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The advent of flexible and wearable electronic devices heralds a transformative era in consumer electronics 
and personalized health monitoring. As these devices become increasingly integrated into our daily lives, 
there is a pressing need for the development of energy storage or conversion systems with the merits of high 
performance, small size, and adaptability to frequent deformation during usage. Among these power 
sources (such as batteries, supercapacitors, fuel cells, and solar cells)[1,2], batteries, with lithium-ion batteries 
being a prime example, have been known for several decades as devices that convert stored chemical energy 
directly into electricity[3,4]. To date, they are among the most widely used power supplies for electronic 
devices and have become an integral part of modern electronics. However, for the booming smart textiles, 
integrating batteries into textiles remains a critical challenge. Traditional rigid batteries are rigid and unsafe; 
they are not suitable for the inherently soft and flexible nature of smart textile technology[5].

Fiber lithium-ion batteries (FLBs) stand out for their unique benefits, particularly in the context of wearable 
technology and energy textiles. Their compatibility with the textile industry is a key advantage, as they can 
be seamlessly integrated into fabrics as functional yarns, enhancing the versatility of energy textiles. 
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Additionally, these batteries offer improved air permeability compared to conventional planar batteries, 
which are often impermeable and resemble leather. This feature addresses a significant limitation in current 
battery design. Furthermore, the inherent flexibility and miniaturization potential of fiber-shaped batteries 
enable the creation of diverse, flexible power sources that can be tailored to various applications, providing 
unmatched adaptability and innovation potential in the field of energy storage. Through an optimized 
scalable industrial process, meters of FLBs have been produced in a continuous way[6]. From the perspective 
of practical application, there are still great requirements and challenges for batteries, which mainly include: 
(1) the difficulty in controlling the flexibility to ensure wear comfort while achieving stable electrochemical 
properties, especially during battery deformation; (2) and increased safety hazard, as these devices are 
subjected to more frequent dynamic deformation during use, raising the possibility of mechanical damage.

To enhance the safety profile and facilitate practical deployment of FLBs, researchers have explored the use 
of gel electrolytes as a substitute for traditional liquid electrolytes[5,7-10]. However, this substitution has been 
met with challenges. With an absence of chemical bonding to current collectors, gel electrolytes exhibit 
limited infiltration into the electrode materials, which leads to a suboptimal gel electrolyte-electrode 
interface. This issue significantly impacts the energy density of FLBs, often resulting in values well below the 
desired threshold, typically less than 10 Wh·kg-1.

The challenge for achieving reliable electrochemical performance lies in the inconsistent interface contact 
between the polymer gel electrolytes and the fiber electrodes, particularly under dynamic deformation. To 
address these challenging issues, building on their previous achievements on the assembly of FLBs[11-13], Lu 
et al. have recently unveiled an innovative design that introduces a channel structure within the electrodes. 
This design serves to effectively integrate polymer gel electrolytes, creating intimate and stable interfaces 
that are crucial for the development of high-performance batteries[14].

As shown in Figure 1, the small active particles are firstly deposited onto thin fiber current collectors and 
followed by larger ones, which results in the formation of a layered network of inner small and outer large 
channels among the particles. By rotating multiple cathode and anode fibers in conjunction with separators 
and introducing a monomer solution into these aligned and interconnected channels, robust and efficient 
gel electrolyte-electrode interfaces were produced after subsequent polymerization.

Such aligned channels have been shown to markedly expedite the permeation of electrolytes, a critical factor 
in optimizing energy storage device performance. Specifically, the internal micro-architecture, composed of 
smaller particles, adeptly facilitates electrolyte collection along the sinuous profiles of fibers, thereby 
diminishing interfacial impedance and hastening ion intercalation during high-rate discharge. In stark 
contrast, the larger particles on the exterior surface exhibit enhanced reversibility in the lithium-ion 
intercalation-deintercalation process. This characteristic is paramount for achieving elevated Coulombic 
efficiency and a notable increase in specific capacity, thereby reinforcing the role of particle size 
stratification in the advancement of electrochemical properties.

Concurrently, the larger particles on the outer layers enhance the battery’s Coulombic efficiency and 
contribute to a high specific capacity output. As a result, The FLBs showed a high energy density of up to 
about 128 Wh·kg-1 and maintained high capacity even under a high production rate of 3,600 m·h-1. It is also 
critical to highlight that, in addition to the impressive electrochemical properties, their devices also 
demonstrated great stability and safety under various test conditions. Owing to the stable electrolyte-
electrode interface, the FLB demonstrated remarkable flexibility and stability, withstanding an impressive 
100,000 bending cycles. It also exhibited resilience in extreme conditions, such as operating temperatures 
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Figure 1. (A) Schematic illustration; (B) cross-sectional SEM image and (C) EDS elemental mapping of an FLB. The Active particles and 
networked channels on the cathode and anode fiber surface can be observed[14]. Credit: Springer Nature. SEM: Scanning electron 
microscopy; EDS: energy-dispersive X-ray spectroscopy; FLB: fiber lithium-ion battery.

ranging from 0 to 80 °C, underwater environments, exposure to ultraviolet light, and even functioning in a 
vacuum at -0.08 MPa. These robust characteristics show a great performance improvement [Table 1], and 
indicate that FLBs possess considerable potential for a variety of demanding applications, including 
firefighting and space exploration.

In summary, this work by Lu et al. provides an unprecedented strategy for closely and stably interfacing 
polymer gel electrolytes with electrode fibers, offering advantages such as higher power and energy 
densities, improved productivity and significantly enhanced safety for FLBs[14]. Their groundbreaking 
discovery propels the field of wearable battery technology forward, which opens up new possibilities for 
flexible electronics, biomedical engineering, space exploration, and wearable technology, marking a 
significant stride in the evolution of portable and adaptable energy solutions.

Despite significant advancements in FLBs, further enhancement in battery performance, flexibility, and 
assembly remains crucial for various application fields, such as wearable medical equipment or aerospace 
flexible energy systems. Building on this foundation, several in-depth strategies for electrolyte improvement 
have been proposed and thoroughly discussed:

(1) High performance is fundamental for battery applications; thus, developing lightweight, and 
electrochemically superior active materials is vital.

(2) Fibers are the building blocks of textiles to provide a soft and comfortable feel. Despite this, fiber-shaped 
batteries often lack the softness of natural fibers, exhibiting a texture more similar to plastic threads.
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(3) Fabric is the key medium for FLB applications, yet seamlessly incorporating FLBs into breathable energy 
textiles presents a notable challenge under current technological constraints.
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