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Abstract
The demand for resources and energy increases as the global population grows, leading to increased ecological and
carbon footprints. This study aims to contribute to the global sustainability agenda by assessing the impact of green
energy projects, green energy finance, and green governance on reducing ecological and carbon footprints in G7
countries from 1990 to 2020. The findings reveal that there is a noteworthy negative association between ecological
footprint, green governance, geothermal energy consumption, hydro-power consumption, and green energy finance.
However, a significant positive correlation exists between ecological footprint and biofuels. Additionally, the out-
comes lend support to the Environmental Kuznets Curve (EKC) theory in G7 nations. Carbon footprints are evaluated
in this study as an alternate measure, and the results are similarly robust. These insights hold the potential to guide
policy decisions and investment strategies, and promote the shift to a low-carbon economy by highlighting the con-
nections between the adoption of green energies, green energy finance, green governance, and carbon and ecological
footprint reduction, thus paving the way for a more equitable and sustainable future for all.

Keywords: Green energy finance, green governance, green energies, ecological footprint, carbon footprint

INTRODUCTION
The global community is faced with pressing ecological challenges linked to climate change and resource de-
pletion. Climate change primarily results from carbon emissions, especially in the form of greenhouse gases
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such as carbon dioxide. The accumulation of these gases in the atmosphere, coupled with the ensuing rise
in average global temperatures, has led to significant environmental concerns affecting both developing and
industrialized nations [1]. The escalating human activities, both direct and indirect [2,3], have triggered consid-
erable concerns about environmental responses, particularly regarding energy consumption, economic devel-
opment, population dynamics, and various other influential factors [4–8]. Despite extensive research offering
diverse policy suggestions to address these issues, there exists a range of inconsistent and contradictory conclu-
sions. Therefore, to gain a broader perspective on ecological progress, assessment beyond carbon emissions,
such as biocapacity, carbon footprint (CF), and ecological footprint (ECF), have been incorporated [9,10]. Rec-
ognizing the vital role of green governance and green financing systems becomes imperative in highlighting
the urgency of reducing carbon emissions. This study presents a concise overview of crucial elements and
challenges concerning the impact of green energy finance on carbon footprints.

The G7 nations, known for their diverse energy sources and expanding ecological carbon footprint, are not ex-
empt from environmental issues due to the significant ecological problems brought about by their recent rapid
economic and energy growth. Furthermore, the majority of the global population lives in countries facing
environmental deficits, where approximately 80% of people depend on limited natural resources, exceeding
the Earth’s capacity for replenishment (Global Footprint Network). Figure 1 demonstrates that, with the ex-
ception of Canada, human demands in the remaining G7 countries have surpassed Earth’s biocapacity, leading
to ecological overreach and stresses on ecosystems through resource depletion, pollution emissions, and land
degradation, as well as a decline in biodiversity. The current energy portfolio, heavily reliant on fossil fuel
combustion (constituting almost 80%), stands as a significant contributor to global pollution [11]. Addressing
global energy concerns becomes imperative for meeting escalating energy needs while protecting the environ-
ment throughout an energy transition. To tackle these problems, it is essential to modify the current energy
model, transitioning towards low-carbon emission sources with minimal ecological footprint and maximal
efficiency in resource utilization to conserve the limited resources essential for future energy generation [12,13].
These challengesmay be effectively resolved through initiatives such as green energy finance, green governance,
and the adoption of hydro-power, geothermal, and bio-fuel energy sources, which have witnessed significant
growth due to enhancements in energy mix efficiency, institutional changes, and technological advancements.
Given these contexts, this study concentrates on the carbon and ecological effects of bio-fuels, hydro-power,
geothermal energy use, and the role of green governance and green energy finance in G7 countries.

Achieving a substantial and lasting reduction in ecological and carbon footprints requires a significant increase
in both green governance and green energy finance. Green governance (GG) strategies, devised by economists
and environmentalists, aim to mitigate ecological damage. Nevertheless, the governance practices can either
expedite or impede the pace of environmental deterioration [14,15]. To help countries with large ecological
footprints decrease their impact, greater emphasis should be placed on supporting green energy finance and
implementing environment-related taxes. Consequently, financial transactions and the use of energy can di-
rectly influence carbon and ecological footprints. Notably, the previous research has yet to explore the impact
of G7 countries’ energy consumption from hydro-power, geothermal, and biofuels on their carbon and eco-
logical footprints.

This research distinguishes itself from past studies by focusing on the effects of green energy financing, green
governance, and the utilization of hydro-power, geothermal energy, and biofuels on the ecological and carbon
footprint of theG7 economies between 1990 and 2020. It is the first study to explore how these factors influence
carbon and ecological footprints and thus aid economists in formulating suitable energy finance policies. Addi-
tionally, it seeks to analyze how the adoption of green energy finances and green governance impact the carbon
footprints of nations and to what extent financial institutions contribute to carbon footprint reduction through
their investment strategies and sustainable finance practices. Robust estimators such as DOLS and FMOLS are
employed to address various analytical challenges, including endogeneity, heteroscedasticity, cross-sectional
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Figure 1. Ecological footprint (global hectare per capita).

dependence, autocorrelation, and the presence of regression coefficients with different integration levels.

The remaining four sections of this study are arranged as: section two provides a review of previous studies,
section three outlines the empirical model used in this study, section four details the statistical results with
accompanying explanations, and finally, section five encompasses the conclusion, future policy endorsements,
and limitations of the study.
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REVIEW OF PREVIOUS STUDIES
The impact of carbon and ecological footprint impacts, and their contribution to climate change, constitute a
central and primary concern on a global scale. In this scenario, societal, economic, and environmental sustain-
ability - the three pillars of sustainable development-have emerged as crucial factors for human survival [16].
Environmental sustainability holds particular significance due to its direct influence on climate change and
the degradation of ecological conditions [17,18]. The ecological footprint serves as a comprehensive measure
of environmental damage, reflecting the state of environmental sustainability [19–21]. Thus, previous studies
have extensively examined the ecological footprint as an indicator of environmental deterioration from var-
ious perspectives. Moreover, several studies have investigated the correlation between energy consumption
and its implications on the ecological footprint. For instance, Charfeddine [22] explored the impact of income
and energy consumption on the ecological footprint in Qatar, revealing a positive correlation.

Bello et al. revealed that hydroelectricity consumption has reduced ecological footprint and economic devel-
opment and ecological footprint have inverted U-shaped connection in developing economies [23]. Baloch et
al. investigated the economic growth and ecological impact of the Belt and Road Initiative (BRI) countries [24].
The findings revealed that financial prosperity generates a larger ecological footprint. By taking into account
the contribution of GDP from the tourist industry, Ozturk et al. and Katircioglu et al. verified the EKC theory
for high-income and upper-middle-income countries [25,26]. Furthermore, Solarin and Al-Mulali investigated
the impact of foreign direct investment (FDI) on the ecological footprints of 20 different nations [27]. Their
findings suggest that while FDI does not reduce the ecological footprints of developing nations, it does so in
developed nations.

Destek et al. employed second-generation panel econometric approaches to assess the EKC theory for the
EUmember states. Their results lead to the conclusion that ecological footprints and income have a U-shaped
relationship [28]. More utilization of non-renewable energy increases ecological footprints, while trade activities
and consumption of renewable energy stop environmental deterioration.

According toWang andDong, economic growth has a favorable effect on ecological footprints [29]. Additionally,
several studies support the notion that utilizing biomass energy is environmentally beneficial, as it reducesCO2
emissions, greenhouse gas emissions, and ecological footprints [16,30–32]. However, an opposing view from
another group of researchers [33–35] argues that biomass energy leads to increased pollutant emissions and is
detrimental to the environment. On the contrary, a study focusing on 24 European countries by Ahmed et
al. found no conclusive evidence regarding the effects of biomass energy usage on ecological influences [36].
Furthermore, Wang et al. suggested a positive correlation between the ecological footprints of G7 nations and
biomass energy output [37].

Additionally, Zeraibi et al. stated that although technical innovation and increased renewable electricity gen-
erating capacity elevate ecological footprints, higher levels of financial development and economic growth
decrease them [38]. Pata and Caglar [39] supported the notion that financial development and renewable en-
ergy contribute to the reduction of environmental footprints. On the other hand, it has been claimed that the
usage of power generated from fossil fuels is environmentally detrimental due to their composition of hydro-
carbons [40–42]. Moreover, estimations using FMOLS and DOLS showed that the SAARC nations’ ecological
footprints increased due to the utilization of biomass energy and economic expansion [43].

The country’s ecological footprint growth potential is consolidated by the BRICS-T ecological footprint level
increased by every 1% rise in agriculture value-added. Additionally, there is a decrease in ecological foot-
prints with a 1% increase in non-renewable energy usage and financial growth. This suggests a considerable
improvement in environmental quality over time; specifically, a 1% increase in forestry and a 1% rise in renew-
able energy usage result in a 0.7483% and 0.2248 reduction in ecological footprint, respectively [44]. Nathaniel
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et al. explored the relationship between environmental protection laws and ecological footprints in the N11
nations from 1990 to 2016 [45]. The results demonstrated that the existing environmental legislation in these
countries is ineffective in curbing their ecological footprints. It is anticipated that environmental regulations
in South Asian nations will positively impact the environment by promoting the use of green energy while
mitigating the negative environmental effects associated with foreign direct investments, economic growth,
and non-renewable energy combustion [46]. In their study, Murshed et al. found that the use of nuclear en-
ergy, population density, and environmental technology had significant adverse effects on the environment [46].
However, economic expansion and globalization were observed to yield favorable outcomes.

It is clear from the discussion above that there are conflicting findings in the scientific literature about how
economic development affects environmental footprints. To the best of the authors’ understanding, no study
has specifically examined the influence of green energy finance, green governance, hydro-power, geothermal,
and bio-fuels energy consumption on the ecological and carbon footprints of the G7 countries. Therefore, it
is justified to further investigate this association.

METHODOLOGY
Theoretical analysis
The G7 countries’ consumption of geothermal energy, hydro-power, biofuels, economic growth, green energy
finance, and green governance are all examined in this study to determine their environmental footprints.
The ecological footprint is enlarged by the increased consumption and production of commodities, which
boosts the use of energy and resources. Over recent years, the ecological footprint has gained prominence as
a comprehensive indicator and a significant environmental proxy that more accurately captures the potential
environmental impacts of energy and production operations [47]. In this work, the functional form proposed
by Brandao et al. is used to evaluate the desired long-run model, which takes into account the influence of
economic growth, biofuels, hydro-power, and geothermal energy consumption on the environmental foot-
print [48], the equation is as folllowing:

𝐸𝐶𝐹 = 𝑓 (𝐻𝑃𝐶,𝐺𝑇𝐶, 𝐵𝐹𝐶) (1)

In comparison to coal, natural gas, and other energy sources, hydro-power and geothermal energy are rec-
ognized as green energy sources and among the least expensive energy sources to produce more electricity.
It can reduce the nation’s budget deficit by reducing the dependency on foreign energy imports and promot-
ing sustainable economic growth by solving the problems with energy supply and baseload. As a result, it
can significantly contribute to energy efficiency, economic sustainability, and a decrease in the environmental
footprint of the energy sector. Despite the fact that biofuels are renewable and are regarded as green energy,
their use nevertheless contributes to environmental deprivation as it upsurges CO2 emissions.

In order to achieve long-term prosperity, governments should manage natural resources responsibly and pre-
serve the planet’s ecosystems. This is the goal of green governance, which seeks to strike a balance between
economic growth and environmental conservation. It includes a wide range of regional, governmental, and
worldwide initiatives that all strive to build a more ecologically friendly and sustainable world. Green energy
finance involves providing funding and investment for renewable energy projects, such as solar, wind, hydro,
and geothermal power. By implementing laws and policies that encourage the development and use of re-
newable energy technology, green governance plays a critical role in fostering a climate that is favorable for
these investments. Green governance creates the legal framework required to promote the expansion of green
energy. This covers regulations like tax incentives, feed-in tariffs, carbon pricing methods, and mandates for
renewable energy sources. These regulations provide financial incentives for companies and individuals to
invest in and utilize green energy technology. Green governance ensures that the funds are distributed fairly
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and in accordance with environmental goals, eliminating improper allocation of resources. In summary, green
energy finance and green governance are closely intertwined. Although green energy financing provides the
required funding for renewable energy projects, green governance establishes the legislative and administra-
tive framework that promotes investment, controls risk, and assures less environmental pollution. Collectively,
they assist in the shift to an energy system that is more environmentally friendly and sustainable.

Environmental tax and revenues are used as a proxy for green governance. By levying higher taxes on pol-
luting enterprises to prevent the loss of natural resources, these tariffs encourage green growth. Additionally,
green energy finance can help the green energy industry during the energy transition, lowering pollutants and
advancing the goals of sustainable development. Extreme biodiversity loss can result from over-harvesting
natural resources owing to increased economic activity. However, implementing green energy finance and es-
tablishing environmental taxes and revenues, as well as encouraging the use of hydro-power and geothermal
energy, can mitigate this adverse effect. Therefore, the following equation is established, denoted as Equation
(1):

𝐸𝐶𝐹 = 𝑓 (𝐻𝑃𝐶,𝐺𝑇𝐶, 𝐵𝐹𝐶, 𝐺𝐸𝐹, 𝐺𝐺) (2)

Prior to estimating the model, all variables are converted to natural logarithms to standardize the data and gen-
erate precise estimates that assist the analysis of the elasticity of the regression coefficient. Additional variables
like economic growth and square of economic growth are added to the model to reduce the bias caused by the
missing variable and to ensure its accuracy. The panel log-linear econometric functions of Equation (2) may
thus be expressed as follows:

𝑙𝐸𝐶𝐹𝑖,𝑡 = 𝑎0 + 𝑎1𝑙𝐻𝑃𝐶𝑖,𝑡 + 𝑎2𝑙𝐺𝑇𝐶𝑖,𝑡 + 𝑎3𝑙𝐵𝐹𝐶𝑖,𝑡 + 𝑎4𝑙𝐺𝐷𝑃𝑖,𝑡 + 𝑎5𝑙𝐺𝐷𝑃2
𝑖,𝑡 + 𝜀𝑖,𝑡 (3)

𝑙𝐸𝐶𝐹𝑖,𝑡 = 𝑎0 + 𝑎1𝑙𝐻𝑃𝐶𝑖,𝑡 + 𝑎2𝑙𝐺𝑇𝐶𝑖,𝑡 + 𝑎3𝑙𝐵𝐹𝐶𝑖,𝑡 + 𝑎4𝑙𝐺𝐷𝑃𝑖,𝑡 + 𝑎5𝑙𝐺𝐷𝑃2
𝑖,𝑡 + 𝑎6𝑙𝐺𝐸𝐹𝑖,𝑡 + 𝑎7𝑙𝐺𝐺𝑖,𝑡 + 𝜀𝑖,𝑡 (4)

The dependent variable ECF indicates ecological footprint, and the explanatory variables HPC, GTC, BFC,
GDP, GEF, and GG signify hydro-power consumption, geothermal energy consumption, bio-fuel consump-
tion, economic growth, green energy finance, and green governance. The factors 𝑎1 to 𝑎7 are the long-run
coefficients of HPC, GTC, BFC, GDP, GEF, and GG, while 𝑎0 represents the intercept term. 𝑖 denotes the
number of countries (1-7), 𝑡 specifies research time (1990-2020), and 𝜀 represents the normally distributed
error term. Additionally, for robustness checks in Equations (5) and (6) below, this research explores the im-
pacts of given variables on carbon footprint (CF) as additional proxies of environmental degradation:

𝑙𝐶𝐹𝑖,𝑡 = 𝑎0 + 𝑎1𝑙𝐻𝑃𝐶𝑖,𝑡 + 𝑎2𝑙𝐺𝑇𝐶𝑖,𝑡 + 𝑎3𝑙𝐵𝐹𝐶𝑖,𝑡 + 𝑎4𝑙𝐺𝐷𝑃𝑖,𝑡 + 𝑎5𝑙𝐺𝐷𝑃2
𝑖,𝑡 + 𝜀𝑖,𝑡 (5)

𝑙𝐶𝐹𝑖,𝑡 = 𝑎0 + 𝑎1𝑙𝐻𝑃𝐶𝑖,𝑡 + 𝑎2𝑙𝐺𝑇𝐶𝑖,𝑡 + 𝑎3𝑙𝐵𝐹𝐶𝑖,𝑡 + 𝑎4𝑙𝐺𝐷𝑃𝑖,𝑡 + 𝑎5𝑙𝐺𝐷𝑃2
𝑖,𝑡 + 𝑎6𝑙𝐺𝐸𝐹𝑖,𝑡 + 𝑎7𝑙𝐺𝐺𝑖,𝑡 + 𝜀𝑖,𝑡 (6)

The proposed study uses yearly balance panel data for the G7 countries from 1990 to 2020. Canada, Italy, the
United Kingdom, France, Japan, the United States, and Germany constitute the G7 nations. Table 1 presents
the dataset and the variables under investigation, Figure 1 elaborates on the ecological and carbon footprints,
and Table 2 displays the descriptive statistics for the data series.
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Table 1. Description of Variables

Variable names Symbol Measurement unit

Ecological footprint ECF Global hector per person
Carbon footprint CF Global hector per person
Hydro-power consumption HPC Exajoules
Geothermal energy consumption GTC Exajoules
Bio-fuels energy consumption BFC Petajoules
Green Governance GG Environmentally related tax revenue (% of GDP)
Green Energy Finance GEF Investment in grants, debts,equity, and bonds (2019 US$ million)
Economic growth GDP GDP (constant 2015 US$)

Table 2. Descriptive Statistics

lECF lGDP lGTC lHPC lBFC lCF lGG lGEF

Mean 1.8358 28.8080 -1.7678 -0.4609 3.7480 1.4031 0.5576 3.0040
Median 1.7290 28.5774 -2.0869 -0.5459 4.0548 1.3072 0.7841 3.6621
Maximum 2.3363 30.6230 -0.0720 1.3465 7.3113 2.0285 1.2800 8.1280
Minimum 1.4301 27.5900 -4.0201 -3.3902 -2.7315 0.9166 -0.3227 -4.6051
Std. Dev. 0.2830 0.8311 1.1358 1.4357 1.8985 0.3452 0.4598 3.1582
Skewness 0.3665 1.0516 -0.0668 -0.2270 -0.6386 0.3686 -0.5463 -0.6847
Kurtosis 1.7193 2.8374 1.9220 1.9601 4.0350 1.7989 1.9292 2.4971

ECF indicates ecological footprint, CF is carbon footprint, GDP is economic growth, BFC indicates bio-fuel consumption, GTC is
geothermal energy, HPC is hydro-power consumption, GEF is green energy finance, and GG is environment-related tax revenues
proxy for green governance.

Econometric strategy
Thehydro-power consumption, geothermal energy and bio-fuel consumption in our sample countries are con-
sistent. The common economic and industrial traits of these countries may lead to cross-sectional dependency.
Therefore, it is more important to look at the possibility of cross-sectional dependence when using panel data
sets. Four tests have been regularly used to verify cross-sectional dependency: the Pesaran CD test [49], Breusch
and Pagan LM test [50], Pesaran LM test [49], and Baltagi et al. test [51].

To evaluate the cross-sectional dependence, the model below was introduced by [50]:

CDBP =
N=1∑
i=1

N∑
j=i+1

P̂2
ij (7)

Where cross-sectional dependency is signified by CDBP , P̂2
ij denotes pairwise cross-sectional residuals , N

represnets panel’s cross-sectional dimensions, and t is the time.

CDLM =

√
1

N( N − 1)

N=1∑
i=1

N∑
j=i+1

(
P̂2

ij − 1
)

(8)

Baltagi et al. recommend the following LM test statistics [51]:

CDBC =

√
1

N( N − 1)

N=1∑
i=1

N∑
j=i+1

(
P̂2

ij − 1
)
− N

2( T − 1) (9)
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Where pairwise cross-sectional correlation coefficient of the residual is P̂2
ij, Baltagi et al. cross-sectional depen-

dency is denoted by CDBC, N denotes the panel’s cross-sectional measurements, and T time is the period [51].

This study used first- and second-generation panel unit root tests, as Breitung [52], Levin [53], Im [54], to assess
if the variables were stationary.

Breitung [52] contemplates the given equation:

Zit =
p+1∑
k=1

ÃikXit−k + 𝜔it (10)

Breitung [52] used altered vectors. 𝑌𝑖∗ = 𝐴𝑦𝑖 = [𝑌𝑖𝑡∗ . . . ..𝑌𝑖𝑇∗ and 𝑋1∗ = 𝐴𝑥𝑖 = 𝑥𝑖𝑇∗] to test the alternative
hypothesis as follows:

YB =

N∑
i=1

𝛿−2
1 Y∗/

i X∗/
i√√

𝑁∑
i=1

𝛿−2
1 A∗/

i A/X∗/
i

(11)

Im presented null and alternative hypotheses that are comparable to those of the Breitung test [54].

LLC recommend the associated equation:

𝑡∗𝑝 =
𝑡𝑝

𝜎∗
𝑇

− 𝑁𝑇𝑆𝑁

(
�̂�𝑝

�̂�2
𝜀

) (
𝜇∗𝑇
𝜎∗
𝑇

)
(12)

where 𝜇 ¤𝑇 and 𝜎 ¤𝑇 are mean and standard deviation. 𝑆𝑁 equal to (1/N).

The cross-sectional augmented Dickey-Fuller (CADF) regression used by Pesaran is as follows [55]:

Zit = 𝛽i + piyt−1 +
k∑

j=0
aijΔyit−1 +

k∑
j=0

𝛿ijΔyit−1 + 𝜀it (13)

Where yt−1 and Δyit−1 are cross-sectional averages and first differences, respectively. Following the CADF
statistics, the cross-sectionally augmented (CIPS) statistic is generated.

𝐶𝐼𝑃𝑆 =

(
1
𝑁

) 𝑁∑
𝑖=1

𝑡𝑖(𝑁,𝑇) (14)
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The following step is to determinewhether co-integration between the chosen variables by Pedroni andKao [56,57].
Pedroni and Kao are two recommended co-integration checks based on residuals. Every single one of these
statistics has an asymptotically normal distribution using the residuals obtained from the long-run models:

𝑍𝑖𝑡 = 𝛽𝑖 + 𝜕𝑖 +
𝑚∑
𝑗=1

𝑦𝑖 𝑗𝑋𝑖 𝑗 + 𝜀𝑖𝑡 (15)

where it is anticipated that Z and X would integrate on a level of one.

The equation below illustrates the structure of the calculated residuals:

𝜀𝑖𝑡 = 𝑝𝑖𝜀𝑖𝑡−1 + 𝜇𝑖𝑡 (16)

Where panel statistic test is denoted by 𝑝𝑖 , adjustment term is denoted by 𝜇𝑖𝑡 , and 𝜀𝑖𝑡 is residual.

The panel data cointegration system used by Pedroni is detailed below:

𝑍𝑖𝑡 = 𝛽𝑖 + 𝛽𝑋𝑖𝑡 + 𝜀𝑖𝑡 (17)

where it is predicted that Z and X would merge on a level of order one and residual is denoted by 𝜀𝑖𝑡 .

Following the validation of the co-integration of the variables, this research now uses the FMOLS estimate to
analyze the long-term relationship between the selected variables. The FMOLS panel provides a number of
benefits. It supports cross-sectional heterogeneity, endogeneity, and serial correlation. It also provides advice
for both inside and between dimensions. The following equation is made to get between the dimensions:

�̂�𝑁𝑇 =

[
𝑁−1∑𝑁

𝑖=1

{∑𝑡
𝑖=1

(
𝑦𝑖𝑡 − 𝑦/

)2
}−1

] [∑𝑡
𝑖=1

(
𝑦𝑖𝑡 − 𝑦/

)
𝛾/𝑖𝑡 − 𝑇𝛾/𝑖

]
(18)

where �̂�𝑁𝑇 = 𝑁−1 ∑𝑁
𝑖=1 𝑍𝐹𝑀𝑖 × 𝑍𝐹𝑀𝑖 is the FMOLS estimator for individual variables. The last step is to check

heterogeneous panel causality test [58]. The model below identifies causality in panel data:

𝑍𝑖𝑡 = 𝛼𝑖 +
𝐽∑
𝑗=1

𝜏𝐽𝑖𝑖 𝑍𝑖,𝑡−𝐽 +
𝐽∑
𝑗=1

𝛽𝐽𝑖𝑖𝑋𝑖,𝑡−𝐽 + 𝜀𝑖,𝑡 (19)

Where an auto-regressive parameter is denoted by 𝜏𝐽𝑖 , 𝑋(𝑖,𝑡) and 𝑍(𝑖,𝑡) are the observations of two stationary
variables for individual, t and j are the lag length, regression coefficients are denoted by I, and 𝛽𝐽𝑖 that changes
across groups. The lag order J is taken to be constant for a balanced panel.
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Table 3. Cross-sectional dependence

Tests Model 1 Model 2 Model 3 Model 4

Stats Prob. Stats Prob. Stats Prob. Stats Prob.

Breusch-pagan LM 127.432 0.0000 106.21 0.0000 135.618 0.0000 126.210 0.0000
Pesaran scaled LM 20.5272 0.0000 16.652 0.0000 22.0218 0.0000 20.3041 0.0000
Pesaran CD 8.6112 0.0018 9.6031 0.0000 9.1742 0.0000 10.5229 0.0000

Table 4. First and second generation unit root test

Vr. Breitung LLC

Level 1st diff Level 1st diff
lECF -0.690 -6.525*** 0.414 -3.267***
lCF 0.028 -6.999*** 0.314 -4.331***
lGTC 2.704 -2.411*** 1.017 -1.583**
lHPC -2.434*** -9.171*** -3.818*** -1.863***
lBFC 2.325 -2.089*** -0.173 -1.839***
lGG 2.188 -1.648*** 1.691 -3.508***
lGDP 6.729 -2.834*** 3.762 -5.150***
lGEF 2.135 -1.205* 0.478 -9.72861***

CIPS CADF
lECF 0.394 -6.602*** 0.425 -5.986***
lCF 1.257 -5.880*** 1.378 -5.545***
lGTC 0.297 -3.115*** 0.231 -3.118***
lHPC -3.744*** -9.0780*** -3.825*** -7.807***
lBFC 1.021 -2.087*** 1.082 -2.140***
lGG 2.064 -2.748*** 2.189 -2.769***
lGDP 2.158 -3.050*** 2.288 -3.014***
lGEF -0.541 -4.382*** -0.564 -3.875***

The significance level represents ***, **, and * for 1%, 5%, and 10%, respectively.

EMPIRICAL RESULTS AND DISCUSSION
The descriptive statistical analysis is given in Table 2. The mean (median) values of the ecological footprint
(ECF), hydro-power consumption (HPC), geothermal energy consumption (GTC), bio-fuel consumption
(BFC), economic growth (GDP), green energy finance (GEF), and green governance (GG) are 1.8358 (1.7290),
-0.4609 (-0.5459), -1.7678 (-2.0869), 3.7480 (4.0548), 28.8080 (28.5774), 3.0040 (3.6621), and 0.5576 (0.7841),
respectively.

Figure 1 represents data on the ecological footprint, carbon footprint, and bio-capacity of the United States,
Canada, Italy, United Kingdom, France, Germany, and Japan from 1990 to 2020. Ecological and carbon foot-
prints retrieved from the global footprint network [59]. Data for Hydro-power consumption, geothermal en-
ergy consumption, and bio-fuel consumption are retrieved from BP statistical review [60], data for green en-
ergy finance are taken from IRENA [61], data for green governance and economic growth are extracted from
OECD [62] and WDI [63], respectively.

The model for the variables used in the cross-sectional dependence inquiry, and the Pesaran CD techniques
used to model the residual cross-sectional investigation are shown in Table 3. The significance of the results
from all tests provides strong evidence against the null hypothesis (H0) of cross-sectional independence for all
model residuals.

The outcomes of the Breitung, LLC, CIPS, and CADF panel unit root testing are compiled in Table 4. These
findings suggest that level series cannot rule out the unit root null hypothesis (H0). However, after the first
difference is taken into account, all variables exhibit stationarity at the 1. The anticipated results allow us to
proceed with co-integration analysis because it is believed that all of the study variables adhere to the I(1)
process integrated with order one.
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Table 5. Co-integration test

Pedroni cointegration test

Stat. Prob.

Panel v-statistics -1.7393 0.9590
Panel rho-statistics 0.1909 0.5757
Panel pp-statistics -8.9183 0.0000
Panel ADF-statistics -3.5552 0.0002
Group rho-statistics 1.6258 0.9480
Group PP-statistics -8.7529 0.0000
Group ADF-statistics -2.7376 0.0031
Kao cointegration test
ADF -5.7158 0.0000
Johansen fisher panel cointegration test
Hypothesized no. of CE(s) Fisher stat (from trace test) Prob. Fisher stat (from max-eigen test) Prob.
None 187.5 0.0000 167.7 0.0000
At most 1 204.9 0.0000 108.8 0.0000
At most 2 126.0 0.0000 75.29 0.0000
At most 3 94.19 0.0000 62.87 0.0000
At most 4 67.75 0.0000 44.82 0.0000
At most 5 35.55 0.0001 24.40 0.0066
At most 6 32.95 0.0000 32.95 0.0003

Table 6. Estimates using FMOLS

ECF dependent variable CF dependent variable

Model 1 Model 2 Model 3 Model 4

Vr. Coef. Std. Er Coeff. Std. Er Coeff. Std. Er Coeff. Std. Er

lGDP 0.09664*** 0.0255 0.0865*** 0.0024 0.1779*** 0.0510 0.0796*** 0.0033
lGDP2 -0.0960*** 0.0229 -0.1478*** 0.02531 -0.0898*** 0.0293 -0.1502*** 0.0302
lBFC 0.01458*** 0.00514 0.0406*** 0.0179 0.01861 0.0288 0.0837*** 0.0246
lGTC -0.0646*** 0.00787 -0.0696*** 0.0115 -0.1130*** 0.0082 -0.091872 0.0158
lHPC -0.1154*** 0.02635 -0.06208*** 0.0006 -0.1770*** 0.0274 -0.47153*** 0.0351
lGG - - -0.4764*** 0.0548 - - -0.6435*** 0.07539
lGEF - - -0.3586** 0.1912 - - -0.3669** 0.1439
Estimates using DOLS
lGDP 0.0440*** 0.0041 0.0796*** 0.0037 0.2231* 0.3530 0.0708*** 0.0033
lGDP2 -0.2000*** 0.0602 -0.2220** 0.0846 -0.2739*** 0.0730 -0.2530*** 0.1091
lBFC 0.04151*** 0.0092 -0.0324** 0.0161 0.01861 0.0288 .0155* 0.0438
lGTC -0.4314*** 0.1118 -0.0324** 0.0161 -0.10589*** 0.0434 -0.4333** 0.0218
lHPC -0.3947*** 0.0599 -0.0778*** 0.0088 -0.15620* 0.2016 -0.0012* 0.0629
lGG - - -0.3402** 0.1653 - - -0.7695*** 0.2212
lGEF - - -0.1765** 0.0981 - - -0.0635 0.0700

The significance level represents ***, **, and * for 1%, 5%, and 10%, respectively. GDP is economic growth, BFC indicates bio-fuel consumption,
GTC is geothermal energy, HPC is hydro-power consumption, and GG is environment-related tax revenues proxy for green governance.

This study investigates all potential long-term connections among dependent and independent variables using
Pedroni, Kao, and Johansen Fisher panel co-integration tests. The panel co-integration results are displayed
in Table 5. In Pedroni test, four out of the seven estimates are significant at 1%, and both the Johansen Fisher
Panel Co-integration test and the Kao Co-integration test had significant levels of 1 percent. It is given that the
null hypothesis H0 of no co-integration be rejected in favor of the alternative hypothesis H1 of co-integration
among the variables.

The model’s underlying variables are then long-run estimated using the fully modified ordinary least square
(FMOLS) and panel dynamic ordinary least square (DOLS) techniques. The FMOLS and DOLS estimates for
ECP and CF show that all of the long-run coefficients of the examined variables are statistically significant at
a 1% level of significance Table 6.

The outcomes of models 1 and 2 show that the long-run geothermal energy consumption coefficient (GTC) is
notably negative, and they forecast that a 1% increase in geothermal energy consumption lowers the ecological

http://dx.doi.org/10.20517/cf.2023.48


Page 12 of 18 Tariq et al. Carbon Footprints 2024;3:5 I http://dx.doi.org/10.20517/cf.2023.48

footprint by around 0.064% and 0.069%, individually. Additionally, it is anticipated that a 1% increase in the
utilization of geothermal energy lowers the carbon footprints of Models 3 and 4 by 0.1% and 0.9%, respectively.
Moreover, a 1% upsurge in hydroelectric energy use results in a 0.1% and 0.06% decrease in the ecological
footprints of the G7 nations. Likewise, it is anticipated that a 1% increase in hydroelectric energy use results in
carbon footprint reductions of 0.1% and 0.4% in Models 3 and 4, respectively. The utilization of hydro-power
and geothermal energy is indeed acknowledged as clean energy sources with low carbon footprints that can
deliver base-load electricity at a reasonable price. Geothermal energy and hydro-power energy consumption
have positive effects on ecological footprint reduction despite providing a large amount of carbon-free energy,
supporting their claim that they protect the ecosystem with a limited environmental footprint. Hydro-power
and geothermal energy are far more concentrated, have higher power and energy density, and can generate
electricity more quickly than other renewable energy sources. Additionally, geothermal and hydroelectric
generation of electricity generates little waste that may be collected and processed, decreasing the ecological
consequences by safeguarding the finite natural resources needed to generate energy. Therefore, it is essential
for the chosen countries to diversify their energy sources to include geothermal and hydro-power in order to
reduce emissions and reliance on fossil fuels, simultaneously fostering energy security and achieving sustain-
ability.

Our research shows that, at a level of 1%, the use of biofuels significantly affects ecological footprints, which
means that it leads to an increase in ecological footprints. Models 1 and 2’s ecological footprints increase by
0.01 percent and 0.04 percent for every 1% increase in biofuel consumption, respectively. Furthermore, a 1%
increase in biofuels raises the carbon footprint in models 3 and 4 by 0.01 and 0.08 percent, respectively. These
outcomes are the same as [33,43]. Additionally, most of the energy in biofuel comes from food plants; therefore, it
produces more CO2 emissions. This advantage, however, is insufficient to lower air pollution in the G7 nations.
Energy plant care can lead to concerns such as soil issues, nutrient loss, poor water quality, and deforestation.
Furthermore, using biofuels may exacerbate existing climatic issues.

Additionally, it is noted that green energy finance provides a strong and encouraging indicator for sustainable
growth in the G7 nations. All four-panel regression coefficients are -0.35, -0.36, -0.17, and -0.06, significant
at 1%. According to this, green energy finance is a solid way to reduce the impact on the environmental foot-
prints and discover a long-term solution. The relationship between green finance and sustainable development
strategies has also been the subject of several studies. As an indication, Khan et al. have concentrated on the
financing of sustainable development and energy, and claim that this has a considerable potential to evolve
into a new strategy [64].

Because the long-term effects of green governance (GG) on ecological footprints are negative and statistically
significant, green governance enhances environmental quality in the G7 countries. If all other factors remain
constant, a 1 increase in green governance results in a 0.47 percent decrease in ecological footprint and a 0.07
percent decrease in carbon footprint. Green governance encourages cleaner manufacturing, successfully ad-
dressing environmental challenges and fostering green growth, as demonstrated by the supportive function of
green governance in G7 countries. Environmental pressure from high socioeconomic growth, fast industri-
alization, and increased goods production is also expected to force these economies to investigate alternative
energy sources through tax increases and adopt environmental tax revenue. Green governance helps minimize
ecological footprints. These findings are supported by Murshed et al. [46].

Economic growth’s long-run FMOLS coefficient appeared to be positively significant, suggesting that accelerat-
ing it has an adverse effect on the environment. For the G7 economies, a 1 rise in economic growth causes 0.9
and 0.8 increases in ecological footprint and carbon footprint, respectively, while all other factors remain con-
stant. This affirmative result suggests that the panel’s chosen countries are primarily concerned with boosting
their productivity at the expense of environmental quality throughmassive production and polluting activities.
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indicated unidirectional relationship, indicated bi-directional relationship,

indicated positive relationship, and negative relationship is signified by .

It is necessary to explain this pattern by noting that as economic activity increases, so does the demand for
limited natural resources to drive manufacturing operations. As a result, rapid economic growth deteriorates
ecological resources due to increased production activities and industrialization that have a disastrous envi-
ronmental impact by converting agricultural land to manufacturing plants, ruining and reducing habitat for
wildlife, overusing natural resources, and causing forest destruction. These outcomes are in line with [13,65,66].

The early stage of economic development indicates that in the G7 countries, as income levels increase, there
is an amplification of environmental degradation, according to the negative and substantial square of the eco-
nomic growth coefficient; but, once income levels pass a certain threshold, environmental destruction reduces.
As economic levels rise, so does the population’s awareness of the environment, which motivates people to
advocate for environmental protection and follow laws, policies, and regulations. This legalizes the EKC the-
ory [67,68]. To test the reliability of FMOLS findings, this study also uses DOLS estimation. The results of the
FMOLS estimations in Models 1, 2, 3, and 4 are supported by the coefficients of DOLS for all variables, as
shown in Table 6. The findings supported the consistency and robustness of FMOLS estimates by showing
that all regressors consistently have the same directional relationships with carbon and ecological footprint at
different levels of significance.

The outcomes of a pairwise Dumitrescucite [58] causality analysis to determine the causal links among data
are shown in Table 7. The findings illustrate two-way Dumitrescu-Hurlin causality between several factors:
geothermal energy use and economic development (GTC⇔GDP), biofuel energy combustion and economic
development (BFC ⇔ GDP), environment-related tax revenue and economic growth (ERT ⇔ GDP), and
environment-related tax revenue and geothermal energy consumption (ETR ⇔ GTC). This research also re-
vealed unidirectional causality: ecological footprint and economic development (GDP ⇐ ECF), ecological
footprint and geothermal energy consumption (GTC ⇐ ECF), ecological footprint and hydro-power con-

Figure 2. Causal relationship.
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Table 7. Panel causality test

Null hypothesis F-stats. Null hypothesis F-stats.

GDP ⇐ ECF 0.8361, 5.8128*** GTC⇔ GDP 2.1634*, 5.52410***
GEF ⇒ ECF 7.2178***, 1.34786 BFC⇔ GDP 4.0410***, 9.5223***
GTC ⇐ ECF 0.3403, 2.9821** ERT⇔ GDP 3.8275***, 2.3559***
HPC ⇐ ECF 0.8555, 2.4632** HPC ⇒ GTC 7.7935***, 0.2720
ETR ⇐ ECF 0.1590, 2.1106* ETR ⇔ GTC 3.2958**, 1.8994*
BFC ⇒ HPC 2.2758*, 0.3760 BFC⇐ ECF 1.1739, 1.8599*

The significance level represents ***, **, and * for 1%, 5%, and 10%, respectively. GDP is economic growth,
BFC indicates bio-fuel consumption, GTC is geothermal energy, HPC is hydro-power consumption, and ETR
is environment-related tax revenues proxy for governance.

sumption (HPC ⇐ ECF), ecological footprint and biofuels ingesting (BFC ⇐ ECF), ecological footprint and
environment-related tax revenue (ETR ⇐ ECF), biofuels consumption and hydro-power consumption (BFC
⇒ HPC), green energy finance and ecological footprints (GEF ⇒ ECF), and hydro-power consumption and
geothermal energy consumption (HPC⇒ GTC) (shown in Figure 2).

CONCLUSION, POLICY IMPLICATIONS, AND FUTURE DIRECTIONS
In our research, the ecological footprint effects of hydro-power and geothermal energy as green energy sources
are evaluated. This study utilized yearly panel data for the G7 countries from 1990 to 2020, focusing on eco-
logical footprint and carbon footprint as two distinct measures of environmental degradation; to check EKC
theory, we added GDP square to the basic model. To evaluate the series’ stationarity, the unit root tests de-
veloped by Breitung, LLC, CIPS, and CADF were employed. Additionally, we utilized Pedroni, Kao, and Jo-
hansen Fisher testing methodology to test cointegration. To investigate the long-term relationship, we applied
FMOLS and DOLS. Furthermore, we used the Dumitrescu and Hurlin causality test to explore the direction
of the long-term causal link between the variables. Investment in the form of debts, bonds, stocks, and equity
in renewable energies is considered green energy finance. Environment-related tax revenue is also added to
the models to investigate the governance impacts on the carbon and ecological footprint. The findings show a
long-term link between the controlled variables and environmental footprint measures. The results are in line
with an inverted U-shaped relationship between environmental footprint and economic development, which
validates the EKC hypothesis. Environmental footprints are reported to be greatly reduced by geothermal
and hydroelectric energy, but consumption of biofuels results in an increase in environmental footprint. Fur-
thermore, green energy finance and green governance significantly reduce our environmental footprint. The
results of the Dumitrescu and Hurlin causality test indicate that there is a unidirectional causal relationship
between ecological footprint and economic growth, geothermal energy consumption, hydro-power consump-
tion, bio-fuels consumption, and environmental-related tax revenue. In conclusion, combating climate change
and securing a sustainable future depends critically on how green energy and green energy financing affect
carbon and ecological footprint implications. This study aims to investigate the complex interactions between
these variables and offer insightful information on methods for lowering carbon emissions and lessening the
effects of climate change.

The results of this study hold significant implications for addressing climate change and promoting sustain-
ability worldwide. First, the relevance of the square of GDP coefficient in relation to ecological footprint and
carbon footprint in G7 nations validates the EKC hypothesis. Even while economic expansion inevitably ex-
acerbates environmental footprints, the governments of the G7 countries must implement effective ways to
reduce their environmental impacts. To uphold the EKC hypothesis, G7 governmentsmust promote economic
diversification by investing in green sectors such as sustainable agriculture and renewable energy.

Second, this study can assist in informing policy choices, directing investment strategies, and promoting the
shift to a low-carbon economy by highlighting the connections between the adoption of green energy, green
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energy finance, green governance, and carbon and ecological footprint reduction. In the end, the results may
assist society in dealing with the urgent problem of climate change and contribute to the attainment of inter-
national climate objectives, such as those outlined in the Paris Agreement.

Third, it seems likely that the G7 countries would benefit from policies that promoted the use of more hydro-
power and geothermal energy while also promoting economic growth, given the negative effects of the use of
biofuels and the positive correlation between the use of hydro-power and geothermal energy and carbon and
ecological footprints. These regulations might include tax incentives for the production of hydro-power and
geothermal energy, as well as grants, subsidies, and refunds for the expansion of geothermal and hydro-power
infrastructure. Additionally, the use of geothermal and hydroelectric energy is negatively correlated with both
environmental footprint measures, supporting their status as environmentally friendly energy sources that can
promote ecological growth and reduce the rate of environmental deprivation.

Fourth, the development of hydroelectric dams that can act as reservoirs, retaining and distributing water
through droughts and floods, and enhancing an equitable water distribution, can be a better way to manage hy-
drogeological extremes with severe environmental and carbon footprints, such as floods and droughts. Given
the potential for some engineering difficulties, it is necessary to fund studies that concentrate on cutting-edge
engineering and global safety norms, particularly for contemporary dam developments.

This study presents unique findings and also provides some future directions. The ecological and carbon
footprint consequences of hydro-power, geothermal energy, and biofuels are contentious issues influenced by
various institutional, social, and cultural factors. This research evaluated energy finance and how the consump-
tion of hydro-power, geothermal energy, and bio-fuels affected the ecological systems and carbon footprints
of a panel of G7 nations. Consequently, there is a call to explore more green energy sources to curtail both
carbon and ecological footprints. To furnish more precise insights, this research also offers recommendations
for future studies on other growing and developing countries that use hydro-power, geothermal energy, and
biofuels. Last but not least, expanding this research to incorporate diverse factors shaping specific case studies,
such as urbanization and natural resources, might yield intriguing literature and broaden the understanding
in this field.
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