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Abstract
Aim: A significant medical diagnostic tool for monitoring cardiovascular health and function is 2D 
electrocardiograms. For computerized echocardiogram (echo) analysis, recognizing how this device performs is 
essential. This paper primarily focuses on detecting the transducer's viewpoint in cardiac echo videos using 
spatiotemporal data. It distinguishes between different viewpoints by monitoring the heart's function and rate 
throughout the cycle of heartbeats. Computer-aided diagnosis (CAD) examination sizes are the first steps toward 
computerized classification of cardiac imaging tests. Since clinical analysis frequently starts with automatic 
classification, the current view can enhance the detection of Cardiac Vascular Disease (CVD).

Methods: This research article uses a Machine Learning (ML) algorithm called the Integrated Metaheuristic 
Technique (IMT), which is the Whale Optimization Algorithm with Weighted Support Vector Machine (WOA-
WSVM).
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Results: The parameters in the classification are optimized with the assistance of WOA, and the echo is classified 
using WSVM. The WOA-WSVM classifies the images effectively and achieves an accuracy of 98.4%.

Conclusion: The numerical analysis states that the WOA-WSVM technique outperforms the existing state-of-the-
art algorithms.

Keywords: Cardiac vascular disease, cardiac view, machine learning, classification, image processing, accuracy

INTRODUCTION
An echocardiogram (echo) is employed to identify cardiac-related disease using the motion of the wall, 
abnormalities, and cardiac region[1]. The ultrasound's benefits for blood flow studies enhance the 
comprehensiveness of the discussion. Ultrasound offers non-invasive and real-time imaging, enabling the 
assessment of dynamic blood flow (BF) patterns and velocities. Doppler ultrasound, a common technique, 
measures BF by detecting changes in sound wave frequency caused by moving blood cells. This enables 
clinicians to diagnose vascular conditions, including arterial stenosis, venous thrombosis, and arteriovenous 
malformations.

Additionally, ultrasound aids in monitoring BF dynamics during surgical procedures, contributing to 
improved patient outcomes and enhanced clinical decision making (CDM). echo depicts the cardiac 
movements and structure, providing functional and anatomical information about the heart. The echo 
examination requires manual intervention and evaluation[2,3]. For medical Imaging, the position of the 
transducer differs during an echo examination, capturing different anatomical heart sections. Medical image 
processing (MIP) studies offer various temporal and spatial characteristics[4]. echo often relies on the manual 
identification of key regions, particularly the left ventricle, which is assessed by experts for accurate 
interpretation[5].

Techniques for automated echo interpretation are becoming more user-friendly with advancements in 
computer vision (CV) for MIP[6]. Recent studies have focused on developing methods to automatically 
distinguish cardiac echo patterns for disease classification, leveraging existing cardiac knowledge. However, 
achieving precise cardiac evaluations remains challenging due to variations in cardiac anatomy under 
different transducer positions[7]. Understanding the specific transducer position and angle is crucial for 
standardizing the transducer motion during wall motion examination. Doppler gates must be accurately 
positioned for the visualization of valves[8,9]. Therefore, understanding the transducer angle is a critical initial 
step in interpreting cardiac echo videos[10].

This research addresses the issue of determining the transducer orientation from spatiotemporal data in 
cardiac echo videos. The necessity for computer-aided diagnosis (CAD) has motivated researchers to 
identify distinct views[11]. To give statistical reports summarizing potential diagnoses, the research is 
developing a numerically guided decision support system (DSS) for cardiologists, drawing on consensus 
decisions from other doctors who have examined patients with similar symptoms[12,13]. The central concept 
involves identifying comparable patients using underlying multimodal data, thereby achieving statistical 
DSS. The research employs the machine learning (ML) technique, using patient echocardiograms for 
training. Given the variability in cardiac appearances from different angles, prior knowledge of the cardiac 
anatomy is necessary for filtering and model selection during this analysis.
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Unlike previous methods, this research uses the heart functioning portrayed through a perspective as an 
additional trait to distinguish between views[14]. An active shape model is employed to depict shape and 
texture in an echo frame. After tracking an active shape model (ASM) through a heart cycle, the motion 
information is projected into the eigen-motion feature space of the viewpoint class for matching[15-20]. This 
research employs geometric and textural signs for localization rather than relying on delineating entire areas 
or their outlines to anchor view templates[21-25].

Population-based WOA can avoid local optima and get a globally optimal solution. Due to these benefits, 
WOA may be used without structural changes to solve different limited or unconstrained optimization 
issues in practical applications[26-30]. Support vector machines (SVM) perform comparatively well when there 
is a large class gap. SVM exploits memory well in large dimensional spaces, and WOA is integrated with 
WSVM to improve performance in more dimensions than samples. The cardiac views are effectively 
classified using this hybridized approach, where superiority is weighed using performance analysis[31-35].

Investigations using transthoracic echo are often conducted following a procedure that uses several probe 
positions to provide uniform heart images[36-40]. The morphophysiological descriptions must be accurate 
since they are the foundation for evaluating heart function. Since clinical analysis frequently starts with the 
current view, automated classification helps update workflow. Up to seven different cardiac images are 
predicted using classification models developed using convolutional neural networks (CNNs) and 
AlexNet[41-45].

The field of echocardiography is essential in cardiology. However, human interpretation has several limits. 
Deep learning (DL) is an emerging method for analyzing MIP, yet its application in image analysis remains 
limited due to the complexities of learning. CNN annotate various aspects of echo images[46-50]. This strategy 
will affect the classification performance since the training process is efficient and the best feature selection 
(FS) is not used. The features are optimized using the optimization approach, which improves classification 
performance.

An approach for determining features that use the histogram focused on the gradients of the medical image 
is the scale-invariant features technique (SIFT) and pyramid matching kernel (PMK). This method has been 
determined to work well for medical data[51-55]. The ML boosting approach, which combines local-global 
features with multi-object feature identification, effectively achieves classification. The views are created 
using the spatial region's layout according to the template. The echo video's frames and end-diastolic are 
used to classify the views.

The back propagation neural network (BPNN) with SVM classifies the medical images. Statistical and 
histogram approaches are used to collect the features. Using the obtained features, the views of the images 
are classified. Texture and shape information are captured using the active shape model approach (ASMA). 
The collected data are monitored across many frames to extract data across the motion. The sequence fit is 
minimized at the classification stage, and the data are focused by developing a minimum change in the 
Eigenspaces[56-58]. ASMA defines the form gained during the time-consuming training phase. According to 
the literature, cardiac view classification involves efficient FS to reduce the dimension and classification to 
obtain the outcome successfully. The whale optimization (WO) technique attains the size for exploration 
and exploitation[59,60].

The work discussed here aimed to provide completely automated, reliable, real-time view detection 
techniques that use WOA-WSVM, making it easier for medical practitioners to develop these methods from 
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a clinical perspective[61-65]. Additionally, the research investigated the possibility of using these techniques for 
automatic 2D view extraction and orientation guidance to locate the best views in 2D Ultrasound images.

The following are the contributions of this research in comparison to earlier research:

(a) Significantly more patient data than before have been annotated and trained, and extensive patient-
based cross-validation and testing have been done to ensure fair results where the existing technique uses 
one or two videos to retrieve the frames.

(b) Consideration of up to six of the most common cardiac views: Sub-costal view (SCV), short axis view 
(SAV), mid-esophageal view (MEV), Long axis view (LAV), apical two chamber view (A2CV), and apical 
four chamber view (A4CV).

(c) Two general classifications and the proposed technique participate in classification analysis. The 
classification technique, in comparison, is based on recent work in the field and is practical and accurate.

The remainder of the paper is organized as follows: the overview of cardiac disease and the impact of view 
detection, motivation, contribution, and the analysis of literary works are detailed in Section 
"INTRODUCTION", the pre-processing and classification process is elucidated in Section "METHODS", the 
overall result and discussion are illustrated in Section "RESULTS", and the research is concluded with a 
future recommendation in Section "DISCUSSION".

METHODS
Cardiac view classification
The classification of echo images is clarified in this section. An efficient classification approach is used to 
evaluate the heart’s functioning. This method removes discarded and noisy information using noise 
reduction techniques. Redundant data are disregarded using the MF. The pre-processing and classification 
are detailed in this section. The process of the proposed technique is shown in Figure 1.

Pre-processing
Median filtering (MF) is a nonlinear spatial technique that removes image noise. It is an efficient filtering 
technique widely applied to remove the salt and pepper noise in the images. It reduces noise in smooth 
zones and is a type of smoothing method. The averaging filter in this filtering process removes noise with 
the least amount of edge blur. In MF, each pixel of an image is replaced with the median value of 
neighboring pixels, including itself. The window size is defined as an odd number of entries (i.e., 3 × 3, 5 × 5, 
7 × 7, 9 × 9) so that the median can be computed readily. The pixel values are set in ascending order, and the 
median value is identified. A median of series (1, 3, 4, 5, 6, 8, 17, 21, 31 = 6), the center value 1 is replaced by 
the median value 6. This process is constant until all the pixels are changed. Algorithm 1 provides the 
pseudocode for MF.

Classification
The WOA technique imitates humpback whales' bubble net hunting method. The three components of the 
hunting strategy are prey encirclement, exploitation, and exploration. In the current best solution, the target 
prey is selected from the candidates, and updating is started toward the best search agent once it has been 
started. The equations are defined in Eqs. (1) and (2) to represent the process quantitatively.
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where  indicates the coefficient vectors, the iteration is specified by “t”, and the optimized value 
acquired from the solution space is C* along the position vector of . The solution is updated once it 
identifies the best solution for every iteration. The vector values are determined by the following Eqs. (3) 
and (4):

The value of  Vector is decreased linearly from the value 2 to 0, and the random value is indicated by  
within the duration of [0, 1] in the exploitation and exploration phases. The updating process by spiraling 
and shrinking the encircling occurred due to the behavior of the bubble net. The mechanism is Eq. (5).

where the distance between the optimal solution and its space is indicated as , the random 
number and constant are indicated as l and b, respectively, which lies in the period of [-1, 1].

In contrast to the exploitation process, search agents are selected randomly, and the locations are updated 
during the exploration phase. Eqs. (6) and (7) permit the global search procedure.

where the random whale from the current population is indicated by .

Weighted Support Vector Machine (WSVM), a supervised classification method, uses a kernel function to 
transfer indivisible information to separable information through a high-dimensional mapping process[66,67]. 
The hyperplane in the WSVM defines a buffer between the maximum classes. By including the data points 
in the classification process, the values of the vectors that depend on the near hyperplane are indicated as 
support vectors. The RBF kernel function[68] is used and is stated in Eq. (8).

The accuracy value of the learning rate works as a fitness function, and its value ranges from [0, 1]. The 
predicted fitness value, given in Eq. (9), is then calculated by averaging the collected accuracy values.
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where the incidence of weight w in the iteration "t" is signified as ft(w,t), the fold in the process is signified as 
N, and Accywtk signifies acquired accuracy.

Allowing a distinct penalty parameter for every class of MIP is one method to address imbalanced classes 
and problems with classification involving MIP. For the decision boundary to give the minority classes 
greater weight, samples of every class are associated with numerous error values determined by class 
weights. Every sample's weight value is provided in Eq. (10).

where the weight of the class is shown using CWk for the sample "i" with the weight SWi. The class weights 
of different classes and each sample reflect the significance of weight optimization in SVM. The weight of 
the class is determined by Eq. (11).

where the count of the sample is indicated using Nk, and the class with the training sample is indicated using 
ψ.

The information is lost in most of the classes. The class weight assignment with the significant class in 
Eq. (12) addresses the issue.

This research offered a method to calculate sample weights using unlabeled data. The selection of the 
sample weights is crucial. The training samples found at the highest densities of the feature space are 
significantly more significant than those found near low densities. The reasons for this are: (a) High-density 
samples reflect the fundamental sample distribution; and (b) The classification process' overall accuracy is 
impacted more significantly by results on samples in high-density regions of the feature space than low-
density regions.

In the feature space, high-density samples have higher weights, and low-density regions have lower weights. 
The distribution of unlabeled samples determines each training sample's relevance. Optimized parameter 
retrieval by WSVM and classification procedures are the two main components of the proposed WOA-
WSVM approach for ultrasound image classification. The FS step receives the pre-processed images. The 
dictionary learning process is applied in the feature retrieval process. The relevant characteristics are 
grouped by the area of interest and used with the WOA-WSVM classifier to label several echo viewpoints. 
The WO-SVM classifier achieves complex findings in the feature space.

Along with the training samples and learning rate, the WOA-WSVM also includes several other parameters. 
The training procedure produces a lexicon used in the testing process[69]. Algorithm 2 provides the 
pseudocode for the classification method WO-SVM.
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Algorithm 1 for pseudocode for MF

Input: Echo Images

Output: Pre-processed Echo Image

Procedure:

Step 1. Initialize the input of ALL images

Step 2. Read the pixels from ALL images.

Step 3. Filter the image using the averaging filter.

Step 4. Select a 2-D window of size 3 × 3.

Step 5. Replace pixel values as 0’s or 255 s in the selected window.

Step 6. Eliminate noise pixels by replacing pixel values.

Step 7. Check the processing pixel as the noisy free pixel.

Step 8. Remove noise using medfilt2.

Step 9. Process all image pixels using steps 1-6.

Step 10. Obtained the enhanced output image

Step 11. End.

Algorithm 2 for WO-SVM technique for classification
Input: The incidence of whales in the search agent is N, and Max_itr denotes the count of the iteration 
Output: The optimized whale position C * and best fitness function f t (C *)

Step 1. Initialization

Step 2. Itert → 1, the position of whales (n) from the population (FS and SVM parameters)

Step 3. Evaluation of fitness of every whale in the search agent

Step 4. While (itert < Max_itr) Do

Step 5. For Each whale x Do.

Step 6. Update the position of the whale.

Step 7.

Step 8.

Step 9.

Step 10. End For

Step 11. Approximate the whale position (FS and SVM) of every individual whale:

Step 12. Estimating the fitness value of every whale in the search agent

Step 13.

Step 14. If solution space is best, Then

Step 15. itert + 1 → insert

Step 16. End While

Step 17. End If

Step 18. End

RESULTS
The research uses 600 cardiac ultrasound images, of which 35% are used in training and 65% in testing. The 
images are distributed equally for all 6 classes, 100 for each. The resolution of the image is 300 × 340 at 
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Figure 1. Overall Methodology of WOA-WSVM.

300 dpi. The experiment uses a Windows 11 OS with 8 GB of RAM, MATLAB R2022a, and a hard disc 
capacity of 500 GB.

Validation technique
K-fold cross-validation breaks data into k-equivalent sections. The k-1 sections are used in the ML 
technique's classification process for training, while the residual portions are used to evaluate the 
classification's effectiveness. K-fold cross-validation is used to assess performance metrics.

Analysis of classification of views and dataset description
The frames of the echo video are used to acquire images. The pre-processing and dictionary learning 
processes are discussed with depictions. The different views of the US image are discussed in this section.

The dataset comprises 113 echo video sequences, each captured at a resolution of 320 × 240 pixels and a 
frame rate of 25 Hz. The videos cover distinct viewpoints, including (a) SCV; (b) SAV; (c) MEV; (d) LAV; 
(e) A2CV; and (f) A4CV. The videos' Electrocardiogram (ECG) waveform facilitated the extraction of heart 
cycles synchronized at the R-wave peak. Manual labeling was conducted to categorize each video sequence 
into one of the eight specified views. The dataset includes variable videos and frames for each viewpoint, 
totaling 2,470 frames across all videos[70,71].

Figure 2A shows the input image, and Figure 2B shows how the MF removes the redundant noise in the 
image. The pre-processing of echo images enhances the image quality, preparing the image for further 
processing. The ultrasound image is separated into several blocks, each consisting of a collection of pixels, as 
shown in Figure 2C. In the learning phase, the dictionary-based learning process is done, and 35% of the 
dataset is used in the learning process. The learning process is transformed into a lexicon. The remaining 
images are observed as testing images when the training procedure is complete. The views of the tricuspid 
and mitral valves are correctly identified from the input images using the WSVM approach with whale 
optimization. Figure 3 depicts the outcome of the different cardiac views.

The ultrasound image of the heart is shown in Figure 3 from different angles. The input images classify the 
tricuspid and mitral valve views from the ultrasound image, and the several perspectives make it easier to 
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Figure 2. The input of Ultrasound image, (A) Input, (B) Pre-Processed, (C) Dictionary Learning.

retrieve numerous valves. Figure 3A-F depict the different views, namely the sub-costal view (SCV), short 
axis view (SAV), mid-esophageal view (MEV), long axis view (LAV), apical two chamber view (A2CV), and 
apical four chamber view (A4CV). These views are further classified with the WOA-WSVM, and the views 
help in the identification of cardiac-related issues.

Analysis of classification performance
The classification performance is compared using the novel WOA-WSVM approach and the existing CNN-
based echo view classification and AlexNet techniques. Performance evaluation uses measures of accuracy, 
precision, and recall. Accuracy refers to the percentage of correctly classified instances across all classes. 
Precision measures the percentage of correctly classified instances among all instances classified as a 
particular class, while recall measures the percentage of correctly classified instances of a particular class 
among all instances belonging to that class. The performance is given in Eqs. (13)-(15).

A comparison of the performance of existing and proposed techniques is given in Table 1.

The provided experimental findings from cross-validation using three different network topologies are 
assumed in Table 1, and validations are shown for each frame. The best score is exposed in bold.

The classification accuracy is given in Figure 4, where the comparison is made between the proposed WOA-
WSVM and existing techniques, namely AlexNet and CNN-based CVC. The accuracy of WOA-WSVM is 
2.1% and 1.2% higher than AlexNet and CNN-based CVC, respectively. The value of WOA-WSVM 
accuracy outperforms the existing state-of-the-art technique.

The precision is given in Figure 5, where the comparison is attained by the proposed WOA-WSVM and 
existing techniques, namely AlexNet and CNN-based CVC. The precision value is compared for different 
echo views: SCV, SAV, MEV, LAV, A2CV, and A4CV. The precision value of WOA-WSVM for the views 
SCV, SAV, MEV, LAV, A2CV, and A4CV is 11.3%, 4.7%, 2.6%, 6.3%, 2.3%, and 0.9% higher than AlexNet. 
The precision value of WOA-WSVM for the views SCV, SAV, MEV, LAV, A2CV, and A4CV is 1.7%, 2.2%, 
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Table 1. Comparison of performance

AlexNet CNN-Based CVC WOA-WSVM
Precision (%) Recall (%) Precision % Recall % Precision % Recall %

SCV 88.3 96.9 SCV 97.9 93.2 SCV 99.6 95.6

SAV 94.2 92.4 SAV 96.7 97.2 SAV 98.9 98.6

MEV 96.3 98.4 MEV 97.1 98.3 MEV 98.9 99.4

LAV 92.3 96.1 LAV 96.9 95.8 LAV 98.6 96.9

A2CV 94.8 96.3 A2CV 96.6 96.8 A2CV 97.1 97.9

A4CV 97.8 96.1 A4CV 97.8 97.7 A4CV 98.7 98.8

Overall accuracy (%) 96.3 Overall accuracy (%) 97.2 Overall accuracy (%) 98.4

Runtime (%) Runtime (%) Runtime (%)

GPU 20.1 GPU 10.8 GPU 3.5

CPU 18.3 CPU 20.5 CPU 7.6

1.8%, 1.7%, 0.35%, and 0.9% higher than CNN-based CVC. The precision value of WOA-WSVM 
outperforms the existing state-of-the-art technique.

The recall is given in Figure 6, where the comparison is attained by the proposed WOA-WSVM and 
existing techniques, namely AlexNet and CNN-based CVC. The recall value is compared for different echo 
views: SCV, SAV, MEV, LAV, A2CV, and A4CV. The recall value of WOA-WSVM for the views SCV, 
SAV, MEV, LAV, A2CV, and A4CV is 2.7%, 6.5%, 0.5%, 2.5%, 0.8%, and 2.6% higher than AlexNet. The 
recall value of WOA-WSVM for the views SCV, SAV, MEV, LAV, A2CV, and A4CV is 6.4%, 1.7%, 0.6%, 
2.8%, 0.3%, and 1% higher than CNN-based CVC. The recall value of WOA-WSVM outperforms the 
existing state-of-the-art technique.

Figure 7 compares the overall Graphic Processing Unit (GPU) and Central Processing Unit (CPU) times. 
The time is stated in milliseconds (ms), and the proposed approach, WOA-WSVM, outperforms the existing 
state-of-the-art techniques by achieving minimal time.

DISCUSSION
The proposed approach achieves a higher recall and precision rate. The accuracy of the WOA-WSVM is 
98.4%, which is higher than other approaches. It combines whale optimization with an ML classifier for 
parameter optimization, enhancing cardiac disease identification with minimal processing time 
(3.5 ms GPU, 7.6 ms CPU). The WHO is incorporated with an ML classifier to optimize the parameters in 
the testing and training phases. The WSVM can enhance the classification of diverse perspectives 
concerning echo motion and anatomical behavior. The WOA-WSVM attains 3.5 and 7.6 ms for GPU and 
CPU, which is comparatively minimal compared to existing techniques. The WOA-WSVM takes minimal 
time compared to other techniques, namely AlexNet[40] and CNN-based CVC[45]. The efficient identification 
of different views of the heart assists in identifying cardiac disease from different perspectives.

The comparison between AlexNet[40], CNN-Based CVC[45], and WOA-WSVM for various validation tasks 
highlights WOA-WSVM's superior performance. In terms of precision and recall, WOA-WSVM 
consistently outperforms the other methods across SCV, SAV, MEV, LAV, and A2CV tasks, indicating 
higher accuracy in identifying positive instances and minimizing false positives. Furthermore, WOA-
WSVM achieves the highest overall accuracy at 98.4%, compared to CNN-Based CVC's 97.2%[45] and 
AlexNet's 96.3%[40]. In terms of runtime efficiency, WOA-WSVM also excels, especially on GPU and CPU, 
making it the most effective and efficient technique among the three for the given tasks.
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Figure 3. Different views of echo images, (A) SCV, (B) SAV, (C) MEV, (D) LAV, (E) A2CV, (F) A4CV.



Page 12 of Canqui-Flores et al. Vessel Plus 2024;8:29 https://dx.doi.org/10.20517/2574-1209.2023.14017

Figure 4. Comparison of accuracy.

Figure 5. Comparison of precision.

Figure 6. Comparison of recall.
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Figure 7. Comparison of GPU and CPU.

The research does detail cross-validation and testing, and it also analyzes more patient information in order 
to ensure that its results are accurate. Based on current field research, the study compares two main 
classifications with the recommended approach, which is both accurate and feasible. Additionally, the 
research uses the WOA-WSVM-ML algorithm to determine the transducer perspective from cardiac echo 
videos. It aims to provide automated, reliable, and real-time view detection techniques, making them more 
accessible for medical practitioners. The study also explores the use of these techniques for automatic 2D 
view extraction and direction control to locate the best views in 2D Ultrasound images.

The limitations of the study include dependency on correct transducer positioning, complexity in viewpoint 
determination, reliance on robust algorithms, and potential inaccuracies despite high classification accuracy 
(98.4%) with WOA-WSVM.

The approach can be extended using mathematical modeling to enhance the classification when the dataset 
is huge. In the current research, SCV, SAV, MEV, LAV, A2CV, and A4CV views are considered, but future 
studies will consider more A2C, A3C, A4C, A5C, PLA, PSAB, PSAP, and PSAM views and relevant studies 
related to cardiac disease.

Conclusion
The classification of Echocardiogram (echo) views using different state-of-the-art techniques was examined 
in the research. Current findings for conventional 2D echocardiography were attained in this research work. 
The WOA-WSVM attained high accuracy for real-time inference with limited training parameters. While 
initial demonstrations were impressive, research demonstrates that 2D data are used to improve top-view 
guidance. Real-time quality control and direction from ultrasound images using 2D volume slices for 
training can improve outcomes. The proposed approach achieves excellent recall and accuracy rates. The 
WOA-WSVM achieves 98.4% accuracy, optimizing parameters with whale optimization, enhancing cardiac 
disease identification, and minimizing processing time to 3.5 ms (GPU) and 7.6 ms (CPU). The WOA is 
combined with an ML classifier to optimize the parameters in the training and testing phases. The Weighted 
SVM can improve the classification of different viewpoints about cardiac motion and anatomical behavior.
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