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Abstract
This article investigates the preset performance trajectory tracking control problem of underactuated unmanned sur-
face ships withmodel uncertainty, unknown external environmental disturbances, and input quantization effects. We
consider the non-diagonal damping matrix and mass matrix to satisfy the actual dynamics model of underactuated
unmanned surface ships. By adding a hysteresis quantizer, the control method proposed in this article effectively
reduces the quantization error. Neural networks are employed to approach the unknown environmental disturbance
of underactuated unmanned surface ships. Using the error transformation function, the constrained control problem
is transformed into an unconstrained one to ensure the preset performance of tracking errors. This paper verifies the
superiority and effectiveness of the proposed control method through Lyapunov stability analysis.

Keywords: Underactuated unmanned surface ships, trajectory tracking control, prescribed performance, neural net-
works

1. INTRODUCTION
Recently, underactuated unmanned surface ships have gained widespread usage across manyMarine engineer-
ing fields. They hold high application value in Marine tasks such as ocean exploration, water quality moni-
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toring, and Marine search and rescue, prompting extensive scholarly research. Trajectory tracking control
technology is important for these vessels, enabling them to move along the desired trajectory while ensuring
satisfactory performance. However, the dynamics of these ships are time-varying, nonlinear, and often sub-
ject to complex ocean disturbances such as currents, waves, and tides. Despite many challenges, some control
methods have been proposed to effectively reduce the influence of external unknown interference and model
uncertainty, such as sliding mode control [1–3], backstepping adaptive control [4–6], and neural network-based
control [7–13].

Due to complex unknown external disturbances and highly coupled nonlinear dynamics in ocean engineer-
ing, it is very important to obtain accurate mathematical models of underactuated unmanned surface ships.
Only by acquiring accurate model information can some model-related control methods be effective. Several
adaptive neural network control design techniques have been proposed in recent years to solve the model
uncertainty-related problems of underactuated unmanned surface ships. In ref [13], the high-gain observer
was used to estimate the unmeasurable state of ship dynamics. When partial PE conditions are satisfied, the
proposed adaptive neural network controller can acquire uncertain ship dynamics knowledge in the stable pro-
cess and store the learned knowledge in the memory. An adaptive neural network controller was designed in
ref [14], which uses the obstacle Lyapunov function (BLF) and combines the backsteppingmethodwith adaptive
feedback approximation technology to verb the trajectory tracking control problem of fully driven unmanned
surface ships with multiple output constraints. In ref [15], by introducing an error transformation function, the
constrained tracking control of the original ship is transformed into a stabilizing control of an unconstrained
system. Then, a radial basis function neural network (RBFNN) is used to approximate the unknown ship dy-
namics, and a stable adaptive neural network control is proposed. While ensuring the ultimate boundedness
of all signals in the closed-loop system, the improved control performance of fast-tracking convergence speed
and low computational complexity is achieved. For a class of multi-input systems with all-state constraints,
an adaptive neural network controller is designed in ref [16], which uses the Moor-Penrose generalized inverse
matrix to avoid violation of all-state constraints and deal with uncertainty and unknown interference of the
system. This paper will use adaptive neural networks to solve problems such as model uncertainty and external
interference.

However, in addition to the above model uncertainty and complex external interference, we also need to con-
strain the tracking error of underactuated unmanned surface ships from the perspective of performance and
system safety. In the actual voyage, if these ships exceed the output constraint, they may collide with obstacles
such as reefs in the ocean, resulting in reduced control performance and control failure. In addition, if the
track tracking error of the surface unmanned ship exceeds the specified boundedness, then the transformed
error becomes a meaningless value, which will cause the surface unmanned ship to actively stop working for
better self-protection. Therefore, the guaranteed transient performance can improve the security and stability
of the system. In ref [17], the tracking control issue of unmanned underwater vehicles (UUV) was studied, and
the transient and steady-state characteristics were specified. A new tracking controller was proposed in ref [18],
which converges the tracking error to an arbitrarily small polar limit and guarantees its transient performance
with a preset maximum overshoot and convergence rate. A preset performance function describing the pre-
defined trajectory tracking performance was designed to limit the rate of convergence, steady-state error, and
maximum overshoot [19]. Using adaptive neural network control, the ultimate boundedness and predefined
transient and steady-state performance of signals in the system are ensured. However, if input quantization
is encountered during the controller design process, the aforementioned preset performance methods are no
longer applicable. Underactuated unmanned surface ships are continuous systems, with control modules com-
posed of digital processors. Quantization is a common process in digital signal transmission. These ships are
networked systems, and their actual control signals must be converted from continuous to discrete to be trans-
mitted to the next network. A quantizer is usually used in the conversion process to improve the sensor ac-
curacy. In addition, it can save communication resources on the premise of ensuring performance. However,
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the problems of strong nonlinearity and quantization errors occur during its usage, reducing the performance
of the control system. To settle this problem, a fuzzy wavelet neural control method with improved preset
performance was designed [20]. A hysteresis quantizer (HQ) has been added to the controller to avoid jitter
without reducing control accuracy. A robust quantization control scheme is implemented to compensate for
quantization errors. In ref [21], the challenge of realizing preset performance trajectory tracking control for un-
deractuated underwater vehicles under the influence of complex Marine interference and input quantification
is discussed. The constraint issue is transformed into an unconstrained problem through a mapping function,
and a lag quantizer is added to effectively reduce the impact of quantization errors. Therefore, to achieve the
closed-loop stability of unmanned surface ships after input quantization, addressing the compensation of the
quantization error has become a problem worth paying attention to.

Inspired by the research results of the above article, this paper studies the matter of input quantization of the
preset performance tracking control of underactuated unmanned surface ships based on the non-diagonal
mass matrix and damping matrix model. It proposes an adaptive neural network control technology with
guaranteed steady-state response and transient response tracking performance. Its main contributions can be
summarized as follows:

(1) This article considers the dynamic models of the non-diagonal damping matrix and mass matrix of un-
manned surface vessels, which can reflect a more realistic situation. To overcome unknown external en-
vironmental interference and model uncertainty, this paper designs an adaptive neural network tracking
controller and uses an error transformation function to convert constrained tracking errors into uncon-
strained ones to ensure the specified preset performance;

(2) The control method proposed in this article can be used to consider input quantization constraints for un-
manned vessel trajectory tracking tasks. In reality, in the process of controller design, if input quantization
is encountered, the preset performance cannot be guaranteed. Therefore, we add a HQ to the controller to
effectively reduce quantization errors while ensuring performance.

2.PROBLEM DESCRIPTION AND PRELIMINARY PREPARATION
2.1. Underactuated unmanned surface ship model
Assuming that the research object of this article is an underactuated unmanned surface ship with three degrees
of freedom, its kinematics model is established as

¤𝜂 = 𝐽 (𝜂) 𝜈 (1)

where 𝜂 = [𝑥, 𝑦, 𝜓]𝑇 denotes the position and attitude vector of the underactuated unmanned surface ship in
the inertial frames; 𝑣 = [𝑢, 𝜐, 𝑟]𝑇 indicates the linear velocity and angular velocity vector of the underactuated
unmanned surface ship in the hull coordinate system; 𝐽 (𝜂) is the transformmatrix between the two coordinate
systems, expressed as

𝐽 (𝜂) =

cos (𝜓) − sin (𝜓) 0
sin (𝜓) cos (𝜓) 0

0 0 1


The dynamics model of underactuated unmanned surface ships is denoted as

𝑀 ¤𝑣 + 𝐶 (𝑣) 𝑣 + 𝐷 (𝑣) 𝑣 = 𝑄 (𝜏) + 𝑑 (2)

where 𝑀 , 𝐶 (𝑣), and 𝐷 (𝑣) denote the mass matrix, Coriolis matrix, and linear hydrodynamic damping pa-
rameter matrix, respectively. 𝑑=[𝑑1, 𝑑2, 𝑑3]𝑇 is the unknown disturbance vector of the external environment.
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𝑄(𝜏) = [𝑄(𝜏𝑢), 0, 𝑄(𝜏𝑟 )]𝑇 is the quantization control input vector, where 𝜏𝑢 and 𝜏𝑟 are the longitudinal propul-
sion force and steering torque of the underactuated unmanned surface ship.

𝐶 (𝑣), 𝐷 (𝑣), and 𝑀 are given as

𝐶 (𝑣) =


0 0 𝑐13
0 0 𝑐23
𝑐31 𝑐32 0

 =


0 0 −𝑚11𝑣 − 𝑚23𝑟

0 0 𝑚11𝑢

𝑚11𝑣 + 𝑚23𝑟 −𝑚11𝑢 0


𝐷 (𝑣) =


𝑋𝑢 0 0
0 𝑌𝑣 𝑌𝑟
0 𝑁𝑣 𝑁𝑟

 =

𝑑11 0 0
0 𝑑22 𝑑23
0 𝑑32 𝑑33


𝑀 =


𝑚11 0 0
0 𝑚22 𝑚23
0 𝑚32 𝑚33

 =

−𝑋 ¤𝑢 − 𝑚 0 0

0 −𝑌¤𝑣 − 𝑚 −𝑌¤𝑣 − 𝑚𝑥𝑔
0 −𝑁 ¤𝑣 − 𝑚𝑥𝑔 −𝑁 ¤𝑟 − 𝐼𝑧


where 𝑚 is the mass of the underactuated unmanned surface ship, 𝐼𝑧 is the moment of inertia, and other
parameter variables such as 𝑋 ¤𝑢 are hydrodynamic derivatives. To convert the actual continuous signal into a
discrete one, the following HQ is used [21]

𝑄 (𝜏𝑖) =



𝑄 (𝜏𝑖 (𝑡−)) , ¤𝜏𝑖 = 0

0 𝜏𝑖 min
1+𝛿𝑖 < |𝜏𝑖 | ≤ 𝜏𝑖 min, ¤𝜏𝑖 > 0, 𝑜𝑟 0 ≤ |𝜏𝑖 | < 𝜏𝑖 min

1+𝛿𝑖 , ¤𝜏𝑖 < 0

𝜏𝑖𝑟 (1 + 𝛿𝑖) 𝑠𝑖𝑔𝑛 (𝜏𝑖) , 𝜏𝑖𝑟
1−𝛿𝑖 < |𝜏𝑖 | ≤ 𝜏𝑖𝑟 (1+𝛿𝑖)

1−𝛿𝑖 , ¤𝜏𝑖 > 0, 𝑜𝑟 𝜏𝑖𝑟 < |𝜏𝑖 | ≤ 𝜏𝑖𝑟
1−𝛿𝑖 , ¤𝜏𝑖 < 0

𝜏𝑖𝑟 𝑠𝑖𝑔𝑛 (𝜏𝑖) , 𝜏𝑖𝑟 < |𝜏𝑖 | ≤ 𝜏𝑖𝑟
1−𝛿𝑖 , ¤𝜏𝑖 > 0, 𝑜𝑟 𝜏𝑖𝑟

1+𝛿𝑖 < |𝜏𝑖 | < 𝜏𝑖𝑟 , ¤𝜏𝑖 < 0

(3)

where 𝑟 = 1, 2, . . ., 𝑖 = 𝑢, 𝑟 , 𝜏𝑖𝑟 = 𝜌1−𝑟𝜏𝑚𝑖 , and 𝜏𝑚𝑖 > 0, 𝜌 = 1−𝛿𝑖
1+𝛿𝑖 , 𝛿𝑖 ∈ (01). 𝜏𝑖 min is the minimum quantization

level that determines the dead zone of 𝑄 (𝜏𝑖), 𝜌 ∈ (01) is the quantization density, and the larger 𝜌 is, the
higher the quantizer accuracy is. 𝑟 is the quantization level, and 𝑄 (𝜏𝑖) is ultimately restricted to the set 𝑈 =
{0 ± 𝜏𝑖𝑟 ,±𝜏𝑖𝑟 (1 + 𝛿𝑖)} . A linear factorization of input quantization 𝑄 (𝜏𝑖) is proposed in ref [21], expressed as

𝑄 (𝜏𝑖) = 𝜏𝑖 + 𝜁𝑖 (4)

where 𝜁𝑖 = 𝑄 (𝜏𝑖) − 𝜏𝑖 is the quantization error and satisfies Lemma 1.

Assumption 1 [22]. The expected trajectory (𝑥𝑑 , 𝑦𝑑 , 𝜓𝑑) of an underactuated unmanned surface ship is smooth,
and there are first-order and second-order differentials.

Assumption 2 [21]. The external disturbances 𝑑1, 𝑑2, and 𝑑3 acting on the underactuated unmanned surface
ship are time-varying disturbances and meet |𝑑1 | ≤ 𝑑∗1, |𝑑2 | ≤ 𝑑∗2, and |𝑑3 | ≤ 𝑑∗3, where 𝑑

∗
1 > 0, 𝑑∗2 > 0 and

𝑑∗3 > 0 indicate that the superior limit and bound value of the external disturbance are known.

Lemma 1 [23]. The quantization error 𝜁𝑖 satisfies

{
𝜁2
𝑖 ≤ 𝛿2

𝑖 𝜏
2
𝑖 , ∀ |𝜏𝑖 | ≥ 𝜏𝑖 min

𝜁2
𝑖 ≤ 𝜏2

𝑖 min, ∀ |𝜏𝑖 | ≤ 𝜏𝑖 min
(5)
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In practical applications, the dynamic model of unmanned surface ships has parameter uncertainties, namely
𝑀 = 𝑀0 + Δ𝑀 , 𝐶 = 𝐶0 + Δ𝐶, 𝐷 = 𝐷0 + Δ𝐷, where 𝑀0, 𝐶0, and 𝐷0 are determinable parts and Δ𝑀 , Δ𝐶, and
Δ𝐷 are uncertain parts. Therefore, the dynamic model of unmanned surface ships can be denoted as

𝑀0 ¤𝑣 = −𝐶0 (𝑣) 𝑣 − 𝐷0 (𝑣) 𝑣 +𝑄 (𝜏𝑖) − Ξ (6)

where Ξ = −Δ𝑀 ¤𝜈 − Δ𝐶 (𝑣) 𝑣 + 𝑑.

Since the shape of most unmanned surface vessels is not always a semi-submerged sphere, and their mass
matrix and damping matrix are non-diagonal, using coordinate changes [24], 𝑥 = 𝑥 + 𝜀 cos𝜓, 𝑦̄ = 𝑦 + 𝜀 sin𝜓,
𝑣̄ = 𝑣 + 𝜀𝑟 , 𝜀 = 𝑚23/𝑚22 , the nonlinear kinematics and dynamics equations of underactuated unmanned
surface ships can be established as



¤̄𝑥 = 𝑢 cos𝜓 − 𝑣̄ sin𝜓
¤̄𝑦 = 𝑢 sin𝜓 + 𝑣̄ cos𝜓
¤𝜓 = 𝑟

¤𝑢 =
(
𝑚22𝑣𝑟 + 𝑚23𝑟

2 − 𝑑11𝑢 + Ξ𝑢 +𝑄 (𝜏𝑢)
)
/𝑚11

¤̄𝑣 = −(𝑚11𝑢𝑟 + 𝑑22𝑣 + 𝑑23𝑟 − Ξ𝑣)/𝑚22

¤𝑟 = (𝜙 + (−𝑚23Ξ𝑣 + 𝑚22Ξ𝑟 ) + 𝑚22𝑄 (𝜏𝑟 ))/
(
𝑚22𝑚33 − 𝑚23

2
)

(7)

where 𝜙 =
(
𝑚11𝑚22 − 𝑚22

2) 𝑢𝑣 + (𝑚11𝑚23 − 𝑚22𝑚23) 𝑢𝑟 − 𝑚22 (𝑑33𝑟 + 𝑑32𝑣) + 𝑚23 (𝑑23𝑟 + 𝑑22𝑣).

Remark 1. In most neural network-based adaptive trajectory tracking control for underactuated unmanned
surface ships, prior knowledge about the dynamics model of unmanned ships is not required. However, unlike
traditional methods, this paper fully utilizes them to reduce the number of nodes and improve computational
efficiency.

Remark 2. Due to the lack of driving devices on the lateral side of underactuated unmanned surface ships, only
two control inputs, 𝜏𝑢 and 𝜏𝑟 , are considered in the dynamic model. The underactuated unmanned surface
ship described by Equation (7) is underactuated and neglects roll motion. The trajectory tracking control of
underactuated unmanned surface ships is more challenging than fully actuated ones.

Remark 3. In solving autonomous underwater vehicle tracking problems, better preset performance is achieved,
but these methods cannot achieve preset performance when encountering input quantization. Therefore, in
the tracking problem of underactuated unmanned surface vessels, achieving good preset performance while
solving input quantization is the problem that needs to be implemented in the control method proposed in
this article.

Remark 4. The real ship is not a semi-underwater sphere. Although the diagonal matrix is relatively easier to
calculate in the system, in order to reflect the real situation, this article considers an unmanned surface ship
model with a non-diagonal damping matrix and mass matrix.

2.2. Prescribed performance
In this article, the position errors of underactuated unmanned surface ships are defined as 𝑒1 and 𝑒2, and the
heading Angle errors are represented by 𝑒3. To achieve preset transient performance (i.e., overshoot and error
convergence speed), the boundary function form is designed as

−𝜌𝑖 (𝑡) < 𝑒𝑖 (𝑡) < 𝜌𝑖 (𝑡) , 𝑖 = 1, 2, 3 (8)
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where the performance function 𝜌𝑖 (𝑡) is a design parameter andmonotonically decreasing in the defined time
domain, and lim𝑡→∞𝜌𝑖 (𝑡) → 𝜌𝑖,∞ > 0, determined by

𝜌𝑖 (𝑡) =
(
𝜌𝑖,0 − 𝜌𝑖,∞

)
exp(−𝜅𝑖𝑡) + 𝜌𝑖,∞ (9)

where 𝜌𝑖,0, 𝜌𝑖,∞, and 𝜅𝑖 are all positive real numbers, and 𝜅𝑖 indicates the lower limit of interest rate at which the
tracking error converges. To achieve the preset tracking performance, we then convert the above inequality
constraint Equation (8) into an equality constraint

𝑒∗𝑖 = Υ (𝑧𝑖) = ln
(
1 + 𝑧𝑖
1 − 𝑧𝑖

)
(10)

where 𝑧𝑖 = 𝑒𝑖
𝜌𝑖
, andΥ (�) are smooth functionswith bijection and strictlymonotonically increasing, andΥ (�) →

(−∞,∞), Υ (0) = 0.

Lemma 2 [25]. If the position error and yaw angle errors 𝑒1, 𝑒2, and 𝑒3 and transform errors 𝑒1
∗, 𝑒2

∗, and 𝑒3
∗

are bounded, then the preset performance can be achieved.

2.3. Radial basis function neural networks
In control, the RBFNN has a relatively uncomplicated structure and universal approximation property, which
provides an effective solution for solving nonlinear control problems. In this article, we use the traditional
RBFNN control algorithm to approximate the uncertain fluid dynamics and the unknown disturbance sum
𝑓 (𝑍). The output expression of the neural network for the unknown part 𝑓 (𝑍) is established as

𝑓 (𝑍) = 𝜉 (𝑍) + 𝑆 (𝑍)𝑊∗𝑇∀𝑍 ∈ Ω (11)

where 𝑍 is the input vector of the RBFNN, and 𝜉 (𝑍) is the bounded approximation error of the neural net-
work and satisfies 𝜉 (𝑍) ≤ 𝜉∗; 𝑆 (𝑍) = [𝑆1 (𝑥) , 𝑆2 (𝑥) , · · · , 𝑆𝑛 (𝑥)]𝑇 is the regression vector, and the output
expression of the basis function is denoted as

𝑆𝑖 (𝑍) = exp

[
− (𝑍 − 𝑐𝑖)𝑇 (𝑍 − 𝑐𝑖)

𝜎2
𝑖

]
, 𝑖 = 1, 2, · · · , 𝑛 (12)

where the input vector 𝑍 and the vector value 𝑐𝑖 of the center point of the Gaussian basis function have the
same dimension, and 𝜎𝑖 is the radial basis function width.

𝑊∗ =
[
𝑤∗

1, 𝑤
∗
2, · · · , 𝑤∗

𝑛

]𝑇 denotes the optimal neural network weight vector, defined as

𝑊∗ = arg min
𝑊∗∈𝑅𝑛

[
sup
𝑍∈Ω

�� 𝑓 (𝑍) − 𝑊̂𝑇𝑆 (𝑍)
��] (13)

where 𝑊̂ is the estimate of𝑊∗. Assuming that the weight𝑊∗ of the neural network is bounded; i.e., there exists
a constant𝑊 greater than zero, such that ‖𝑊∗‖ ≤ 𝑊 .

2.4. Trajectory tracking problem
In this paper, 𝜂 = [𝑥, 𝑦, 𝜓]𝑇 is the practical position of the underactuated unmanned surface ship, and 𝜂𝑑 =
[𝑥𝑑 , 𝑦𝑑 , 𝜓𝑑]𝑇 is the given reference trajectory. Define the trajectory tracking error as

𝑒1 = 𝑥 − 𝑥𝑑

𝑒2 = 𝑦̄ − 𝑦̄𝑑

𝑒3 = 𝜓 − 𝜓𝑎

(14)

where 𝑥𝑑 = 𝑥𝑑 + 𝜀 cos𝜓𝑑 ,𝑦̄𝑑 = 𝑦𝑑 + 𝜀 sin𝜓𝑑 . 𝜓𝑎 is an angle related to 𝑒1, 𝑒2, and 𝑒3, defined as [22]

𝜓𝑎 = 𝛽 tanh
(
𝐻2/𝑎1

)
+ 𝜓𝑑

(
1 − tanh

(
𝐻2/𝑎1

))
(15)

where 𝑎1 is a normal number, and 𝛽 = tan−1
(
−𝑒2
−𝑒1

)
and 𝐻 =

√
𝑒12 + 𝑒22.
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3. TRAJECTORY TRACKING CONTROLLER DESIGN
In this chapter, an adaptive trajectory tracking controller for underactuated unmanned surface ships is de-
signed based on neural networks. Firstly, an appropriate virtual control law is designed; then, the derivative
of transformation error 𝑒∗𝑖 (𝑖 = 1, 2, 3) is derived, and finally, the derivative of velocity error 𝑠𝑖 (𝑖 = 1, 2, 3) is
derived, and the 𝜏𝑢 and 𝜏𝑟 are designed. Derivation of both sides of the ship trajectory tracking error Equation
(14) concerning time 𝑡 can be obtained as

¤𝑒1

¤𝑒2

¤𝑒3

 =

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1



𝑢

𝑣̄

𝑟

 −

¤̄𝑥𝑑
¤̄𝑦𝑑
¤𝜓𝑑

 (16)

where 𝑢, 𝑣̄, and 𝑟 are regarded as practical control quantities. To realize the trajectory tracking position error
𝑒∗𝑖 (𝑖 = 1, 2, 3) after the transformation of unmanned surface ships tends to zero under the preset performance,
the virtual control law is specifically designed as

𝛼𝑢

𝛼𝑣

𝛼𝑟

 =


cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1



¤̄𝑥𝑑 − 𝑙1𝑒

∗
1

¤̄𝑦𝑑 − 𝑙1𝑒
∗
2

¤𝜓𝑑 − 𝑙2𝑒
∗
3

 (17)

where 𝑙1 > 0 and 𝑙2 > 0 are design constants.
¤𝑒1
¤𝑒2
¤𝑒3

 =

−𝑙1 ¤𝑒∗1
−𝑙1 ¤𝑒∗2
−𝑙2 ¤𝑒∗3

 +

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1



𝑢 − 𝛼𝑢

𝑣̄ − 𝛼𝑣

𝑟 − 𝛼𝑟

 (18)

According to [25], the speed error is defined as

𝑢𝑒 = 𝑢 − 𝛼𝑢

𝑣𝑒 = 𝑣̄ − 𝛼𝑣 − 𝛽2 tanh 𝛾2

𝑟𝑒 = 𝑟 − 𝛼𝑟

(19)

where 𝛽2 is a design parameter, 𝛼 = [𝛼𝑢𝛼𝑣𝛼𝑟 ]𝑇 is a virtual control quantity, and 𝛾2 is used to deal with the
underdrive problem of underactuated unmanned surface ships. Substituting Equation (19) into (18) yields

¤𝑒1
¤𝑒2
¤𝑒3

 =

−𝑙1 ¤𝑒∗1
−𝑙1 ¤𝑒∗2
−𝑙2 ¤𝑒∗3

 +

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1




𝑢𝑒 + 𝛼𝑢

𝑣̄𝑒 + 𝛼𝑣 + 𝛽2 tanh 𝛾2
𝑟𝑒 + 𝛼𝑟

 (20)

Construct the following Lyapunov function

𝑉 = 𝑉1 +𝑉2 (21)

where
𝑉1 =

1
2

(
𝑓1𝑒

∗
1

2 + 𝑓2𝑒
∗
2

2 + 𝑓3𝑒
∗
3

2
)

(22)

By differentiating Equation (22), we can get

¤𝑉1 = 𝑓1𝑒
∗
1 ¤𝑒∗1 + 𝑓2𝑒

∗
2 ¤𝑒∗2 + 𝑓3𝑒

∗
3 ¤𝑒∗3 (23)

By differentiating the Equation (10), we get

¤𝑒∗𝑖 =
2 (𝜌𝑖 ¤𝑒𝑖 − 𝑒𝑖 ¤𝜌𝑖)(

1 − 𝑧2
𝑖

)
𝜌2
𝑖

, 𝑖 = 1, 2, 3 (24)
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Substituting the Equation (20) into the above equation can obtain

¤𝑒∗1 =
2
(
−𝑙1𝑒∗1 + 𝑢𝑒 cos𝜓 − 𝑣𝑒 sin𝜓 + 𝜄1

)(
1 − 𝑧2

1
)
𝜌1

¤𝑒∗2 =
2
(
−𝑙1𝑒∗2 + 𝑢𝑒 sin𝜓 + 𝑣𝑒 cos𝜓 + 𝜄2

)(
1 − 𝑧2

2
)
𝜌2

¤𝑒∗3 =
2
(
−𝑙2𝑒∗3 + 𝑟𝑒 + 𝜄3

)(
1 − 𝑧2

3

)
𝜌3

(25)

where 𝑓𝑖 =
(
1 − 𝑧2

𝑖

)
𝜌𝑖 , 𝜄1 = −𝛼2 tanh 𝛽2 sin𝜓+ ¤𝜌1𝑧1, 𝜄2 = 𝛼2 tanh 𝛽2 cos𝜓− ¤𝜌2𝑧2, and 𝜄3 = ¤𝜓𝑑− ¤𝜌3𝑧3. Substituting

Equation (25) into Equation (23) can get

¤𝑉1 ≤ −2𝑙1𝑒∗1
2 − 2𝑙1𝑒∗2

2 − 2𝑙2𝑒∗3
2 + 2

��𝑒∗1𝑢𝑒 �� + 2
��𝑒∗1𝑣𝑒 �� + 2

��𝑒∗2𝑢𝑒 �� + 2
��𝑒∗2𝑣𝑒 �� + 2

��𝑒∗3𝑟𝑒 ��
+ 2𝑒∗1𝜄1 + 2𝑒∗2𝜄2 + 2𝑒∗3𝜄3 − 2 (𝑙1 − 1) 𝑒∗1

2 − 2 (𝑙1 − 1) 𝑒∗2
2 − 2 (𝑙2 − 1) 𝑒∗3

2

+ 2(𝑢2
𝑒 + 𝑣2

𝑒 + 𝑟2
𝑒 ) +

3∑
𝑖=1

𝜄2𝑖

(26)

Using Young’s inequality, Equation (26) can be written as

¤𝑉1 ≤ −2𝑙1𝑒∗1
2 − 2𝑙1𝑒∗2

2 − 2𝑙2𝑒∗3
2 + 2

��𝑒∗1𝑢𝑒 �� + 2
��𝑒∗1𝑣𝑒 �� + 2

��𝑒∗2𝑢𝑒 �� + 2
��𝑒∗2𝑣𝑒 �� + 2

��𝑒∗3𝑟𝑒 ��
+ 2𝑒∗1𝜄1 + 2𝑒∗2𝜄2 + 2𝑒∗3𝜄3 − 2 (𝑙1 − 1) 𝑒∗1

2 − 2 (𝑙1 − 1) 𝑒∗2
2 − 2 (𝑙2 − 1) 𝑒∗3

2

+ 2(𝑢2
𝑒 + 𝑣2

𝑒 + 𝑟2
𝑒 ) +

3∑
𝑖=1

𝜄2𝑖

(27)

Remark 4. If the position error and yaw angle error 𝑒1, 𝑒2, and 𝑒3 transform errors 𝑒1
∗, 𝑒2

∗, and 𝑒3
∗ are

bounded, then the preset performance can be achieved.

According to Equations (8) and (10), we know that |𝑧𝑖 | ≤ 1, |𝜌𝑖 | ≤ 𝛼𝑖
(
𝜌𝑖,0 − 𝜌𝑖,∞

)
, 𝑖 = 1, 2, 3, so there is a

positive constant 𝜄𝑖 ≥ 𝜄𝑖 .

Derivation of Equation (19) concerning time is obtained as

¤𝑢𝑒 = 𝜙𝑢 + 𝑑𝑢 +𝑄 (𝜏𝑢)/𝑚11 − ¤𝛼𝑢

¤𝑣𝑒 = 𝜙𝑣 + 𝑑𝑣 − 𝛽2 ¤𝛾2sech2𝛾2 − ¤𝛼𝑣

¤𝑟𝑒 = 𝜙𝑟 + 𝑑𝑟 + 𝑚22𝑄 (𝜏𝑟 )/Δ − ¤𝛼𝑟

(28)

where 𝜙𝑢 =
(
𝑚22𝑣𝑟 + 𝑚23𝑟

2 − 𝑑11𝑢
)
/𝑚11 , 𝜙𝑣 = −(𝑚11𝑢𝑟 + 𝑑22𝑣 + 𝑑23𝑟)/𝑚22 ,

𝜙𝑟 =
{ (
𝑚11𝑚22 − 𝑚2

22
)
𝑢𝑣 + (𝑚11𝑚23 − 𝑚22𝑚23) 𝑢𝑟 − 𝑚22 (𝑑33𝑟 + 𝑑32𝑣) + 𝑚23 (𝑑23𝑟 + 𝑑22𝑣)

}
/Δ ,Δ = 𝑚22𝑚33−

𝑚2
23, 𝑑𝑢 = Ξ𝑢/𝑚11 , 𝑑𝑣 = Ξ𝑣/𝑚22 , and 𝑑𝑟 = (−𝑚23Ξ𝑣 + 𝑚22Ξ𝑟 )/Δ . refFurthermore, 𝛾2 is given by

¤𝛾2 = cosh2𝛾2

( ∧
𝑊𝑇

𝑣 𝑆𝑣 (𝑍) + 𝜙𝑣 − 𝑙3𝑢𝑒 + 𝑙3𝑣𝑒 − 𝑙3𝑟𝑒

)
/𝛽2 (29)

By plugging the Equation (29) into the Equation (28), we can get

¤𝑢𝑒 = 𝜙𝑢 + 𝑑𝑢 +𝑄 (𝜏𝑢)/𝑚11 − ¤𝛼𝑢

¤𝑣𝑒 = 𝑑𝑣 + 𝑙3𝑢𝑒 − 𝑙3𝑣𝑒 + 𝑙3𝑟𝑒 − 𝑊̂𝑇
𝑣 𝑆𝑣 (𝑍) − ¤𝛼𝑣

¤𝑟𝑒 = 𝜙𝑟 + 𝑑𝑟 + 𝑚22𝑄 (𝜏𝑟 )/Δ − ¤𝛼𝑟

(30)
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We define𝑊∗
𝑢
𝑇𝑆𝑢 (𝑍) + 𝜉1 = 𝑑𝑢 − ¤𝛼𝑢 ,𝑊∗

𝑣
𝑇𝑆𝑣 (𝑍) + 𝜉2 = 𝑑𝑣 − ¤𝛼𝑣 ,𝑊∗

𝑟
𝑇𝑆𝑟 (𝑍) + 𝜉3 = 𝑑𝑟 − ¤𝛼𝑟 , and the Equation

(30) can be rewritten as
¤𝑢𝑒 = 𝜙𝑢 +𝑄 (𝜏𝑢)/𝑚11 +𝑊∗

𝑢
𝑇𝑆𝑢 (𝑍) + 𝜉1

¤𝑣𝑒 = 𝑙3𝑢𝑒 − 𝑙3𝑣𝑒 + 𝑙3𝑟𝑒 − 𝑊̃𝑇
𝑣 𝑆𝑣 (𝑍) + 𝜉2

¤𝑟𝑒 = 𝜙𝑟 + 𝑚22𝑄 (𝜏𝑟 )/Δ +𝑊∗
𝑟
𝑇𝑆𝑟 (𝑍) + 𝜉3

(31)

where 𝑍 =
[
𝑢 𝑣 𝑟 𝛼𝑢 𝛼𝑣 𝛼𝑟 𝑒∗1 𝑒∗2 𝑒∗3

]𝑇 is the input vector of the neural network. Select the
Lyapunov function

𝑉2 =
1
2

(
𝑢2
𝑒 + 𝑣2

𝑒 + 𝑟2
𝑒

)
+ 1

2Γ𝑢
𝑊̃𝑇

𝑢 𝑊̃𝑢 +
1

2Γ𝑣
𝑊̃𝑇

𝑣 𝑊̃𝑣 +
1

2Γ𝑟
𝑊̃𝑇

𝑟 𝑊̃𝑟 (32)

With the help of Equation (32), derivation of Equation (33) concerning time can be obtained as

¤𝑉2 = 𝑢𝑒 ¤𝑢𝑒 + 𝑣𝑒 ¤𝑣𝑒 + 𝑟𝑒 ¤𝑟𝑒 +
1
Γ𝑢

𝑊̃𝑇
𝑢
¤̂𝑊𝑢 +

1
Γ𝑣

𝑊̃𝑇
𝑣
¤̂𝑊𝑣 +

1
Γ𝑟

𝑊̃𝑇
𝑟
¤̂𝑊𝑟

= 𝑢𝑒

(
𝜙𝑢 + (𝜏𝑢 + 𝜁𝑢)/𝑚11 +𝑊∗

𝑢
𝑇𝑆𝑢 (𝑍) + 𝜉1

)
+ 𝑣𝑒

(
𝑙3𝑢𝑒 − 𝑙3𝑣𝑒 + 𝑙3𝑟𝑒 − 𝑊̃𝑇

𝑣 𝑆𝑣 (𝑍) + 𝜉2

)
+ 𝑟𝑒

(
𝜙𝑟 + 𝑚22 (𝜏𝑟 + 𝜁𝑟 )/Δ +𝑊∗

𝑟
𝑇𝑆𝑟 (𝑍) + 𝜉3

)
+ 1
Γ𝑢

𝑊̃𝑇
𝑢
¤̂𝑊𝑢 +

1
Γ𝑣

𝑊̃𝑇
𝑣
¤̂𝑊𝑣 +

1
Γ𝑟

𝑊̃𝑇
𝑟
¤̂𝑊𝑟

(33)

Design an auxiliary control signal generator as{
𝛾1 = 𝑘1𝑢𝑒 + 𝜙𝑢 + 𝑊̂𝑇

𝑢 𝑆𝑢 (𝑍) + 𝑙3𝑢𝑒 + 𝑙3𝑣𝑒

𝛾3 = 𝑘3𝑟𝑒 + 𝜙𝑟 + 𝑊̂𝑇
𝑟 𝑆𝑟 (𝑍) + 𝑙3𝑣𝑒 + 𝑙3𝑟𝑒

(34)

where 𝑘1 and 𝑘3 are the controller gains of the speed subsystem. Compensating for quantization errors, 𝑢𝑒𝛾𝑢
and 𝑟𝑒𝛾𝑟 are added to Equation (34), and then 𝑢𝑒𝛾𝑢 and 𝑟𝑒𝛾𝑟 are subtracted. Then, Equation (34) can be
rewritten as

¤𝑉2 =
(
(𝜁𝑢 + 𝜏𝑢)/𝑚11 + 𝜙𝑢 +𝑊∗

𝑢
𝑇𝑆𝑢 (𝑍) + 𝜉1

)
𝑢𝑒 + 𝛾𝑢𝑢𝑒 − 𝛾𝑢𝑢𝑒

+ 𝑣𝑒

(
𝑙3𝑢𝑒 − 𝑙3𝑣𝑒 + 𝑙3𝑟𝑒 − 𝑊̃𝑇

𝑣 𝑆𝑣 (𝑍) + 𝜉2

)
+
(
𝜙𝑟 + 𝑚22 (𝜁𝑟 + 𝜏𝑟 )/Δ +𝑊∗

𝑟
𝑇𝑆𝑟 (𝑍) + 𝜉3

)
𝑟𝑒 + 𝑟𝑒𝛾𝑟 − 𝑟𝑒𝛾𝑟

+ 1
Γ𝑢

𝑊̃𝑇
𝑢
¤̂𝑊𝑢 +

1
Γ𝑣

𝑊̃𝑇
𝑣
¤̂𝑊𝑣 +

1
Γ𝑟

𝑊̃𝑇
𝑟
¤̂𝑊𝑟

(35)

By substituting Equation (34) into Equation (35), we can get

¤𝑉2 = 𝑢𝑒𝛾𝑢 + 𝑢𝑒

(
(𝜏𝑢 + 𝜁𝑢)/𝑚11 − 𝑊̃𝑇

𝑢 𝑆𝑢 (𝑍) + 𝜉1 − 𝑙3𝑢𝑒 − 𝑘1𝑢𝑒

)
+ 𝑣𝑒

(
−𝑙3𝑣𝑒 − 𝑊̃𝑇

𝑣 𝑆𝑣 (𝑍) + 𝜉2

)
+ 𝑟𝑒𝛾𝑟 + 𝑟𝑒

(
𝑚22 (𝜏𝑟 + 𝜁𝑟 )/Δ − 𝑊̃𝑇

𝑟 𝑆𝑟 (𝑍) + 𝜉3 − 𝑙3𝑟𝑒 − 𝑘3𝑟𝑒

)
+ 𝑊̃𝑇

𝑢

(
𝑆𝑢 (𝑍) 𝑢𝑒 − 𝜗𝑢𝑊̂𝑢

)
+ 𝑊̃𝑇

𝑣

(
𝑆𝑣 (𝑍) 𝑣𝑒 − 𝜗𝑣𝑊̂𝑣

)
+ 𝑊̃𝑇

𝑟

(
𝑆𝑟 (𝑍) 𝑟𝑒 − 𝜗𝑟𝑊̂𝑟

)
= 𝑢𝑒𝛾𝑢 + 𝑢𝑒 (𝜏𝑢 + 𝜁𝑢)/𝑚11 + 𝑟𝑒𝛾𝑟 + 𝑟𝑒𝑚22 (𝜏𝑟 + 𝜁𝑟 )/Δ
− 𝑙3𝑢

2
𝑒 − 𝑘1𝑢

2
𝑒 − 𝑙3𝑣

2
𝑒 − 𝑙3𝑟

2
𝑒 − 𝑘3𝑟

2
𝑒 + 𝜉1𝑢𝑒 + 𝜉2𝑣𝑒 + 𝜉3𝑟

− 𝑊̃𝑇
𝑢 𝜗𝑢𝑊̂𝑢 − 𝑊̃𝑇

𝑣 𝜗𝑣𝑊̂𝑣 − 𝑊̃𝑇
𝑟 𝜗𝑟𝑊̂𝑟

(36)
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where 𝑊̃𝑖 = 𝑊∗
𝑖 − 𝑊̂𝑖 represents the weight estimation error. Design practical control method and weight

adaptive law as

𝜏𝑢 = −
𝑚11𝑢𝑒𝛾

2
1

(1 − 𝛿1)
√
𝑢2
𝑒𝛾

2
1 + 𝛽2

1

𝜏𝑟 = −
Δ𝑟𝑒𝛾2

3

𝑚22 (1 − 𝛿3)
√
𝑟2
𝑒𝛾

2
3 + 𝛽2

3

¤̂𝑊 𝑖 = Γ𝑖
(
𝑖𝑒𝑆𝑖 (𝑍) − 𝜗𝑖𝑊̂𝑖

)
, 𝑖 = 𝑢, 𝑣, 𝑟

(37)

where 𝜗𝑖 > 0, 𝛽1, and 𝛽3 are the design parameters, and 𝛽1 > 0, 𝛽3 > 0. According to the Young’s inequality,
one has

𝜏𝑢 min |𝑢𝑒 | ≤
1
4
𝜏2
𝑢 min + 𝑢2

𝑒

𝜏𝑟 min |𝑟𝑒 | ≤
1
4
𝜏2
𝑟 min + 𝑟2

𝑒

(38)

where 0 < 𝛿1 < 1, 0 < 𝛿3 < 1, and 𝑢𝑒𝜏𝑢 < 0, 𝑟𝑒𝜏𝑟 < 0. According to Lemma 1, we can obtain

𝜁𝑢 ≤ 𝛿𝑖 |𝑢𝑒 | + 𝜏𝑢 min

𝜁𝑟 ≤ 𝛿𝑖 |𝑟𝑒 | + 𝜏𝑟 min
(39)

According to Equations (39) and (40), we can obtain

(𝜁𝑢 + 𝜏𝑢) 𝑢𝑒
𝑚11

=
𝜁𝑢𝑢𝑒
𝑚11

+ 𝜏𝑢𝑢𝑒
𝑚11

≤ |𝜏𝑢𝑢𝑒 | 𝛿1

𝑚11
+ 𝜏𝑢𝑢𝑒

𝑚11
+ 𝜏𝑢 min |𝑢𝑒 |

𝑚11

≤ (1 − 𝛿1) 𝑢𝑒𝜏𝑢
𝑚11

+ 𝑢2
𝑒

𝑚11
+
𝜏2
𝑢 min

4𝑚11

≤ − 𝑢2
𝑒𝛾

2
𝑢√

𝑢2
𝑒𝛾

2
𝑢 + 𝛽2

1

+ 𝑢2
𝑒

𝑚11
+
𝜏2
𝑢 min

4𝑚11

(40)

Consider

− 𝑢2
𝑒𝛾

2
𝑢√

𝑢2
𝑒𝛾

2
𝑢 + 𝛽2

1

≤ − (𝑢𝑒𝛾𝑢)2

|𝑢𝑒𝛾𝑢 | + 𝛽1
< −

(𝑢𝑒𝛾𝑢)2 + 𝛽2
1

|𝑢𝑒𝛾𝑢 | + 𝛽1
≤ 𝛽1 − 𝑢𝑒𝛾𝑢 (41)

Thus

(𝜁𝑢 + 𝜏𝑢) 𝑢𝑒
𝑚11

≤ 𝛽1 − 𝑢𝑒𝛾𝑒 +
𝑢2
𝑒

𝑚11
+
𝜏2
𝑢 min

4𝑚11
(42)

Similarly, there are

𝑚22𝑟𝑒 (𝜏𝑟 + 𝜁𝑟 )
Δ

≤ 𝛽3 − 𝑟𝑒𝛾𝑟 +
𝑚22𝑟

2
𝑒

Δ
+
𝑚22𝜏

2
𝑟 min

4Δ
(43)
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Substituting Equations (42) and (43) into Equation (36), we have

¤𝑉2 ≤ 𝑢𝑒𝛾𝑢 + 𝛽1 − 𝑢𝑒𝛾𝑢 +
𝑢2
𝑒

𝑚11
+
𝜏2
𝑢 min

4𝑚11

+ 𝑟𝑒𝛾𝑟 + 𝛽3 − 𝑟𝑒𝛾𝑟 +
𝑚22𝑟

2
𝑒

Δ
+
𝑚22𝜏

2
𝑟 min

4Δ
− 𝑙3𝑢

2
𝑒 − 𝑘1𝑢

2
𝑒 − 𝑙3𝑣

2
𝑒 − 𝑙3𝑟

2
𝑒 − 𝑘3𝑟

2
𝑒 + 𝜉1𝑢𝑒 + 𝜉2𝑣𝑒 + 𝜉3𝑟

− 𝑊̃𝑇
𝑢 𝜗𝑢𝑊̂𝑢 − 𝑊̃𝑇

𝑣 𝜗𝑣𝑊̂𝑣 − 𝑊̃𝑇
𝑟 𝜗𝑟𝑊̂𝑟

= −
(
− 1
𝑚11

+ 𝑙3 + 𝑘1

)
𝑢2
𝑒 − 𝑙3𝑣

2
𝑒 −

(
−𝑚22

Δ
+ 𝑙3 + 𝑘3

)
𝑟2
𝑒

+ 𝜉1𝑢𝑒 + 𝜉2𝑣𝑒 + 𝜉3𝑟 + 𝛽1 +
𝜏2
𝑢 min

4𝑚11
+ 𝛽3 +

𝑚22𝜏
2
𝑟 min

4Δ
− 𝑊̃𝑇

𝑢 𝜗𝑢𝑊̂𝑢 − 𝑊̃𝑇
𝑣 𝜗𝑣𝑊̂𝑣 − 𝑊̃𝑇

𝑟 𝜗𝑟𝑊̂𝑟

(44)

Consider
𝜉1𝑢𝑒 ≤

1
2

(
𝑢2
𝑒 + 𝜉2

1

)
𝜉2𝑣𝑒 ≤

1
2

(
𝑣2
𝑒 + 𝜉2

2

)
𝜉3𝑟𝑒 ≤

1
2

(
𝑟2
𝑒 + 𝜉2

3

) (45)

and
− 𝑊̃𝑇

𝑖 𝜗𝑖𝑊̂𝑖 = −𝑊̃𝑇
𝑖 𝜗𝑖

(
𝑊̃𝑖 +𝑊∗

𝑖

)
≤ −𝑊̃𝑇

𝑖 𝜗𝑖𝑊̃𝑖 +
𝜗𝑖
2
𝑊̃𝑇

𝑖 𝑊̃𝑖 +
𝜗𝑖
2


𝑊∗

𝑖



2

≤ −𝜗𝑖
2
𝑊̃𝑇

𝑖 𝑊̃𝑖 +
𝜗𝑖
2


𝑊∗

𝑖



2

≤ −𝜗𝑖
2
𝑊̃𝑇

𝑖 𝑊̃𝑖 +
𝜗𝑖
2
𝑊2

𝑖

(46)

Substituting Equations (45) and (46) into ¤𝑉2, we have

¤𝑉2 ≤ −
(
− 1
𝑚11

+ 𝑙3 + 𝑘1 −
1
2

)
𝑢2
𝑒 − 𝑙3 −

1
2
𝑣2
𝑒 −

(
−𝑚22

Δ
+ 𝑙3 + 𝑘3 −

1
2

)
𝑟2
𝑒

+
𝜉2

1
2

+
𝜉2

2
2

+
𝜉2

3
2

+ 𝛽1 +
𝜏2
𝑢 min

4𝑚11
+ 𝛽3 +

𝑚22𝜏
2
𝑟 min

4Δ

− 𝜗𝑢
2
𝑊̃𝑇

𝑢 𝑊̃𝑢 −
𝜗𝑣
2
𝑊̃𝑇

𝑣 𝑊̃𝑣 −
𝜗𝑟
2
𝑊̃𝑇

𝑟 𝑊̃𝑟 +
𝜗𝑢
2
𝑊2

𝑢 + 𝜗𝑣
2
𝑊2

𝑣 + 𝜗𝑟
2
𝑊2

𝑟

(47)

Substituting Equations (27) and (47) into Equation (21) yields:

¤𝑉 ≤ −2 (𝑙1 − 1) 𝑒∗1
2 − 2 (𝑙1 − 1) 𝑒∗2

2 − 2 (𝑙2 − 1) 𝑒∗3
2

−
(
− 1
𝑚11

+ 𝑙3 + 𝑘1 −
5
2

)
𝑢2
𝑒 − 𝑙3 −

5
2
𝑣2
𝑒 −

(
−𝑚22

Δ
+ 𝑙3 + 𝑘3 −

5
2

)
𝑟2
𝑒

+
𝜉2

1
2

+
𝜉2

2
2

+
𝜉2

3
2

+ 𝛽1 +
𝜏2
𝑢 min

4𝑚11
+ 𝛽3 +

𝑚22𝜏
2
𝑟 min

4Δ
+

3∑
𝑖=1

𝜄2𝑖

− 𝜗𝑢
2
𝑊̃𝑇

𝑢 𝑊̃𝑢 −
𝜗𝑣
2
𝑊̃𝑇

𝑣 𝑊̃𝑣 −
𝜗𝑟
2
𝑊̃𝑇

𝑟 𝑊̃𝑟 +
𝜗𝑢
2
𝑊2

𝑢 + 𝜗𝑣
2
𝑊2

𝑣 + 𝜗𝑟
2
𝑊2

𝑟

≤ −𝜇𝑉 + 𝐶

(48)
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where

𝜇 = min
(

1
𝑚11

,
𝑚22

Δ
, 𝑘1, 𝑘3, 𝑙3,

𝜁𝑖
2
, 𝜗𝑢, 𝜗𝑣 , 𝜗𝑟

)
𝐶 =

𝜉2
1
2

+
𝜉2

2
2

+
𝜉2

3
2

+ 𝛽1 +
𝜏2
𝑢 min

4𝑚11
+ 𝛽3 +

𝑚22𝜏
2
𝑟 min

4Δ
+ 𝜗𝑢

2
𝑊2

𝑢 + 𝜗𝑣
2
𝑊2

𝑣 + 𝜗𝑟
2
𝑊2

𝑟 +
3∑
𝑖=1

𝜄2𝑖

(49)

And then, Equation (47) can be transformed as

𝑉 (𝑡) ≤
(
−𝐶
𝜇
+𝑉 (0)

)
𝑒−𝜇𝑡 + 𝐶

𝜇
(50)

where 𝑉2 (𝑡) converges when the center of the sphere with radius 𝐶
𝜇 is in the sphere domain of the origin; that

is, 𝑉2 (𝑡) is uniformly and finally bounded. Equation (48) indicates that signals 𝑢𝑒 , 𝑣𝑒 , 𝑟𝑒 , 𝑊̃𝑢 , 𝑊̃𝑣 and 𝑊̃𝑟 in
the system are uniformly and ultimately bounded, and then from Equation (32) to Equation (48), the position
tracking error 𝑒∗𝑖 (𝑖 = 1, 2, 3) of the surface unmanned ship is bounded, thus obtaining the consistent and
ultimately bounded property of all error signals in the tracking control closed-loop system of underactuated
unmanned surface ships.

4. SIMULATION ANALYSIS
To demonstrate the effectiveness of the control method proposed in this article, the underactuated unmanned
surface vessel in the literature [24] was used as the simulation object for verification. Relevant parameters of
underactuated unmanned surface ships are: 𝑚11 = 141.85, 𝑑11 = 𝑢2 · 10 + 67.26 |𝑢 | + 45.6, 𝑑22 = |𝑟 | · 15 +
|𝑣 | · 73.85 + 29.54, 𝑚33 = 15.6𝑑23 = |𝑟 | · 10.71 + |𝑣 | · 2 − 2.5, 𝑑32 = − |𝑟 | · 0.2 − |𝑣 | · 13 − 2.4, 𝑐13 =
−𝑟 · 5.7− 𝑣 · 191.75𝑑33 = − |𝑟 | · 0.07+ |𝑟 | · 10.71+ 5.59, 𝑐23 = 𝑢 · 141.85, 𝑚22 = 191.75, 𝑐31 = 𝑟 · 5.7+ 𝑣 · 191.75,
and 𝑐32 = −𝑢 · 141.85. The forces and moments generated by unknown environmental disturbances are:
𝑑1 = 104 ·cos (0.5𝑡)+104 ·sin (0.3𝑡), 𝑑2 = 102 ·cos (0.4𝑡)+102 ·sin (0.2𝑡), and 𝑑3 = 105 ·cos (0.2𝑡)+105 ·sin (0.5𝑡).
The uncertainty of themodel can be set toΔ (𝜂, 𝑣) =

[
0.6, 0.2𝑢2, sin (𝑣) + 0.15𝑟2]𝑇 . Set the expected trajectory

to 𝑢𝑑 = 0.6, 𝑣𝑑 = 0𝑟𝑑 = 00 ≤ 𝑡 < 110; 𝑢𝑑 = 0.6, 𝑣𝑑 = 0, 𝑟𝑑 = −0.006 sin (𝜋 (𝑡 − 100) /500) 𝑡 ≥ 110. Select
the initial state of the unmanned surface ship as𝜂0 = (2,−3, 0)𝑇 , 𝑣0 = (0, 0, 0)𝑇 . The control parameter is
𝑙1 = 1, 𝑙2 = 2, 𝑙3 = 1, 𝑘1 = 3, 𝑘2 = 5, 𝑘3 = 10, 𝜗𝑢 = 1 × 10−8, 𝜗𝑣 = 1 × 10−5, 𝜗𝑟 = 1 × 10−7, Γ1 = 1 × 105,
Γ2 = 1 × 104, Γ3 = 1 × 103. In this paper, neural networks are used to approximate external environmental
disturbances and model uncertainties, with a hidden layer node count of 39. The center points are evenly
distributed over [-16,16], and the width of the Gaussian basis function is 𝜎1 = 0.7 × 10−8, 𝜎3 = 1.5 × 10−7.
The initial value of the estimated weight is 𝑊̂𝑖 = [0, 0, . . . , 0]𝑇 , 𝑖 = 𝑢, 𝑟. Predefined bounded functions are set
to 𝜌1 = (18 − 2) 𝑒−0.05𝑡 + 2, 𝜌2 = (18 − 2) 𝑒−0.05𝑡 + 2, 𝜌3 =

(
3 − 𝜋

6
)
𝑒−0.05𝑡 + 𝜋

6 . The parameter selection for the
quantizer is 𝜎𝑢 = 0.3, 𝜎𝑣 = 0.15, 𝜏𝑢 min = 0.003, 𝜏𝑟 min = 0.002. The results of simulation verification are shown
in Figures 1-7.

Figure 1 displays that the unmanned surface ship tracks the linear and curved reference trajectories in the
case of unknown interference from the external environment and uncertainties in the model. The course of
the unmanned surface ship changes from time to time when tracking the curve reference trajectories. Figures
2-4 demonstrate the tracking errors of the position and yaw angle of the underactuated unmanned surface
ship. It can be seen that the position tracking error and yaw angle tracking error both meet preset constraints,
and the tracking error of traditional Proportional-Integral (PI) controllers will violate the preset constraints.
The tracking error of the controller will converge to approximately zero. Figures 5 and 6 exhibit the transformation
from continuous signals to discrete signals of longitudinal control force and yawing control torque of an under-
actuated unmanned surface ship. The theorem of asymptotic convergence of quantization error is shown in
the actual simulated relationship between 𝜏𝑢 , 𝜏𝑟 and 𝑄 (𝜏𝑢), 𝑄 (𝜏𝑟 ). This is the key to ensuring the stability of
quantitative control. Figure 7 illustrates the neural weight norm.
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Figure 1. Trajectory tracking curve.
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Figure 2. Trajectory tracking error of 𝑋.

Tables 1 and 2 show the control effects of the control methods proposed in this paper and those in other
literature. By analyzing simulation results, it can be seen that the controller designed in this article has a good
tracking performance when considering both preset performance and input quantization.
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Figure 3. Trajectory tracking error of 𝑌 .
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Figure 4. Trajectory tracking error of 𝜓.

Tracking error

Table 1. Numerical calculations were performed on the tracking error of the controller

Time
5 s 10 s 20 s

𝑥𝑒 (m) 5.32 3.10 0.85
𝑦𝑒 (m) 6.42 4.58 1.17
𝜓𝑒 (rad) 0.84 0.65 0.42
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5. CONCLUSIONS
This article solves the trajectory tracking control problem of unmanned surface vessels by combining neural
network technology, backstepping technology, and nonlinear mapping methods. In the design process of
the controller, we simultaneously considered input quantization, constraints on preset performance, and the
dynamic model of the real situation. The simulation results demonstrate the effectiveness of this method. In
reality, there are problems such as input saturation and actuator failures, and the control method proposed in
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Figure 7. Neural network norm.

Table 2. Numerical calculations were performed on the tracking error of the controller [26]

𝑥𝑒 (m) 5.47 3.77 1.85
𝑦𝑒 (m) 6.81 5.23 2.04
𝜓𝑒 (rad) 0.92 0.74 0.51

this article currently cannot solve them. At present, fault-tolerant control [27–29] has a good effect on actuator
faults in nonlinear systems. Therefore, further research will be conducted on how to utilize the robustness
and learning ability of this method to address complex control problems such as control input saturation and
partial actuator failures in underactuated surface unmanned systems.
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