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Abstract
The core technology of prognostics and health management, a key technology that detects system anomalies, is 
health assessment, which analyzes and diagnoses the current system working status and quantitatively assesses 
the health of the system. This paper reviews the development of health assessment technology in recent years 
from three aspects: health definition, health assessment indicators, and health assessment approaches. In terms of 
health definition, this paper summarizes three common definition methods. Health assessment indicators are 
reviewed from four levels: process variables, data features, residuals, and fusion indicators. Finally, health 
assessment approaches are divided into model-based, data-driven, and fusion approaches. Concerning the data-
driven approach, rapidly developing health assessment research based on an intelligent approach is discussed. The 
paper also compares various approaches and identifies the current challenges and development prospects of this 
technology.
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1. INTRODUCTION
With the advent of Industry 4.0, complex systems such as industrial systems, aerospace equipment, vehicles,
electricity, and ships are developing rapidly, followed by the reliability and safety assessment of diverse,
complex systems. By the end of the twentieth century, prognostics and health Management (PHM)[1]

technology had become a key technology for realizing comprehensive safeguarding research in the Joint
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Strike Fighter (JSF) program. PHM can significantly reduce the cost of maintenance, use, and support, 
improve the safety and availability of aircraft, and achieve the “economic affordability” goal in the security 
of a large complex system. Currently, PHM has not only been applied in the development of large-scale 
high-value equipment (e.g., aerospace and defense affairs) and achieved remarkable results but has also been 
studied and applied in general complex systems (e.g., industrial systems, vehicles, mechanical exercises, 
electric power, and ships)[2-7].

Currently, defining the “health” of humans is not straightforward, as health may reflect the emotional status 
of an individual or the absence of known diseases. From the perspective of indicators, health can be 
reflected in statements such as “I feel good/bad” or by observing all normal indicators in medical 
examinations. Human health is concerned not only with the current condition of the human body but also 
with health prediction and prevention. For example, will someone catch a cold? What medications are 
needed to prevent colds? Therefore, quantifying health status and taking preventive measures to maximize 
the health level are desirable in the health industry. With the advancement of science and technology and 
the increase in system complexity, similar problems have been introduced into systems engineering, and the 
“health” of systems and products has become a topic of widespread concern. The field of systems 
engineering also needs to answer questions about human health based on what functions systems should 
fulfill and what standards systems should use to accomplish them. In this context, health can be described 
by the degree to which a system degrades or deviates from its expected normal working status[8]. In practical 
engineering, the health status of the system includes the health status of all devices in the system and the 
availability status of the functions provided by them, reflecting all the information of the devices, system 
structure, and functions in the system[9].

Figure 1 shows that the plant, sensing equipment, and health management system constitute a closed-loop 
PHM framework for practical engineering systems. A common PHM system in the field of systems 
engineering includes three main layers: monitoring, prediction, and management. PHM refers not only to 
detecting process anomalies but also diagnosing, analyzing, and predicting faults in addition to assessing the 
health status of a component or system, predicting its remaining useful life (RUL), and helping to develop 
corresponding maintenance and operation strategies to ensure that the system completes the expected 
function and realizes the status maintenance. The aforementioned is based on existing experience, cases, 
and model inference algorithms, using system-observed data with the help of models and related 
algorithms. This technology can find early failures and effectively guide the maintenance decision before the 
failure, avoid the occurrence of harmful accidents, and solve the problem of insufficient maintenance and 
excess maintenance in regular equipment maintenance[10-12]. Essentially, PHM uses a lot of condition 
monitoring data and prior knowledge with the help of statistical algorithms or models. To assess the health 
status of equipment[13], this technology can predict the potential failure in advance and can combine various 
information to provide proactive maintenance decisions to achieve condition-based maintenance, 
improving the safety of the production process and reducing operating costs[14,15]. Health assessment, the 
core technology of PHM, from the perspective of system health, assesses whether the current working status 
of the system is normal and whether the system will undergo performance degradation within a certain 
period, which plays an important role in ensuring the security and reliability of the system. Unlike system 
failure detection and identification[16], health assessment does not focus on a critical component of the 
system or where a failure may occur but rather on the overall system performance and the detection of 
abnormal symptoms[1,9].

This paper reviews the current development of health assessment technology in industrial systems and 
vehicles and reviews the health assessment technology from three levels: health definition, health assessment 
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Figure 1. PHM framework of practical engineering systems.

indicators, and health assessment approaches. Health definition refers to how to use known system models, 
operations data, and other information to characterize the health degree of the system. Health assessment 
indicators are quantitative indicators reflecting the overall working status or performance of the system. 
Moreover, health assessment approaches are used to assess whether the current operating status of the 
system is normal and whether the system will undergo performance degradation within a certain period. 
Through the reference analysis at three levels, the existing problems and possible prospects of the current 
research are summarized and discussed.

2. HEALTH DEFINITION
This section introduces the research status of the system health definition. Notably, the primary issue in 
health assessment technology research is how to define health or how to characterize health through known 
information such as models and data. Most previous studies have not clearly defined health. Through 
investigation, we can divide the definition of health in existing health assessment studies into the following 
three categories: performance variables-based, residual-based, and reliability-based health definitions.

2.1. Performance variables-based health definition
For an actual engineering system, the health of the system at any given time can be defined by the 
performance variables of the system, namely

where x represents the performance variable of the system, Hsys = 1 represents the healthy system, Hsys = 0 
represents the unhealthy system, Σ(x, t) is a health function composed of the performance variables of the 
system, and SH represents the corresponding health space.

If the health of the system can be fully characterized by a single performance variable without loss of 
generality, assuming that xi∈x can fully characterize the health status of the system, we obtain
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where , and . This definition means that the system is healthy when xi changes 

within its health interval ; otherwise, the system is unhealthy.

If the health of the system can be characterized by multiple performance variables without loss of generality, 
assuming that the vector composed of multiple performance variables can characterize the health status of 
the system, we obtain

where ; x0 is the optimal operating point of the system; and SH is a regular polyhedron with x0 
as the center point and the side length 2ε. This definition means that the system is healthy when the distance 
between  and the optimal operating point is less than the tolerance threshold (ε); otherwise, the system is 
unhealthy.

For simplicity, health can also be defined as follows:

This definition means that the system is healthy when each performance variable changes within its own 
healthy interval; otherwise, the system is unhealthy.

2.2. Residual-based health definition
A quantitative measure of the inconsistency between the actual behavior and the expected behavior of a 
system is called the residual[17]. For simplicity, the difference between the observed quantity (y) and the 
estimator (ŷ) output by the system can be called the residual:

Different forms of residuals can be sensitive to different types of exceptions that occur in the system. 
Therefore, the distribution of residuals can reflect the health status of the system. When the system is 
healthy, the residual distribution should be close to 0; when there are anomalies in the system, the residual 
distribution deviates from 0, and different anomalies correspond to different residual probability 
distribution forms. Based on this, we can define the health of the system in terms of the residuals:

where ri represents thei-th component of the residual, and ri,T represents the corresponding tolerance 
threshold.
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For complex systems, we can also calculate the corresponding health degree of each residual component 
according to Equation (6) and further calculate the health of the system:

Where wi > 0 represents the weight of ri, which reflects the impact of ri on the overall system health,  .

2.3. Reliability-based health definition
Traditional reliability modeling methods are based on life test data and can reflect the common reliability 
features of similar systems under specified conditions. Therefore, the traditional definition of reliability is 
difficult to apply to the health assessment of a single product or system. However, the concept of 
performance reliability[18] provides a healthy definition for practical engineering systems, especially dynamic 
systems.

The definition of interval performance reliability is given in the literatures[19,20]. Given a dynamic system,

where , and  A. For the dynamic

system shown in Equation (8), space  is divided into a healthy space (SH) and an unhealthy

space [ ]. For a given time interval, [t0,t], the interval performance reliability is defined as

This definition means that the health of a dynamic system in [t0,t] is the probability that the system status 
stays in the health space in this time interval. Equation (9) can also be written as

This definition means that the health of a dynamic system in [t0,t] is the probability that the system status 
does not undergo a status deterioration (transition to an unhealthy space) in that time interval.

The definition of instantaneous performance reliability is given in the literatures[18,21]. For the dynamic 

system shown in Equation (8), space  is divided into a healthy space (SH) and an unhealthy 

space . For a given time, the instantaneous performance reliability of the dynamic system at 
that time can be defined as
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Where p(x,t) is the joint probability density function of the process variable (x) of the dynamic system at 
time t in Rp space. This definition means that the instantaneous health of a dynamic system at time t is the 
probability that the system status is in health space SH at that time. Moreover, according to the literature[18], 
the instantaneous performance reliability of the system at time t can also be written as

Combined with Equations (9)-(11), Equation (12) can be written as

or

3. HEALTH ASSESSMENT INDICATORS
Health assessment indicators are quantitative indicators that reflect the overall working status or 
performance of the system. This section details the health assessment indicators proposed in previous 
research to describe system health. Health assessment indicators can be divided into three categories: 
process variables, data features, and residuals[22].

3.1. Process variables
In power electronics, many health assessment indicators are directly aided by process variables. In the 
health assessment and prediction of batteries, the capacity and internal resistance of batteries are the most 
common health assessment indicators. Reference[23] used the battery capacity of Li-ion batteries as a health 
assessment indicator and used interacting multiple model (IMM) particle filtering to determine the RUL of 
Li-ion batteries and the probability distribution function of related uncertainties to assess the health status. 
Reference[24] achieved a more accurate prediction of the RUL of batteries by using particle filtering and 
autoregressive time-series models to track the capacity decline process of Li-ion batteries. Reference[25] 
compared the capacity decay rate of 16 batteries and gave a hybrid method by a sparse Bayesian learning 
module and recursive Bayesian filtering module to realize the health assessment of batteries. Reference[26] 
developed a comprehensive health assessment indicator to predict the RUL of batteries by combining 
capacitance, resistance, and constant current charging time. Reference[27] determined the degradation 
behavior of batteries in different statuses and predicted its RUL by using the long short-term memory 
model to learn the relationship between the battery voltage, current, and battery temperature.

In other areas, many studies have used process variables directly as indicators of health assessment. 
Reference[28] used machine learning to establish a classifier and then used the change of frequency 
modulation when the nuclear system performs the task to detect the fault of the nuclear system in the early 
stage. Reference[29] performed a reliability assessment and health prediction of production equipment by 
collecting information on systems or components installed in the field and using the failure mode and 
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impact analysis and hazard analysis techniques.

However, in many cases, process variables cannot directly reflect the health of the system, so we need to 
filter the data of process variables through certain algorithms and use the information extracted from 
process variables as health assessment indicators, mainly including data features and residuals.

3.2. Data features
A data feature obtains a process variable from the measured data of the original sensor by using a specific 
mathematical algorithm, which can reflect the hidden features of the data. This method is often used in the 
health assessment[6] of mechanical systems and equipment, wherein we can obtain health assessment 
indicators by extracting data features.

In the study of mechanical system health assessment, many studies have achieved the health assessment and 
prediction of different equipment based on the features. For example, researchers[30] used the method of 
wavelet transform to extract the frequency spectrum and energy contained in the generator vibration signal 
to perform effective fault diagnosis. Reference[31] conducted quantitative analysis and diagnosis of rotor 
vibration fault features by combining the wavelet correlation filter method and information entropy theory. 
Reference[32] used time domain analysis and fast Fourier transform (FFT) to obtain features from vibration 
data, and they used the particle swarm algorithm for feature selection. Time domain analysis is used to 
obtain the statistical scalar features from vibration analysis data. FFT decomposes the waveform signal into 
its spectrum, which contains component frequencies and their amplitudes. The energies (defined as the sum 
of the squares of amplitudes) over the frequency bands centered on specific frequencies (e.g., rotating 
frequency and harmonics and/or bearing defect frequencies) are calculated as features. Moreover, the design 
of the fitness function of the particle swarm algorithm considers three aspects: monotonicity, predictability, 
and trend. Reference[33] extracted the root-mean-square, kurtosis, peak factor, skewness, and other features 
from bearing vibration signals, and they used them to construct and train a hidden Markov model (HMM) 
to realize health status assessment and prediction. Reference[34] used the Hilbert-Huang transform to extract 
intrinsic mode functions from vibration signals and then used them as multidimensional health assessment 
indicators of the system to construct a multidimensional health space. Further, a support vector machine 
(SVM) is used to assess the health status of ball bearings, and support vector regression (SVR) is used to 
predict the RUL. Reference[35] also used the cutting force wavelet transform analysis to realize the status 
assessment of micro-milling, and the waveform and waveform singularity generated by the wavelet 
transform differ in different health statuses. Based on this principle, the method analyzes the cutting force 
signal under the working status of micro-milling to realize the health assessment.

3.3. Residuals
Residuals are the most commonly used health assessment indicator in model-based health assessment 
methods, which are often generated by inconsistencies between the actual and expected process variable 
values or features of the system.

Detailed steps of fault detection and diagnosis based on analytical redundancy and residuals are given in the 
literatures[17,36]. However, residual-based health assessment has more focused on fault detection and 
identification. For example, a team[37] designed an adaptive digital twin for bearings and used the difference 
between the estimated signal output and the actual signal output of the original system as the residual signal, 
which was used as the basis for bearing fault classification and crack size identification. Moreover, 
researchers[38] designed a partial differential equation observer to obtain the system output residual, which 
was used as the residual signal indicating the fault, and they used the threshold value of the residual signal to 
assess the health status of the system. Reference[39] designed the signal prediction model of a fiber current 
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sensor based on a long short-term memory network and obtained the residual signal through the predicted
and observed signals. Using the features of the residual signal, the fault diagnosis model based on SVM is
established. Another team[40] achieved the comprehensive estimation of the circulating current and output
current of the multilevel converter according to the Kalman filter (KF) algorithm, used the predicted
current value and the measured current value to achieve the residual signal generation, built the residual
assessment function and its threshold based on the obtained residual, and achieved the fault detection of a
multilevel converter. The fault detection and health assessment of hybrid systems are also mostly based on
residuals. For example, researchers[41] used a hybrid bond graph to model the hybrid system, constructed
different residuals to be sensitive to different faults, and used the size of the residual to represent the health
degree of each component of the system. Then, the adaptive hybrid differential evolution algorithm was
used to realize the fault identification and health assessment of the steering system of electric vehicles (refer
to the literatures for other studies using residuals as health assessment indicators)[42-46].

3.4. Fusion indicators
The fusion of health assessment indicators aims to combine different process variables, features, or
residuals, in addition to using indicators with lower dimensions and better monotonicity and trends to
reflect the health information that the original scale indicates[47].

3.4.1. Fusion of process variables and features
Principal component analysis[48] (PCA) is the most commonly used method in the fusion of health
assessment indicators.

Reference[49] extracted the time domain and frequency domain features from the motor torque, stator
current, and velocity signals, using the PCA to fuse the time domain and frequency domain features for the
health status prediction of the motor rotor. Another team[50] used the PCA to establish the principal
component model and then carried out dimensionality and noise reduction on the original complete dataset
of the brake system of the hoist, achieved feature extraction, and completed the fusion of the data layer,
which is used as the basis for locating the fault site and completing the fault diagnosis of the hoist. Another
team[51] used the PCA to reduce the characteristic quantity of the motor bearing, and then the obtained low-
dimensional characteristic quantity was input into the back-propagation neural network for fault
classification. References[52,53] used PCA to reduce the data dimension of the observed information set for
timely fault diagnosis and health prediction of complex systems. Reference[54] conducted a PCA on 21
measured data points of turbofan engines and took the first principal component as the health assessment
indicator, which was further used to achieve health assessment and residual RUL prediction. Another
team[55] used a global feature extractor based on kernel PCA to reduce the redundant attributes of vibration
data, providing a reference for deep learning fault diagnosis of rotating machinery.

In addition to PCA, researchers[22] used genetic programming and took monotonicity as the optimization
objective to find the optimal combination from various features of bearings and spindles and then
constructed health assessment indicators. Another team[56] used the fuzzy support vector data description to
fuse various characteristics, such as the mean square root value and peak state of the bearing, into a fuzzy
monitoring coefficient. This coefficient is sensitive to the early defects of the system, and with the
development of faults, it can grow steadily. Considering that this coefficient produces oscillations, the
runtime is introduced, and a monotonous health indicator is established. Reference[57] used the random
forest classifier to obtain deep representative feature values from multichannel data and then constructed a
multi-deep belief network fusion model for fault diagnosis of the main reducer. Reference[58] established a
multiparameter regular fault diagram and conducted a weighted analysis of the historical operating
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parameters of the injection well to realize the health assessment of the operating status of the injection well. 
Moreover, researchers[59] proposed a data fusion model to fuse multiple sensor data in a multi-physical field 
measurement system for fault diagnosis of battery systems. Reference[60] proposed the Mahalanobis distance 
(MD) to characterize system health. This definition converts multidimensional sensor data into an MD 
value, which can effectively characterize the health status of the system.

3.4.2. Fusion of residuals
In the above studies, the fusion of health assessment indicators referred to the fusion of process variables 
and features. However, the fusion of residuals has also been a common method in health assessment studies.

Reference[61] used the status estimation algorithm based on IMM to realize the fault detection and status 
assessment of F/A-18 aircraft. The algorithm realizes fault detection according to the filtering residuals of 
multiple models and performs probability fusion of the filtering values of each model status based on the 
residuals to achieve status estimation. References[62,63] improved the algorithm to increase the accuracy of 
fault detection. Reference[62] modified the status probability in each iteration. Reference[63] used particle 
filtering to replace KF, extended KF, and unscented KF. References[64-66] used this algorithm for fault 
detection of a satellite attitude control system. Similarly, researchers[67,68] used improved multiple model 
adaptive estimation (MMAE) to achieve fault detection of actuators and sensors of unmanned aerial 
vehicles (UAVs). The algorithm also performs a probabilistic fusion of the status variables of a UAV based 
on residuals. Reference[69] used the status estimation algorithm based on IMM to realize a multiple fault 
diagnosis and a status assessment of Li-ion batteries.

4. HEALTH ASSESSMENT APPROACHES
Health assessment approaches can be divided into model-based, data-driven, and fusion approaches[4,70].

4.1. Model-based approaches
Model-based health assessment approaches can be divided into three categories according to different 
models: physics-of-failure (PoF), mathematical, and qualitative model-based methods.

4.1.1. Physics-of-failure model-based method
The PoF-based health assessment method uses the PoF model and failure mechanism knowledge of a 
system or product to describe system degradation and achieve health assessment[71,72].

This method is commonly used in the health assessment of electronic products. Reference[73] used the 
AdaBoost classifier to adjust the sample distribution and then establish the physical degradation model of 
the gearbox to characterize the damage status of the gearbox. By analyzing the acoustic emission signals of 
the gearbox damage process, the authors could achieve an effective fault diagnosis of the gearbox. 
Reference[74] achieved an accurate description of air spring features by establishing physical models of an 
electronic control air suspension system, and they established physical degradation models of different 
sensors with different fault types for fault identification of sensors in an electronic control air suspension 
system. Reference[75] established the competitive failure model of the vehicle integrated transmission and 
used the maximum likelihood estimation method to estimate the parameters of the model, realizing the 
prediction of the RUL of integrated transmission. Reference[76] established the fault model of a single-stage 
fixed shaft gear system based on the dynamic model of a single-stage fixed shaft gear system combined with 
the energy method, and they analyzed the dynamic response of the single-stage gear system when the 
single-stage gear was normal, cracked, and peeled. The spectral features of the system were analyzed, 
providing a theoretical basis for the health monitoring and fault diagnosis of the gear system. Reference[77] 
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used the exponential model to model the degradation process of bearings and the observed data to estimate 
the model parameters, and the maximum likelihood estimation and particle filtering algorithm were used to 
predict the RUL. Reference[78] represented a second-order exponential model as the physical degradation of 
battery capacity, and the model parameters were considered invariant owing to Gaussian noise. 
Furthermore, the unscented particle filtering was used to achieve the real-time estimation of the model 
parameters, and the physical degradation curve of capacitance was obtained to predict the RUL. 
Reference[79] modeled the physical degradation of battery capacitance and used particle filtering to achieve 
the estimation of model parameters and the prediction of the RUL of batteries.

The biggest advantage of the PoF-based health assessment method is that it can use the known PoF 
information and fault mechanism to achieve high-precision health assessment and prediction. However, in 
practical engineering, we often can only obtain the PoF information of a certain system component or 
parameter (e.g., the bearing in the mechanical system or the capacitance in the battery), not the physical 
degradation model of the whole dynamic system. Especially, the dynamic system pays more attention to the 
macroscopic performance of the system; its system model often does not contain physical degradation 
information. Therefore, using PoF to achieve a health assessment must meet the following requirements: (1) 
health and performance changes of dynamic systems can be fully reflected by key components and 
parameters; (2) the physical degradation model of key components and parameters is known, and the model 
parameters can be updated in real time through sensor data. More importantly, in health assessment 
studies, this model is used more to solve the health “prediction” problem after the health “monitoring” 
phase has been completed rather than to study the health “monitoring” of dynamic systems.

4.1.2. Mathematical model-based method
The mathematical model-based health assessment method refers to the use of the mathematical model of 
the dynamic system for systematic health assessment. Among them, the mathematical model of the dynamic 
system can be existing or be obtained by the system identification method. Then, filters, observers, 
parameter estimation, and other methods are used to realize the system state estimation or residual 
generation, determine the system health state according to the system state estimation value, or determine 
the system anomaly according to the size of the residual[17].

Reference[80] constructed the power system model of a fuel cell vehicle and the mathematical model of 
hydrogen consumption cost and degradation cost, and then they adopted the adaptive moving average 
filtering and the equivalent cost minimum strategy to optimize the output power of the fuel cell. The 
nonlinear control strategy was used to control the energy status of a supercapacitor in a reasonable range to 
achieve the health assessment of the fuel cell vehicle. In the fault detection and health assessment of aircraft, 
the most common method is to establish the mathematical model of the aircraft and then use the observer 
or filter to achieve fault detection and status estimation. Reference[81] used the status estimation based on the 
IMM algorithm for the fault diagnosis of control systems of UAVs, established the global and local fault 
models of sensors and actuators, and applied the residuals of each model for filtering and probabilistic 
fusion, which realized the accurate diagnosis of the local and global faults of sensors and actuators of UAVs. 
Another team[82] added the update of transition probability based on the classical IMM algorithm to solve 
the problem of pattern recognition error and intermittent false alarms caused by the constant transition 
probability to accurately estimate the real-time distribution of the hybrid state of multirotors and assess 
their health status. Reference[83] also proposed a particle filtering algorithm to assess the flight performance 
of multirotors, and they used particle filtering instead of KF in the IMM algorithm to estimate the real-time 
probability distribution of the hybrid state of the multirotor model. The comparison showed that the IMM 
algorithm based on particle filtering could effectively reduce the estimation error and improve the accuracy 
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of the health assessment of multirotors. Another team[68] used the improved multi-model adaptive 
estimation algorithm to achieve the fault detection of UAV sensors, which also performs probability fusion 
of the state variables of UAVs based on residual errors.

General dynamic systems have known or partially known mathematical models. Therefore, mathematical 
model-based methods are suitable for studying the health assessment of a dynamic system. However, most 
mathematical model-based methods focus more on fault detection and diagnosis in the field of PHM, and 
there have been relatively few studies on health assessment using this method. This is mainly because (1) the 
fault of the dynamic system can be intuitively added to the dynamic system model, which is easy to 
understand and study; (2) the health of dynamic systems is not clearly defined, and it is difficult to combine 
model parameters with health.

4.1.3. Qualitative model-based method
The qualitative model is usually based on the understanding of the system mechanism or its physical and 
chemical processes, taking this information as a priori knowledge to establish a qualitative system model[84].

Among qualitative model-based methods, the graph model is a common method for dynamic system 
modeling. Reference[85] encoded fault features through the observation of the residual in the bond graph 
model to locate the fault source, which effectively overcomes the shortcomings of the analytical redundancy 
method that relies on mathematical linear models. Another team[86] introduced interval analysis theory into 
the traditional linear difference change technique of a bond graph, modeled parameter uncertainty and 
measurement uncertainty in a unified manner, extended the bond graph model to an uncertainty bond 
graph model, and the deduced interval analytic redundancy relation; this was done to calculate interval 
analytic redundancy relation using the interval mathematical operation method and obtain the diagnostic 
threshold, which has been successfully applied to the fault diagnosis of parametric faults and sensor faults of 
electro-hydrostatic actuators. Based on the bond graph model, a team[87] obtained the dual-causal bond 
graph model of the system by using the method to separate causality. By analyzing the causal relationship of 
each node in the dual causal bond graph model, the authors examined the system analytical redundancy 
relationship and fault feature matrix and achieved the system fault detection and isolation according to the 
analytical redundancy relationship and the fault feature matrix. Thus, the set of possible faults was obtained, 
and the health assessment and prediction of nonlinear electromechanical systems could be carried out.

Qualitative model-based methods are based on a deep understanding of the system structure and causality 
and are used for fault detection and diagnosis and health assessment by establishing qualitative models and 
logical reasoning. This method does not require accurate quantitative models, which can avoid modeling 
difficulties and provide a more intuitive explanation of the causes of failures. However, it has two problems: 
(1) the qualitative model generated based on residuals is usually for fault detection and diagnosis rather than 
health assessment, and (2) when the qualitative model based on the knowledge base and expert reasoning is 
used for health assessment, its accuracy is relatively poor.

4.2. Data-driven approaches
Data-driven health assessment approaches model and analyze the observed historical data, extract the data 
performance patterns under normal working conditions and abnormal working conditions, and compare 
them with the observed data at the current moment to achieve health assessment[72]. Generally, data-driven 
health assessment approaches can be divided into statistics-based, stochastic process-based, and artificial 
intelligence-based methods.
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4.2.1. Statistics-based method
The statistics-based method for prediction of the RUL is based on the theoretical basis of probability 
statistics and involves collecting the failure life data of equipment or some degradation data representing the 
failure of equipment, modeling according to a statistical model, estimating parameters according to 
monitoring data, and then achieving prediction of the RUL of equipment.

Reference[88] proposed a hybrid mechanical fault diagnosis method based on probabilistic box theory and an 
improved grey wolf optimization (GWO) algorithm to optimize SVM. The feature vector set for fault 
diagnosis was constructed by directly establishing the probability box and using the cumulative uncertainty 
measurement method to extract its features. The improved GWO algorithm is used to optimize the SVM to 
achieve classification and diagnosis of the feature set and complete the fault diagnosis of the rolling bearing. 
Reference[89] used the error integral of the output probability density function of the complex system as the 
driving information so that the system status and fault can be estimated by the adaptive fault diagnosis 
observer. Reference[90] established the probability density function of mainshaft bearing vibration by the 
guided maximum entropy method, introduced the Lagrange multiplier and empirical coefficient, and 
established the upper and lower limit function of probability density, the truth function model of fault 
probability, and the estimated value of reliability interval to achieve the health assessment of bearings. 
Reference[91] used the hierarchical sampling method based on particle filtering to obtain the importance 
probability density function of the status of autonomous underwater vehicles and achieved real-time status 
estimation and trend prediction of the motion state of autonomous underwater vehicles.

4.2.2. Stochastic process-based method
The stochastic process-based method is used more in studying the system degradation process. This is 
because in the actual engineering application of all kinds of equipment, the degradation is often random 
owing to the internal structure instability, the sudden situation in the manufacturing process, the change in 
operating conditions, or the change in the external environment. Under the guidance of mathematical 
statistics knowledge, the stochastic process model is created to describe the degradation process. Commonly 
used stochastic processes are the Wiener, Gamma, and inverse Gaussian processes, which are used to 
characterize different cases of the degradation process.

Reference[92] took the meta-action unit as the object of study and used the Wiener process to describe the 
performance degradation of a meta-action unit. Among them, the meta-action unit is a unified whole 
composed of all parts in accordance with the assembly relation to ensuring that the most basic action of 
electromechanical products can be realized. Reference[93] extracted the original health indicator representing 
the system operating status and used the Gamma process to model its change process to perform fault 
diagnosis of complex systems. In another work[94], there were two main problems in the analysis of the time-
varying failure probability of a corroded pipeline: (1) the determination of the failure status of a corroded 
pipeline; (2) the accuracy of the simulation of the corrosion degradation process of a pipeline. Based on the 
blasting data of a pipeline test, the residual internal pressure-bearing capacity of a pipeline was selected 
according to the minimum loss function value. In addition, the Gamma, inverse Gaussian, and Wiener 
processes were introduced into the calculation of the failure probability of the corroded pipeline, and then 
the time-varying failure probability of the corroded pipeline was calculated in combination with the Monte 
Carlo method, which provided accurate and reliable results for predicting the time-varying failure 
probability of the corroded pipeline.
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4.2.3. Artificial intelligence-based method
As a self-learning method, artificial intelligence does not need to estimate parameters in the estimation 
process, but the definition of the content and objective function of input and output are needed, followed by 
iterative estimation through a training learning algorithm. Finally, the estimation result is obtained, and the 
training stops. Artificial intelligence is essentially a simulation of the information process of the human 
brain thinking, which establishes a neural network for data analysis and learning by simulating the 
mechanism of the human brain. Collecting a large amount of data is the foundation of artificial intelligence. 
The artificial intelligence–based method does not need to analyze the mechanism model of the device, nor 
does it need to estimate the parameters of the model. Moreover, it has a strong nonlinear mapping ability, 
which can estimate the status of various models, and it has a strong fault tolerance ability. Common 
artificial intelligence methods include SVM, artificial neural networks, and deep learning.

Reference[95] used the spiking neural network (SNN) as an intelligent fault diagnosis tool for rotating 
machinery bearings. The features extracted from original vibration signals are encoded as spikes through 
local average decomposition, and the SNN is trained by learning rules to achieve fault diagnosis of bearings. 
Another team[96] proposed a rolling bearing fault diagnosis model based on a dual-stage attention-based 
recurrent neural network (DA-RNN), which was used to expand unbalanced datasets in actual fault 
diagnosis cases. Then, the improved convolutional neural network model was used for fault classification. 
Reference[97] enhanced the sensitivity of extracting sensor fault features through the combination of wavelet 
transform and the temporal convolutional network.

The advantage of a data-driven health assessment approach is that it can learn the dynamic behavior of a 
system from historical data without relying too much on the physical and mathematical models of the 
system. Considering the large amount of measured data in dynamic systems, data-driven approaches are 
more widely used than model-based approaches. However, the physical meaning of the health assessment 
results obtained by this method is sometimes difficult to interpret. Also, data-driven approaches often 
require a long learning time, suffer from overfitting, and make it difficult to determine the unhealthy 
threshold.

4.3. Fusion approach
Considering the advantages and disadvantages of both model-based and data-driven approaches, many 
studies have attempted to integrate the two approaches to improve the accuracy of health assessment.

For example, researchers[25] used a fusion approach based on data-driven/model-based approaches to assess 
the RUL of the battery. The sparse Bayesian learning module was used to infer the capacity from charge-
related features, and the recursive Bayesian filtering module was used to update the empirical capacity decay 
model and predict the RUL, which effectively achieved the prediction of the RUL of batteries. Reference[98] 
used existing failure models and advanced fault prediction algorithms to locate and predict faults of guided 
munitions systems, which provided a way to achieve fault prediction and health assessment of typically 
guided munitions. Reference[99] proposed a fault prediction method based on the fusion of the physical 
failure and data-driven models. Reference[100] proposed a device fault diagnosis method based on the fusion 
of knowledge and data, which can not only classify the equipment operation data through the optimized 
bidirectional long short-term memory network model but also make auxiliary decisions through the 
knowledge graph based on the fusion fault chain, realizing the construction of the equipment fault domain 
graph driven by the fusion of mechanism knowledge and data. In another work[101], aiming at the health 
assessment problem of diesel engine air management system, the flow model and inflation coefficient model 
were established by the mechanism modeling method, and the inflation coefficient model and intake 
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pressure fluctuation amplitude model were established by the data-driven modeling method. The odd-even 
equation method was used to design the residual generator and generate three residual signals. The 
mapping matrix between the fault and the residual value could be obtained by simulation analysis, and the 
fuzzy inference method is used to diagnose the fault to carry out an effective health assessment.

5. CONCLUSIONS AND PROSPECTS
Through the above research work, as an important part of the PHM framework, health assessment 
technology has been widely researched. However, deficiencies remain in current health assessment studies.

(1) Currently, most existing health assessment studies have focused on RUL prediction, fault detection and 
identification studies, or the timely estimation of system process variables studies, but there has been a lack 
of health assessment studies in a real sense. Owing to the unclear and unified definition of health, health 
assessment research has deviated from the correct development direction to a certain extent, such as a lack 
of systematic health quantitative measurement and subsequent health predictions. Studies of RUL 
prediction have often used performance variables to characterize system health and have achieved 
prediction of RUL by predicting the variation trend of performance variables. Furthermore, fault detection 
and identification studies have used residuals to characterize system health and achieved fault detection and 
identification by assessing the characteristics of residuals. Research on the timely estimation of system 
process variables has generally used the current system observations to estimate the timely system process 
variables and define whether the system is healthy or not. In fact, studies on RUL prediction, fault detection 
and identification, and timely estimation of system process variables are not equivalent to real health 
assessment studies. This is primarily because it is unreasonable to define health directly based on 
performance variables and residuals; it is also insufficient and inaccurate to define the health of the system 
only using the working status of the current system.

(2) Most existing health assessment studies have only focused on a certain level of the health assessment 
system; the input and output studies often do not consider the output results and input information studied 
at other levels. For example, when studying the problem of health assessment, researchers have not 
considered how to predict the RUL of the system after detecting the abnormality and then plan the 
corresponding health assessment approaches. When studying the problem of RUL prediction, researchers 
have only assumed that the abnormality has been detected through the health assessment approach in 
advance, and they have then directly conducted the degradation modeling and RUL prediction based on the 
health assessment results. These kinds of modular research situations arise due to the lack of an available 
theoretical basis for health assessment technology, which is not conducive to the overall development of 
health assessment technology.

(3) At present, most health assessment techniques for industrial vehicles, such as unmanned autonomous 
systems, have been studied for individual systems, and the assessment results are easily affected by the 
external environment. There has been a lack of health assessment studies for isomorphic systems. For the 
health assessment of an individual system, it is difficult to effectively overcome the noise interference of the 
external complex environment, and it is difficult to accurately assess the health status of the system. 
Especially when the system process variables are selected as health assessment indicators, the assessment 
results of the system health degree are more significantly affected by the external environment. Recently, the 
application of unmanned system formation has become increasingly widespread. For example, unmanned 
system formation is widely used in performance, inspection, agricultural plant protection, and other aspects, 
so research on the health assessment technology of isomorphic systems is expected.
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Future studies on health assessment technology should consider the following development trends.

(1) Health assessment technology based on the model and data-driven fusion approaches: considering that 
both model-based and data-driven methods have unique advantages and disadvantages, combining the two 
methods is an important development trend of health assessment technology and even the whole PHM to 
exploit the strengths of each other and compensate for their shortcomings. For example, with the wide 
application of intelligent algorithms, the identification of system models through system-observed data can 
overcome the problem that complex systems are difficult to model.

(2) Health assessment technology based on the fusion of quantitative and qualitative knowledge: system 
knowledge includes quantitative measured data, which can objectively reflect the operating status of the 
system and subjective qualitative cognition and experience of individuals. Therefore, integrating these 
objective quantitative data and subjective qualitative information in the studies of health assessment 
technology would be an important direction of a health assessment study in the future.

(3) Health assessment technology for isomorphic systems: with the progress of science and technology, 
more unmanned autonomous systems have entered people’s lives. The health assessment of the isomorphic 
system can not only conform to ongoing trends but also skillfully overcome the influence of the external 
environment on the assessment results of each vehicle in formation. For example, the comparison of system 
residuals between objects in the isomorphic system is used to effectively distinguish between health states 
and abnormal states. This represents an important direction for the future development of health 
assessment technology.

(4) PHM study integration: most existing studies have only focused on one level of the PHM system, and 
the input and output studies often do not consider the output results and input information studied at other 
levels. This situation is due to the lack of an available theoretical basis for PHM, which makes it difficult to 
form a complete research chain, including health assessment, RUL prediction, and emergency decision-
making. Therefore, providing a solid theoretical basis for PHM and achieving the integration study of each 
module of PHM on this basis is another key direction of future research.
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