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Abstract
Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, 
proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in 
pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced 
depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic 
applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are 
being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic 
EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider 
acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators 
in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding 
of gut uptake and demonstration of in vivo effect are some important issues. This review aims to summarize the 
diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant 
knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the 
importance of addressing these gaps and limitations with technical advances such as rigorous omics has been 
discussed.
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INTRODUCTION
Probiotics are live microorganisms that confer beneficial effects on the host, typically by mediating changes 
to the gut and intestinal microbiota[1]. Over the last few decades, their popularity and consumption have 
surged due to reported benefits[2]. Additionally, probiotics have been shown to positively impact interactions 
within the gut-brain axis[3]. Changes in microbiota composition have also been associated with various 
diseases, including inflammatory bowel disease (IBD), obesity, and irritable bowel syndrome (IBS)[4-6]. 
However, there are conflicting reports on the clinical efficacy of supplemented probiotics based on the pre-
microbiota of patients[7], as well as in murine models of colitis[8]. To address these discrepancies, future 
research must further investigate the complex factors influencing individual responses, such as gut 
microbiota composition, diet, and age. Regardless, the implication of altered microbiota during disease 
progression has spurred interest in exploring the therapeutic potential of probiotic strains. Recent studies 
have demonstrated that the administration of specific probiotic species can elicit beneficial responses in 
models of colitis, IBS, and colorectal tumorigenesis[9-11]. Therefore, identifying the specific factors most 
responsible for these observed changes has become an area of intrigue. Given the importance of intercellular 
communication in maintaining microbiome symbiosis, probiotic extracellular vesicles (EVs) are thought to 
play a role in mediating these benefits[12]. The well-established role of EVs in intercellular communication 
and their reported benefits in complex disease models make them a promising area of study. Thus, recent 
investigations have expanded to explore the role of probiotic EVs in a wider range of functions by 
influencing the surrounding gut microbiota[13].

EVs have been generally defined as lipid bilayer structures that contain membrane proteins and a diverse 
range of cargo, including proteins, metabolites, DNA, and RNA[14]. Most EV subtypes range in size from 30 
nm to 10 µm and are typically classified based on distinct characteristics such as biogenesis, size, content, 
and cell of origin[15]. Gram-positive and Gram-negative bacteria release distinct types of EVs, generally 
smaller than 500 nm, termed membrane vesicles (MVs) and outer membrane vesicles (OMVs), 
respectively[16,17]. MVs consist of a lipid bilayer enclosing cytoplasmic material, while OMVs are enclosed by 
the outer membrane and, therefore, also contain periplasmic material in addition to cytoplasmic contents. 
Additionally, the overall surface and embedded membrane proteins are distinct between these two types of 
EVs[18]. Despite this, the mechanisms and regulation of EV biogenesis in bacteria remain poorly 
understood[19]. Consequently, the lack of reliable EV markers hinders thorough characterization in the 
bacterial EV field[20]. Notably, it has been observed that the DNA/RNA ratio in probiotic-derived EVs can 
vary significantly among different probiotic species[21]. Identifying bacterial EV markers will likely lead to 
improved purity and characterization, potentially enabling researchers to pinpoint specific subtypes 
responsible for particular effects. Therefore, in this review, the term “probiotic EVs” will be employed to 
refer to vesicles from various sources, given the current lack of complete understanding and 
characterization.

Although probiotic EVs are biochemically lipid bilayers encapsulating a diverse range of biomolecules, they 
may possess several unique attributes that distinguish them from other EVs. A recent study characterized 
EVs from Lactobacillus species, revealing an enrichment of proteins with a serine-rich motif[22]. 
Additionally, EVs secreted by Lactobacillus species were found to be rich in proteins and enzymes involved 
in metabolic processes such as gluconeogenesis, glycolysis, amino acid and carbohydrate metabolism[22-24]. 
This enrichment suggests that probiotic bacteria may employ EVs as conduits to convey systemic benefits or 
regulate pathophysiological processes. For instance, studies have shown that Lactobacillus species secrete 
EVs enriched with antimicrobials, proteases, and proteins p40 and p75, which have been identified as 
mediators of probiotic effects[22,25-27]. Further research could uncover additional properties of probiotic EVs 
that differentiate them from other EVs.
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THE PATHOPHYSIOLOGICAL ROLE OF PROBIOTIC EVS THROUGH INTER-KINGDOM 
AND SPECIES CROSSTALK
Probiotics have been shown to elicit a wide range of beneficial effects in various disease states, including 
cancer, IBS, and upper respiratory tract infections[28-30]. However, the underlying mechanisms of how 
probiotics mediate these effects remain poorly understood. Recently, EVs derived from probiotic strains 
have been implicated in important functional roles in pathophysiology [Figure 1]. Several studies have 
presented evidence that probiotic EVs laden with a variety of functional cargos may be responsible for 
initiating or mediating crucial signaling events that can alleviate disease conditions [Table 1].

The utility of probiotic EVs as potential antimicrobial and antiviral treatments
The current understanding that the administration of probiotic EVs can impart beneficial effects during 
disease has sparked interest in their potential role in cross-species and inter-kingdom communication. 
Recent research has highlighted the antimicrobial activity of EVs derived from probiotic sources[34-36,38]. 
Interestingly, it has been shown that EVs isolated from L. plantarum can reduce the levels of S. putrefaciens, 
a bacterium indicative of rotting fish[34]. Tuna fish stored with L. plantarum EVs had an increased shelf life 
and overall food quality[34]. In another recent study, the ability of bioengineered EVs from L. paracasei to 
target and restrict S. aureus growth was demonstrated, suggesting their utility as nano antibiotics[32]. These 
studies clearly highlight the potential of probiotic EVs in inter-kingdom communication. Thus, recent 
research has also attempted to explore the possible interactions between probiotic EVs and the host cells in 
various diseases and health conditions. For instance, L. plantarum EVs were able to modify host cell 
defenses, offering increased protection against antibiotic-resistant bacterial pathogens[33]. In this regard, a 
better understanding of probiotic EV cargo and the associated signaling with host cells may reveal avenues 
for improved treatment of various diseases. In the context of antiviral activity, one study exhibited that EVs 
originating from symbiotic vaginal Lactobacilli species had the ability to reduce human immunodeficiency 
virus-1 (HIV-1) infection[38]. Human vaginal and tonsillar tissues were infected with HIV-1 ex vivo and then 
treated with EVs derived from L. crispatus and L. gasseri strains. EV treatment provided protection against 
HIV-1 attachment and entry due to reduced exposure to envelope glycoprotein (Env), a viral envelope 
protein crucial for virus-host cell interaction.

The role of probiotic EVs in various disease states and the associated immunomodulatory effects
The immunomodulatory effects of probiotic EVs are their most well-characterized attribute so far 
[Figure 2]. Probiotic EVs from several bacterial genera, including Lactobacillus, Escherichia, and 
Bifidobacterium, have been associated with phenotypic changes in various immune cells[44,49,59]. EVs from L. 
plantarum promoted the differentiation of human leukemia monocytes toward an M2 phenotype, which is 
characterized by anti-inflammatory properties[44]. Moreover, probiotic EVs can also prime immune cells to 
mount a pro-inflammatory response in vitro. Dendritic cells treated with EVs derived from E. coli Nissle 
1917, a widely studied probiotic, exhibited changes in their miRNA profile[59]. As a result, dendritic cells 
produced more Th1-type cytokines important for managing pathogens. Evidently, probiotic EVs can 
communicate with and influence a wide range of immune cells, stimulating beneficial phenotypic changes 
[Figure 2]. However, there have been several studies where their role in mediating a direct phenotype in 
disease conditions such as ulcerative colitis and IBD has been reported [Table 1].

The intestinal epithelium provides a crucial physical barrier while allowing intestinal epithelial cells (IECs) 
to participate in crosstalk between the gut microbiota and systemic immune system[93]. There is growing 
evidence to support the beneficial role of probiotic EVs in modulating gut health by communicating with 
IECs [Table 1]. Several species of Lactobacilli have been shown to promote an anti-inflammatory intestinal 
phenotype in an ulcerative colitis mouse model[65,68,94], as well as reducing the expression of various pro-
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Table 1. Role of probiotic EVs in pathophysiology

Source of EVs Function observed Model Functional cargo Reference

Antimicrobial activity

Lactobacillus acidophilus Bacteriocin delivery and antimicrobial activity In vitro Not stated [26]

Bacteroides thetaiotaomicron, Enterobacter 
cloacae, Lactobacillus acidophilus

Altered EV cargo, biogenesis, size and quantity In vitro Not stated [31]

Lactobacillus paracasei PEGylated MoS2-ZnO containing EVs used as 
antimicrobial agents to restrict the growth of 
Staphylococcus aureus

In vitro Not stated [32]

Lactobacillus plantarum WCFS1 EVs promoted expression of host defense genes and 
inhibited growth of vancomycin-resistant Enterococcus 
faecium

In vivo Not stated [33]

Lactobacillus plantarum EVs reduced bacterial levels of Shewanella putrefaciens 
and maintained better food quality, increasing shelf life

Ex vivo Not stated [34]

Lactobacillus crispatus BC5, Lactobacillus 
gasseri BC12

Probiotic EVs maintained healthy vaginal homeostasis 
by supporting colonization of beneficial bacterial 
species and preventing attachment of opportunistic 
pathogens

In vitro Not stated [35]

Lactobacillus plantarum Probiotic EVs displayed protective effects in atopic 
dermatitis induced by Staphylococcus aureus EVs

In vivo Not stated [36]

Antiviral activity

Staphylococcus aureus, Gardnerella vaginalis, 
Enterococcus faecium, Enterococcus faecalis

EVs prevented HIV-1 infection in tissues ex vivo by 
preventing virus-cell receptor interaction

Ex vivo Not stated [37]

Lactobacillus crispatus BC3 and Lactobacillus
gasseri BC12

Probiotic EVs prevented HIV-1 infection in cervico-
vaginal and tonsillar tissues ex vivo

Ex vivo Not stated [38]

Immunomodulatory effects

Lactobacillus sakei subsp. sakei NBRC 15893 Enhanced IgA production in Peyer’s patch cells in 
response to membrane vesicles

In vivo Not stated [39,40]

Lactobacillus rhamnosus GG and
Lactobacillus reuteri DSM 17938

Lactobacilli MVs dampen pro-inflammatory cytokine 
responses in a monocyte-dependent manner.

In vitro Not stated [41]

Lactobacillus plantarum Regulation of pro and anti-inflammatory responses; 
innate and acquired. Enhanced IgA production in 
Peyer’s patch cells

In vitro N-acylated peptides 
from 
lipoprotein19180

[42]

Escherichia coli Nissle 1917 E. coli Nissle 1917 enhanced secretion levels of pro- and 
anti-inflammatory cytokines in monocyte-derived 
dendritic cells

In vitro Not stated [43]

Lactobacillus plantarum EVs promoted differentiation of human monocytic THP1 
cells toward an anti-inflammatory M2 phenotype

In vitro Not stated [44]

Lactobacillus reuteri BBC3 EVs maintained intestinal immune homeostasis against 
LPS-induced inflammatory responses

In vivo Not stated [45]

Lactobacillus casei EVs exhibited anti-inflammatory immunomodulatory 
effects in intestinal epithelial cells

In vitro Not stated [46]

Bifidobacterium longum, Clostridium 
butyricum, Lactobacillus plantarum WCFS1

EVs stimulated the innate immune system and 
exhibited adjuvant-like properties

In vitro Not stated [47]

Bifidobacterium longum and Lactobacillus
plantarum WCFS1

Immune cells produced pro-inflammatory cytokines in 
response to EVs

In vitro Not stated [48]

Lactobacillus strains (L. rhamnosus NutRes 1,
L. plantarum NutRes 8 and L. caseï CNCM 
I-1518) and Bifidobacterium strains (B. 
longum NutRes 266, B. breve NutRes 200 
and B. animalis DN173010)

Effect of EVs (TLR2 activity and phagocytosis ability) 
characterized on immune cells

In vitro Not stated [49]

Lactobacillus plantarum pH-based stimulation of bacterial cells led to secretion 
of EVs with enhanced anti-inflammatory properties

In vitro Not stated [50]

Lactobacillus johnsonii N6.2 EVs led to antibody and immune response generation In vivo Not stated [51]

Escherichia coli Nissle 1917 EVs caused RAW 264.7 macrophages to have 
increased phagocytosis, proliferation, and shifted their 
phenotype to more anti-inflammatory

In vitro Not stated [52]

Bifidobacterium longum EVs induced apoptosis of mast cells. IP injection of ESBP 
led to reduced diarrhea occurrence and abundance of 
mast cells

In vivo ESBP [53]
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Propionibacterium freudenreichii CIRM-BIA 
129

EVs exhibited anti-inflammatory effect by modulation of 
the NF-κB pathway in a dose-dependent manner, partly 
but not completely dependent on surface proteins

In vitro Not stated [54]

Leuconostoc mesenteroides, Latilactobacillus
curvatus, and Lactiplantibacillus plantarum

EVs exerted anti-inflammatory effects on microglial 
cells and macrophages

In vivo Not stated [55]

Escherichia coli Nissle 1917 NOD1 signaling activated by EVs in intestinal epithelial 
cells

In vitro Not stated [56]

Escherichia coli Nissle 1917 EV-treated macrophages exhibited anti-inflammatory 
effects and increased anti-bacterial activity

In vitro Not stated [52]

Lacticaseibacillus rhamnosus JB-1 EVs led to immunomodulatory effects in dendritic cells 
mediated by TLR2

In vitro Lipoteichoic acid [57]

Lactobacillus, Bifidobacterium, and
Lactococcus

Probiotic EV administration post hepatic surgery 
reduced adhesion molecule expression and immune cell 
invasion in liver and contributed to improved livery 
recovery

In vivo Not stated [58]

Escherichia coli Nissle 1917 EVs treatment led to an altered miRNA profile in 
dendritic cells

In vitro Not stated [59]

Bacillus amyloliquefaciens SC06 Probiotic EV-treated porcine intestinal epithelial cells 
shed EVs, which led to improved macrophage function

In vitro Not stated [60]

Gut health

Lactobacillus plantarum Q7 EVs induced a shift in the gut microbiota to a more anti-
inflammatory community, reduction of pro-
inflammatory cytokine expression in colon tissue, and 
alleviated DSS-induced colitis symptoms

In vivo Not stated [61]

Lactobacillus rhamnosus GG EVs modulate gut microbiota and attenuated 
inflammation and ulcerative colitis

In vivo Not stated [62]

Lactobacillus paracasei EV-mediated anti-inflammatory effects maintained gut 
health in response to LPS treatment and provided 
protection against ulcerative colitis

In vivo Not stated [63]

Clostridium butyricum EVs protected against DSS-induced colitis by regulating 
the repolarization of M2-macrophages and remodeling 
gut microbiota

In vivo Not stated [64]

Lactobacillus kefirgranum PRCC-1301 EVs exhibited anit-inflammatory effects by inhibiting 
the NF-κB pathway and improving intestinal barrier 
function

In vivo Not stated [65]

Lactobacillus kefir KCTC 3611, L.
kefiranofaciens KCTC 5075, and L.
kefirgranum KCTC 5086

EVs exhibited anti-inflammatory effects and alleviated 
IBD symptoms

In vivo Not stated [66]

Lactobacillus reuteri DSM-17938 EVs mediate gut motility effect In vivo Not stated [67]

Escherichia coli Nissle 1917 Modulation of intestinal tight junctions that were 
disrupted via enteropathogenic E. coli. Specifically, by 
maintaining important tight junction proteins and 
preventing F-actin disorganization

In vivo Not stated [68]

Clostridium butyricum EVs alleviated colitis symptoms, improved gut barrier 
integrity, and restored gut microbiota homeostasis

In vivo Not stated [69]

Escherichia coli Nissle 1917 EVs exhibited gut barrier protective effects in 
enteropathogenic E. coli-infected intestinal epithelial 
cells

In vitro Not stated [68]

Clostridium butyricum EVs demonstrated anti-inflammatory effects, alleviated 
bacterial dysbiosis, reduced abundance of pathogens, 
improved gut barrier integrity, and regulated 
metabolism of gut microbiota in colitis mice

In vivo Not stated [70]

Lactobacillus plantarum Engineered EVs loaded with fucoxanthin had beneficial 
effects in colitis mice as they polarized macrophages 
and alleviated colitis symptoms and bacterial dysbiosis

In vivo Not stated [71]

Cancer

Lactobacillus plantarum EVs restored chemosensitivity in 5-FU resistant 
colorectal cancer cells

In vitro Not stated [72]

Lactobacillus rhamnosus GG EVs inhibited growth of colorectal cancer cells In vitro Not stated [73]

Lactobacillus rhamnosus GG EVs inhibited hepatic cancer cell growth and induced 
apoptosis

In vitro Not stated [74]

EVs had an anti-tumor effect in vitro on colorectal
cancer cell proliferation, invasion and migration and

Lacticaseibacillus paracasei In vivo Not stated [75]
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promoted apoptosis in vitro and in vivo

Other diseases/pathophysiology

Akkermansia muciniphila Administration of A.muciniphila EVs decreased weight,
improved glucose tolerance, and enhanced tight
junction function in a HFD-induced mouse model. This
treatment also improved gut permeability in HFD mice

In vivo Not stated [76]

Akkermansia muciniphila A. muciniphila EVs prevented gut dysbiosis in a high-fat 
diet-induced mouse model. They also reduced the levels 
of pro-inflammatory cytokines in plasma, reduced food 
intake, and decreased the expression of genes involved 
in lipid metabolism and inflammation

In vivo Not stated [77]

Akkermansia muciniphila EVs ameliorated HFD-induced obesity, and improved 
the intestinal barrier integrity, inflammation, energy 
balance, and blood parameters

In vivo Not stated [78] 

Lactobacillus plantarum EVs inhibited neuron apoptosis and protected against 
ischemic brain injury

In vivo Not stated [79]

Lactobacillus plantarum, Akkermansia 
muciniphila, Bacillus subtilis

EV treatment led to anti-depressive effects and 
alleviated stress-induced depressive behavior in mice

In vivo Not stated [80]

Lactobacillus plantarum EVs displayed anti-depressant activity by rescuing 
reduced expression of BDNF and inhibited stress-
induced depressive-like behavior

In vivo Not stated [81]

Lactobacillus animalis EVs prevented the development of glucocorticoid-
induced ONFH

In vivo Not stated [82]

Lactobacillus reuteri No effect of EVs on osteoclastogenesis In vitro Not stated [83]

Lactobacillus druckerii EVs inhibited hypertrophic scar fibrosis In vivo Not stated [84]

Lactobacillus plantarum and Lactobacillus
casei

EVs from both species were coupled with 
microparticles; these bacteriomimetics were then 
embedded into a hydrogel mixture; the resulting 
combination improved wound healing

In vivo Not stated [85]

Lactobacillus plantarum EVs regulated extracellular matrix-related genes and 
suppressed wrinkle formation and pigmentation in 
women

In vivo Not stated [86]

Lactobacillus casei BL23 EGFR pathway stimulation by EVs In vitro P40 and P75 [87]

Akkermansia muciniphila EVs caused the regression of hepatic stellate cell 
activation in a liver injury mouse model. They also 
ameliorated levels of inflammatory cytokines, improved 
liver histopathological damages, and reduced the 
expression of fibrosis biomarkers

In vivo Not stated [88]

Akkermansia muciniphila Oral administration of A. muciniphila EVs improved 
intestinal integrity and anti-inflammatory responses in a 
mouse model of liver injury

In vivo Not stated [89]

Lactococcus lactis EVs exhibited an immunoregulatory effect on airway 
inflammation in allergic asthma by activating dendritic 
cells

In vivo Not stated [90]

Leuconostoc holzapfelii EVs promoted proliferation, migration and regulated cell 
cycle in human hair follicle dermal papilla cells

In vitro Not stated [91]

Akkermansia muciniphila and
Faecalibacterium prausnitzii

Treatment with EVs led to increased serotonin 
production in intestinal epithelial cells

In vitro Not stated [92]

The table summarizes the role of probiotic EVs in facilitating crossspecies and inter-kingdom communication by mediating complex signaling 
events in the host organism. The source of EVs, functional effect, and the experimental model in which the effect was studied have been specified. 
EVs: Extracellular vesicles; HIV-1: human immunodeficiency virus 1; IgA: immunoglobulin A; TRL2: toll-like receptor 2; NF-κβ: nuclear factor kappa 
β; DSS: dextran sodium sulfate; LPS: lipopolysaccharide; HFD: high-fat diet; ONFH: osteonecrosis of the femoral head; EGFR: epidermal growth 
factor receptor; HFD:high-fat diet.

inflammatory cytokines. Additionally, there have been studies suggesting that alterations to DNA amount 
and specific immunostimulatory oligodeoxynucleotides within probiotic EVs can contribute to stronger 
immune activation[21,95]. Furthermore, EVs from probiotic sources have demonstrated the ability to improve 
gut barrier function. One study has shown that following a loss of gut barrier integrity induced by E. coli, 
EVs derived from E. coli Nissle 1917 improved gut barrier function[68]. Comparatively, this reduced 



Sanwlani et al. Extracell Vesicles Circ Nucleic Acids 2024;5:609-626 https://dx.doi.org/10.20517/evcna.2024.39                                 Page 615

Figure 1. Implicated beneficial effects of probiotic extracellular vesicles in pathophysiological conditions. Schematic representation of the 
implicated roles that probiotic-derived EVs play in a plethora of pathophysiological processes. Several studies so far have demonstrated 
the potential of probiotic EVs in modulating the immune system and alleviating pathological conditions such as IBD, diabetes, and 
ulcerative colitis. The suggested health benefits of probiotic EVs range from improving gut health to inducing chemosensitivity and 
apoptosis in resistant cancer cells. Their role in several other diseases such as asthma, metabolic disorders including diabetes and 
obesity and their antimicrobial properties have been investigated in several studies. Table 1 provides a detailed summary of studies 
where the role of probiotic EVs in pathophysiology and disease alleviation has been suggested. IBD: Inflammatory bowel disease; EVs: 
extracellular vesicles; HIV: human immunodeficiency virus.

permeability was associated with maintaining ZO-1 at tight junctions and conserving occludin and claudin-
14 mRNA levels. Similarly, another study has revealed that L. kefirgranum EVs originating from kefir grain 
were able to conserve tight junctions and epithelial cell integrity[65]. Given this, the reported beneficial effects 
of probiotics EVs are not limited to solely immune modulation and gut health. Emerging evidence has 
demonstrated the ability of probiotic EVs to disturb detrimental signaling pathways involved in cancer, 
obesity, liver injury, and even depression[75,76,80,88]. A deeper understanding of the precise mechanisms and 
EV-associated proteins involved in pathogenic and host cell communication is required within the field of 
probiotic EVs. Furthermore, addressing the challenges and limitations surrounding probiotic EV 
application is paramount for quality future research. This improved knowledge may allow for therapeutic 
interventions in disease, potentially leading to prevention and/or improved treatment.

Findings in these preclinical studies present an exemplary case for the clinical utility of probiotic EVs in 
therapeutic applications. Several clinical studies recently have investigated the utility of pathogen-derived 
OMVs in designing vaccines against viral and bacterial infections[96]. Furthermore, there are clinical studies 
investigating the potential benefits of probiotics with promising preliminary outcomes[97-99]. However, to 
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Figure 2. Immune regulatory effects of probiotic EVs. Schematic diagram depicting the various immunomodulatory roles of probiotic 
EVs, including alteration to cytokine release, activation of immune cells, surface interactions, and changes to antibody production. 
Table 1 provides a comprehensive summary of the literature suggesting a functional role for probiotic EVs in the immune setting. EVs: 
Extracellular vesicles; IgA: immunoglobulin A; TRL: toll-like receptor; LPS: lipopolysaccharide; NF-κβ: nuclear factor kappa β.

date, there are no clinical studies investigating the role of probiotic extracellular vesicles in combating 
infectious or non-infectious diseases. There are several technical limitations and challenges leading to 
knowledge gaps that have hindered the clinical utility of probiotic EVs.

CHALLENGES AND LIMITATIONS TO EMPLOYING PROBIOTIC EVS IN CLINICAL 
APPLICATIONS
EVs secreted by probiotic and commensal microbiota and derived from dietary sources have been proposed 
to be mediators of cross-species and inter-kingdom communication[13,100,101]. Their ability to signal in 
complex pathophysiological events enables them to dictate phenotype in a range of health and disease 
conditions [Table 1]. Bovine milk extracellular vesicles (MEV) and probiotic EVs have previously been 
examined for their stability and resilience to withstand harsh, degrading gut conditions, assessing their oral 
bioavailability and were able to reach peripheral tissues[102-104]. They were reported to withstand boiling 
temperatures and acidification, supporting their role as vehicles that sequester bioactive cargo in its native, 
functional state upon exposure to extreme conditions[104]. Similarly, in other studies, it has been reported 
that regular industrial processing such as heat treatment could harm the integrity and molecular 
composition of MEVs. However, the extent of this damage is unclear as MEVs were recovered in high 
abundance from milk despite the harsh processing and their surface markers could still be detected upon 
molecular analysis[104-107]. Furthermore, EVs from dietary sources or gut bacteria have been speculated to 
cross the gut barrier through either transendocytosis or paracellular translocation, entering systemic 
circulation and reaching peripheral tissues[23,51,102,108-110]. Although the aforementioned evidence supports the 
function of probiotic EVs in pathophysiology, they are not entirely convincing as several knowledge gaps 
persist, serving as hindrances to the application of probiotic EVs in therapy [Figure 3][111,112]. Contradictory 
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Figure 3. Current challenges and technical limitations hindering the therapeutic utility of probiotic EVs. Schematic illustration to depict
challenges and limitations facing the utility of probiotic EVs in clinical applications. Several technical constraints such as EV cargo and
yield variations due to different isolation methods, the presence of secretory factors and contaminants in the preparation, and the use of
inappropriate preclinical models to study the effect and variation in phenotype based on the route of administration could prevent a
detailed understanding and widespread acceptance of the role of probiotic EVs in pathophysiology. Additionally, current technical
limitations prevent a better understanding of the EV cargo component responsible for the observed phenotypes. The annotated
bibliography is shown in the Supplementary Materials. EVs: Extracellular vesicles.

findings have led to varying schools of thought about the potential and utility of probiotic EVs, making it 
imperative to address these knowledge gaps, challenges, and limitations for further advancement of the 
field[111].

EV biogenesis mechanisms, cargo regulation and isolation
EV biogenesis and secretion is conserved across all domains of life, with this process having only recently 
been identified in bacteria[19,113]. Although during the last decade, there has been a notable rise in interest in 
deciphering functions of probiotic EVs in inter-kingdom communication [Table 1], several gaps in our 
understanding of EV biogenesis in bacteria still persist[19]. Recent research has revealed that bacterial EV 
secretion occurs not only through membrane blebbing but also via explosive lysis[114,115]. Furthermore, 
several internal and external factors that could regulate or stimulate bacterial EV biogenesis and secretion 
are still being explored[19]. Despite the limited research on MV biogenesis and its regulators[19], it is known 
that variations in environmental factors such as nutrients, pH, or exposure to antibiotics can result in 
significant variations in EV yield, cargo, and function[31,101,116,117]. For instance, oxygen exposure and oxidative 
stress, as environmental factors, have been linked to changes in bacterial EV cargo[118]. Lactobacillus species 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/evcna5039-SupplementaryMaterials.pdf
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in another study were observed to secrete EVs with slightly varying bacteriocin activity[26]. Therefore, 
environmental conditions may lead to variations in EV cargo both in vivo and in vitro, leading to varying 
phenotypic observations across studies. Moreover, co-cultivation of two different probiotic strains has been 
shown to elevate the bioactivity of EVs by increasing the secretion of interleukins from peripheral blood 
mononuclear cells[119]. Moreover, studies have highlighted the effect of EV isolation methods on its yield and 
cargo, demonstrating varying cargo and function in EVs isolated from the same source using different 
methods[120,121]. Evidently, improved knowledge of EV biogenesis, mechanisms at play, and regulators prior 
to their functional characterization is key to better understanding their function. Additionally, standardizing 
and optimizing the isolation method and providing detailed reporting are essential to ensure more 
reproducibility between groups, facilitating a better understanding of diverse EV roles.

Bacterial EV markers and characterization
Mammalian EV characterization includes confirming the presence of luminal and surface EV markers[122]. A 
partial understanding of EV biogenesis and other challenges, such as environmental conditions and their 
effect on EV cargo, along with the magnitude of species being studied, has so far prevented the community 
from proposing marker proteins to characterize bacterial EVs[20]. Therefore, in the absence of such makers, 
it is imperative to perform a thorough characterization based on particle size and morphology to ensure 
successful EV isolation[121,122]. Nevertheless, there is a need to perform additional rigorous high throughput 
omics to study EV cargo, enabling an enhanced understanding of conserved constituents and regulators of 
biogenesis and secretion[123].

Collective community efforts may allow for the identification of EV markers for probiotic strains and thus 
facilitate improved characterization. For instance, comparing protein cargo identified with proteomic 
analysis of EVs isolated from different species of probiotic bacteria leads to the identification of several 
conserved protein cargos between species and strains. Interestingly, enolase was one such protein 
consistently identified in EVs of all the bacterial species compared. Other proteins such as phosphoglycerate 
kinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase A, and adenosine 
triphosphate (ATP) synthase subunits were also conserved between species [Figure 4].

EV purity
Bacterial cells actively secrete proteins and other factors in their surroundings, and several of these secretory 
factors could also be shed via EVs[124,125]. Consequently, the purity of EV fraction is of prime importance. 
While standardizing and optimizing methods for EV isolation, careful consideration is required to ensure a 
final EV preparation devoid of significant soluble or secretory factors. The presence of contaminants could 
be detrimental to reliable functional characterization[121]. For instance, the anti-cancer and apoptotic effect of 
cell-free supernatants from several probiotic strains has been reported[126,127]. More recently, EVs shed by 
probiotic strains were observed to contribute to this effect[72-75]. However, whether the effect is solely due to 
EVs in the conditioned medium or stems from other factors secreted by bacteria remains unknown. In this 
regard, Streptococcus thermophilus was reported to have a prophylactic effect in colorectal cancer 
development due to secreted β-galactosidase[10]. However, it has also been reported that bacterial EVs 
preferentially package acidic glycosidases and proteases, including β-galactosidase[128]. Thus, in addition to 
ensuring maximum purity of EV preparation, further experimental controls, such as a conditioned medium 
devoid of EVs, are needed to confidently assign a functional role to probiotic EVs.

Another aspect of EV purity to consider is to determine the subtype of EV responsible for the observed 
phenotype in vitro and in vivo. As previously discussed in the EV biogenesis section, bacterial EV biogenesis 
may occur through multiple distinct pathways. Therefore, when isolating probiotic EVs, several EV 
subpopulations may be present in the preparation. Thus, addressing these challenges and limitations with 
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Figure 4. Omics approaches to thoroughly characterize probiotic bacterial EV cargo could aid in the identification of conserved cargo 
and lead to the identification of EV-enriched proteins conserved between strains and species. Venn diagrams depicting common and 
unique cargo in EVs of various species and strains of probiotic bacteria. Venn diagrams were generated using FunRich software (version 
3.1.4)[129]. EVs: Extracellular vesicles.

technical advancements is imperative to understand biogenesis pathways and distinguish EV subtypes. This 
may further enable a thorough understanding of the observed phenotypes and help to attribute them to 
specific EV subtypes, which is essential for clinical utility.

Biocompatibility
EV purity is also essential to ensure biocompatibility. The presence of immunogenic contaminants may lead 
to septic reactions upon systemic administration[130,131]. Bacterial toxins may have beneficial roles for the host 
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in the organism’s native environment[132]. The biodistribution and bioavailability of EVs can change 
significantly when alternative routes of administration are used[133,134]. Thus, several contaminants or even 
cargo constituents could have a detrimental impact on host physiology as opposed to a beneficial effect 
observed in vitro. This also requires a thorough understanding of the cargo itself and the effects on host 
physiology prior to administration[135-138]. In this regard, engineering the parent bacterium to synthesize EVs 
devoid of toxic cargo is an attractive alternative[139]. However, efforts to knock out a cargo constituent in the 
parent bacterium could lead to non-related off-target effects, potentially altering EV cargo significantly and 
leading to a partial or complete loss of desired function[140]. Thus, depending on the route of administration 
of EVs, which impacts their bioavailability, biodistribution, systemic uptake, retention, clearance, and, in 
turn, their function, addressing the biocompatibility of EVs requires thoughtful evaluation to support their 
therapeutic utility[133,134].

Bioavailability and biodistribution
Probiotic EVs are naturally secreted by microbiota in the gastrointestinal tract, and their local uptake and 
function have been demonstrated widely in vivo in their ability to alleviate colitis symptoms and gut 
dysbiosis and enhance barrier integrity upon oral administration [Table 1]. Mechanisms facilitating uptake 
and systemic bioavailability of EVs upon oral administration are still poorly understood[111]. Recently, 
transcytosis of probiotic EVs in IECs has been demonstrated[23,110]. Further, elevated levels of EVs in 
circulation following administration of probiotic strain were observed[102]. Several studies have even 
demonstrated systemic function following oral administration of EVs[78,104]. However, a limited 
understanding of the mechanisms involved in vivo prevents wider acceptance[111]. Furthermore, plausible 
effects of probiotic EVs due to modulation of gut and systemic immunity and gut microbiota, thus resulting 
in the systemic phenotype indirectly must be examined[78,111].

CONCLUSION AND PROPOSALS
Despite their immense potential, several challenges pertaining to the acceptance and utility of probiotic EVs 
in clinical applications exist. The transition of probiotic EVs from bench to bedside relies on further 
technical developments in a bid to address the underlying limitations and knowledge gaps. Technical 
limitations and challenges were enlisted and discussed in the previous sections, along with proposals to 
address them. Further to these, a major question that remains unanswered is the delineation of EV cargo 
responsible for the desired effects. Most studies demonstrating the function of probiotic EVs did not link 
the effect to any particular cargo component [Table 1]. Comprehensive omics approaches are key in 
delineating the functional EV cargo and need to be prioritized to gain further momentum in this 
direction[141]. While doing so, it is also important to acknowledge that probiotic EVs contain diverse and rich 
cargos and several constraints remain to delineate the cargos responsible for the observed effects [Figure 3]. 
For instance, knockout, knockdown, or overexpression of a molecule of interest can have profound effects 
on EV cargo loading, biogenesis, and even uptake by the recipient, leading to a loss of desired function 
unrelated to the molecule being examined[104]. Lastly, the need to choose appropriate preclinical models is of 
high priority to advance the progress of the field[111] [Figure 3]. Though the potential of probiotic EVs in 
clinical applications is immense [Table 1 and Figure 1], several of these studies claimed an effect based on in 
vitro observations. Whether or not the findings would hold true in vivo remains unknown. For instance, 
while the prophylactic effects of probiotic EVs and their potential in treating and sensitizing cancer cells 
have been observed in vitro, these effects still need to be tested in vivo using appropriate models and 
controls[72-75]. This would aid in addressing several unanswered questions about probiotic EVs in addition to 
their therapeutic value such as their ability to selectively target tissues, thus enabling their use as novel 
adjuvants and drug delivery vehicles for a synergistic effect.
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