove-part

	Four properties of commit-part
	Four properties of prove-part

	Bundled Language
	Decentralized Multi-authority Anonymous Credential System
	Syntax
	Security definitions
	EUF against collusion attack
	Anonymity of proofs
	Unlinkability of proofs

	Generic Construction
	Construction
	Security proofs

	Instantiation
	Construction

	Feature Comparison and Efficiency Evaluation
	Conclusion
	Declarations
	Acknowledgments
	Authors' contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright

