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Abstract
Understanding the coupling between one-dimensional (1D) materials and their protective materials is essential for 
developing nanodevices. Herein, we investigate the effect of the size, chirality, and type of nanotubes [such as 
carbon/boron nitride nanotubes (CNTs/BNNTs)] on the atomic and electronic structures of confined Te chains 
using density functional theory. We find that the optimal configurations of the Te chains confined in CNTs/BNNTs 
depend strongly on the size of the nanotubes but weakly on their chirality and type. Furthermore, the Te@BNNTs 
exhibit giant Rashba splitting with a Rashba constant of up to 2.65 eV Å, while the Te@CNTs show no splitting. 

This is mainly due to the large bandgap of the BNNTs, as well as the enhanced symmetry breaking of the Te chains 
when confined. Our findings provide a basis for the design of nano spin devices through protective materials.
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INTRODUCTION
In recent years, tellurium has attracted the interest of researchers because of its excellent transport 
properties and ability to form large-area air-stable two-dimensional (2D) thin films[1-4]. 2D Te films are 
composed of Te chains with van der Waals (vdW) interactions between the chains[5-7], which are expected to 
separate Te chains, even to the limit of the single-chain scale[8-10]. Single Te chains are expected to exhibit 
interesting physical properties that largely differ from the bulk[11]. For example, helical Te chains have a 
bandgap of ~1.53 eV at room temperature[12], in contrast to the value of 0.35 eV for the bulk. The symmetry 
breaking of Te chains due to their unique chiral characteristics leads to strong spin-orbit interactions and 
Rashba splitting. An isolated single Te chain was predicted to have a large Rashba constant of up to 2.17 eV 
with 23.13% strain[12]. However, single Te chains are inaccessible experimentally because they can easily 
crimp and adsorb small molecules from the environment, thereby degrading their performance. Nanotubes, 
such as carbon/boron nitride nanotubes (CNTs/BNNTs), serve as excellent protective materials for these 
nano-chains, due to their unique 1D hollow structure and chemical stability[8-10,13-15]. For instance, Pham et 
al. successfully synthesized the quasi 1D transition metal trichalcogenide NbSe3 (niobium triselenide) in the 
few-chain limit confined in CNTs and BNNTs[9]. Medeiros et al. experimentally observed Te chains 
encapsulated inside CNTs with diameters between 0.7 and 1.1 nm[8]. Te chains couple with the confining 
nanotubes, which affects their atomic and electronic structures. Nevertheless, disentangling the complicated 
coupling remains a challenge.

Previous works have mainly focused on the influence of the size of the nanotubes on the confined Te chains. 
For example, the number of Te chains decreases from triple, double to even single, with decreasing the 
diameter of the nanotubes[16]. In small-sized nanotubes, these 1D atomic chains undergo a structural 
change[17,18] and phase transition. S and Se encapsulated in CNTs adopt linear, zigzag, or helical structures 
depending on the inner diameter of the CNTs[19,20]. The Peierls structural distortion occurs for single Te 
chains[8]. Apart from the above structural change, Qin et al. predicted that the bandgap of Te increases 
monotonically from 0.35 eV in bulk to 0.68 eV for three Te chains and eventually reaches 1.51 eV in the 
single-chain limit due to the quantum confinement effect[16]. Although some works have synthesized 1D 
chains confined in both CNTs and BNNTs, they provide no insight into their effects on the electronic 
structure of the confined chains[9,16,21]. Furthermore, whether or not the chirality of the nanotubes plays a 
role remains unclear.

Therefore, herein, we systematically explore the effect of nanotube size and chirality on the atomic and 
electronic structures of Te chains confined in CNTs/BNNTs by density functional theory. We find that the 
tube size predominates in determining the configurations of the confined Te chains. The Te@BNNTs show 
giant Rashba splitting with a Rashba constant of up to 2.65 eV Å, which is the highest among known pure 
1D systems, while the Te@CNTs show no Rashba splitting. This is because the large bandgap of the BNNTs 
accommodates and maintains the band edges of the Te chains, while the CNTs with a zero bandgap cannot. 
Our findings provide a basis for the construction of nano spin devices and lay a foundation for the design of 
new nanoelectronic devices.

MATERIALS AND METHODS
DFT calculations
All calculations were performed using the CASTEP code with ultrasoft pseudopotentials[22]. We employed a 
sequence of Te@CNT and Te@BNNT structures that were periodic along the c-axis direction [Figure 1]. In 
the non-periodic directions, a vacuum of ~40 Å was adopted to avoid spurious interactions between the 
periodic images. Considering the different lattice constants between the Te chains and nanotubes, the 
combination between them was optimized by modulating the number of unit cells to reduce the strain. For 
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Figure 1. Top and side views of atomic structures of (A) Te@(6, 6) CNTs, (B) Te@(10, 0) CNTs, (C) Te@(6, 6) BNNTs, (D) Te@(10, 0) 
BNNTs, (E) Te@(7, 7) CNTs, (F) Te@(12, 0) CNTs, (G) Te@(7, 7) BNNTs and (H) Te@(12, 0) BNNTs.

example, one unit cell of Te chains matched with two unit cells of CNTs resulted in a 12.5% compressive
stress to the confined Te chains relative to the free chains[12]. The geometric and energetic details were
obtained with Perdew-Burke-Ernzerhof[23] augmented with the Tkatchenko-Scheffler[24] method (PBE+TS).
A k-point separation of 0.02 Å-1 and an energy cutoff of 600 eV for the plane-wave basis set were adopted in
all calculations. The spin-orbital coupling (SOC) effect was included for the calculations of the more
accurate bandgap values. Overall, the geometric configurations were optimized until the maximum force in
the chain of the directions was less than 0.01 eV/Å and the convergence of the total energy was less than 1
meV/atom.

Energy calculations
We adopt the adsorption energy (Ead) to characterize the stability of the Te@CNT and Te@BNNT systems:

                                                                Ead = (Etotal - Ent - ETe)/x                                                                                (1)

where Etotal is the total energy of the Te@CNTs or Te@BNNTs, Ent is the energy of the CNTs or BNNTs, ETe

is the energy of the single Te chains and x is the number of Te atoms.

RESULTS AND DISCUSSION
To systematically study how the size, chirality, and type of the nanotubes affect the atomic and electronic 
structures of the single Te chains confined in nanotubes, we consider two groups of CNTs/BNNTs with 
different sizes, namely, (6, 6)/(10, 0) and (7, 7)/(12, 0), each of which contains armchair and zigzag 
nanotubes, thereby helping us to study the size and chirality effects individually. The small-sized group [i.e., 
(6, 6) and (10, 0)] represented the smallest nanotubes that can accommodate a single Te chain, given that 
the vdW radii of C/B/N (RvdW, C/B/N) and Te (RvdW, Te) are 1.70, 1.68, 1.55 and 2.06 Å, respectively 
[D ≈ 2 (RvdW, C/B/N + RvdW, Te)][25,26]. In such confinement, strong coupling between the single Te chain and 
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nanotubes exists. The large-sized group [i.e., (7, 7) and (12, 0)] has a diameter between 2 (RvdW, C/B/N + RvdW, Te) 
and 3 (RvdW, C/B/N + RvdW, Te), and thus the coupling is weaker than that in the small-sized group. Nanotubes 
with diameters larger than 3 (RvdW, C/B/N + RvdW, Te) are not considered in this study because the confined single 
Te chains resemble their free state and coupling can be ignored. Furthermore, despite their similar 
crystallographic structures, CNTs and BNNTs show different electronic structural properties, i.e., (6, 6)/(7, 
7)/(12, 0) CNTs are metallic with no bandgap, while (10, 0) CNTs have a bandgap of 0.9 eV[27] and BNNTs 
are always semiconducting with bandgaps of up to ~5.5 eV[28], independent of their size and chirality. In the 
following, we explore how these three factors (i.e., nanotube size, chirality and type) affect the atomic and 
electronic structures of single Te chains confined in CNTs/BNNTs.

Structural characterization
Due to the different lattice constants of the Te chains and nanotubes, their combination is inevitably 
accompanied by stretching or compression of the softer Te chains. To find the optimal mismatch, we 
consider a wide range of strains from -20% to 60%, given that the unique helical structure of the Te chains 
can bear a large strain without breaking. With increasing strain, we find that the helical Te chains in the 
range of small strains transform to zigzag chains and then to straight chains in the range of large strains, 
which is similar to the scenario of free chains under various stresses[12]. The global minima of the adsorption 
energy curve refer to the optimal configurations of Te chains confined in CNTs and BNNTs.

We first focus on the group of nanotubes with smaller sizes, i.e., the (6, 6) and (10, 0) CNTs. In Figure 2A, 
the adsorption energy between the Te chains and (6, 6) CNTs by PBE+TS decreases with strain, meaning 
that the straight Te chains are most likely the most stable configurations. For the Te@(10,0) CNTs in 
Figure 2B, the adsorption energy first decreases to a local minimum, then increases and finally decreases 
again. This non-monotonic trend suggests that both helical (with 1.1% strain) and linear Te chains can 
coexist in (10, 0) CNTs, unlike in (6, 6) CNTs. In the small-sized (6, 6) and (10, 0) CNTs, the Te chains 
undergo significant structural changes and a phase transition. We now consider the other group of 
nanotubes with larger sizes, i.e., the (7, 7) and (12, 0) CNTs. In Figure 2C and D, the adsorption energies for 
both the (7, 7) and (12, 0) CNTs follow a parabolic trend, reaching their global minima at strains very close 
to zero [2.14% for (7, 7) CNTs and 1.07% for (12, 0) CNTs]. The results indicate that the Te chains favor 
helical structures in the larger-sized CNTs. The helical chain structure under low strains exists in large 
nanotubes, while the straight structure is more favorable in small tubes. Therefore, the structure of the Te 
chains depends strongly on the nanotube size[29] but negligibly on the chirality. Chirality only plays a subtle 
role in the small-sized CNTs, i.e., two stable structures exist in the zigzag (10, 0) CNTs but only one occurs 
in the armchair (6, 6) CNTs.

Despite the similarity of their crystallographic structures, CNTs and BNNTs differ largely with regard to 
their electronic structures. For example, BNNTs have a large bandgap, while CNTs have no bandgap[28]. The 
large bandgap of BNNTs is expected to not interfere with the conduction band minimum (CBM) and 
valence band maximum (VBM) characteristics of the confined Te chains. Therefore, we next focus on the 
Te chains confined in the (6, 6), (10, 0), (7, 7) and (12, 0) BNNTs.

In Figure 3A, although the local minima reside far from the zero strain, the most stable configuration for the 
Te chains confined in the (6, 6) BNNTs is still the helical chain [the zigzag (Z) and straight (S) chains are 
marked in Figure 3, as opposed to the straight Te chains in the (6, 6) CNTs. In contrast, the helical and 
linear Te chains coexist in both the (10, 0) CNTs and BNNTs (see Figures 2B and 3B, respectively). For the 
Te@(7, 7) BNNTs and Te@(12, 0) BNNTs in Figure 3C and D, respectively, the local minima are close to 
the zero strain, indicating that the Te chains confined in these two BNNTs resemble the isolated free chain. 
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Figure 2. Adsorption energy (Ead) of (A) Te@(6, 6) CNTs, (B) Te@(10, 0) CNTs, (C) Te@(7, 7) CNTs and (D) Te@(12, 0) CNTs. Z and 
S represent zigzag and straight chains, respectively, and the rest of the points default to helical chains.

Figure 3. Adsorption energy (Ead) of (A) Te@(6, 6) BNNTs, (B) Te@(10, 0) BNNTs, (C) Te@(7, 7) BNNTs and (D) Te@(12, 0) BNNTs. 
Z and S represent zigzag and straight chains, respectively, and the rest of the points default to helical chains.

The comparison between the Te@CNTs and Te@BNNTs reaches a consistent conclusion: the size of the 
nanotubes plays a dominating role in determining the confined configurations, while the chirality and type 
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of the nanotubes play a secondary role.

In both Figures 2 and 3, the adsorption energy at the PBE level of theory exactly follows the trends of the 
overall adsorption energy, while the TS contribution to the total adsorption energy is insensitive to the 
strain, as indicated by the rather smooth curves. Therefore, the Pauli repulsion, well captured by the PBE 
method, determines the optimal structures of Te chains confined in the nanotubes, whereas the vdW 
interactions, well treated by the TS method, are only to bind Te chains and nanotubes together and stabilize 
them. This can be easily explained by the distance between the Te chains and nanotubes. In the small-sized 
tubes, the radius of the nanotubes is comparable to the sum of the vdW radius [D ≈ 2 (RvdW, C/B/N + RvdW, Te)]. 
The smaller distance between the Te chains and nanotubes in the helical and zigzag structures than in the 
straight state means that the short-ranged Pauli repulsion plays a significant role. This is why the 
contribution of PBE to the adsorption energy oscillates significantly with strain. In the large-sized 
nanotubes, the radius of the nanotubes is close to 3(RvdW, C/B/N + RvdW, Te), and thus the coupling is weaker than 
that in the small-sized group. The contribution of PBE decreases first because the helicity of the Te chains 
becomes smaller and the distance between the atoms on the Te chain and the nanotube becomes farther. 
The contribution of PBE increases due to the strain accumulated within the chains.

Band structure analysis
For the heavy Te element, the band structure calculations must account for the SOC effect. For the 
Te@CNTs systems, we tentatively computed the band structures of the straight Te chain, (6, 6) CNTs and 
Te@(6, 6) CNTs [Supplementary Figure 1]. Their comparison shows that although the CBM and VBM of 
the free Te chain significantly hybridize with those of the (6, 6) CNTs when combined, they are always 
trapped in the band structure of the (6, 6) CNTs, which should also hold for the (7, 7) and (12, 0) CNTs 
with similar zero bandgaps [Supplementary Figure 2]. To expose the CBM and VBM of the Te chain when 
combined, we turn to the only semiconducting (10, 0) CNTs. For the convenience of comparison, the (10, 
0) BNNTs are employed (see other cases in Supplementary Figures 3 and 4).

Figure 4A and B show the band structure of the Te@(10, 0) CNTs (with a metastable helical Te chain at 
1.1% strain) at the level of PBE+SOC/PBE theory. The bandgap greatly reduces by ~0.2 eV when including 
SOC (0.496 eV with PBE vs. 0.296 eV with PBE+SOC), which is consistent with the previous work[1]. The 
small bandgap for the (10, 0) CNTs (~0.9 eV) fails to accommodate and maintain the CBM and VBM of the 
Te chains. Figure 4C and D show the band structures of the Te@(10, 0) BNNTs (with a stable helical Te 
chain at 16.1% strain) at the level of PBE+SOC/PBE. Notably, we observe not only the reduced bandgaps 
(the values are 0.063/0.285 eV with/without SOC and ~5.5 eV for isolated BNNTs) but also the spin splitting 
in Figure 4C. A similar situation holds for other BNNTs: the bandgaps are 0.27 eV for the Te@(6, 6) 
BNNTs, 1.20 eV for the Te@(7, 7) BNNTs and 1.30 eV for the Te@(12, 0) BNNTs. Although the hybrid 
functionals (such as HSE) well describe the electronic structures of the nanotube systems[30], they are much 
more computationally demanding. Notably, in our previous study on the isolated Te chains[12], we employ 
both PBE+SOC and HSE+SOC functionals. HSE+SOC methods indeed lead to the more accurate bandgap 
and Rashba results but maintain the trend calculated with the PBE+SOC method. In this work, we are more 
focused on the trend, and thus the computationally efficient PBE functional is adopted.

The band splitting observed in the BNNTs after considering SOC is known as Rashba splitting. We employ 
the three most critical Rashba splitting parameters (ER, ΔkR and αR) to quantify the Rashba spin splitting 
strength. As shown in Supplementary Figure 5, the Rashba energy (ER) is the energy difference between the 
crossing point and the band edge. The Rashba momentum offset ΔkR is the moment splitting of the Rashba 
bands from the crossing point. The most widely discussed Rashba constant αR represents the strength of the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202206/4945-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202206/4945-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202206/4945-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202206/4945-SupplementaryMaterials.pdf
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Figure 4. Band structures of Te@(10, 0) CNTs with/without SOC (A)/(B) and Te@(10, 0) BNNTs with/without SOC (C)/(D). The 
Rashba splitting is highlighted, where the green and red lines are for the spin-up and spin-down bands, respectively.

Rashba effect, which can be derived from the equation αR = 2ER/ΔkR in low dimensional systems. Generally, 
large ER is beneficial to stabilizing the spin and large ΔkR indicates that a sufficient phase shift can be 
achieved for different spin channels. The resulting αR for the Te@BNNTs is 1.31 eV Å for the (6, 6) BNNTs 
(with a strain of 19.17%), 2.65 eV Å for the (10, 0) BNNTs (with a strain of 16.10%), 1.91 eV Å for the (7, 7) 
BNNTs (with a strain of 4.27%), and 1.76 eV Å for the (12, 0) BNNTs (with a strain of 3.2%). Among them, 
the Te@(10, 0) BNNTs show the largest Rashba constant and the other two parameters are listed in Table 1.

The Te@CNTs do not have Rashba splitting, while Te@BNNTs do, indicating that the electronic structures 
of the internal Te chains depend on the type of nanotubes. Compared with the Te@CNTs, all the 
Te@BNNTs have large Rashba splitting, which is mainly due to the large bandgap of the BNNTs. For this 
reason, the CBM and VBM of the Te chains can reside in the large bandgap of the BNNTs and the Rashba 
splitting of the Te chains is maintained. The large bandgap of the BNNTs can, therefore, completely expose 
the band edge of the Te chains, while the zero band gap of the CNTs limits this performance. Apart from 
the intrinsic atomic SOC, the structural origin, i.e., the symmetry breaking, contributes to the large Rashba 
splitting. The bond length of the Te chains in the free state is 2.76 Å and the bond angle is 100.9°. When 
confined in nanotubes, the confinement induces a change in bond length and angle. For example, with the 
strain of 16.10%, the bond lengths of the Te chains in BNNTs are 2.74-2.75 Å and the bond angles are 116.1-
116.3°. The comparison between free Te chains and confined Te demonstrates that confinement enhances 
the Rashba splitting through symmetry breaking.

Materials with large Rashba constants and energies provide us with more leeway in the choice of their 
spintronic properties. The free Te chains have already excelled over other 1D materials, such as 1D atomic 
Te chains and the distorted 23.13% stretched Te [Table 1][12]. Furthermore, the Rashba constant is 0.82 
(0.99) eV Å for the Te chain in the (10, 5) CNTs (BNNTs) and 0.89 (0.94) eV Å for the Te chains without the 
CNTs (BNNTs) in previous work[12]. In addition, the ER of Te@BNNTs is ~20 meV, comparable to that of 
the single helical chain[12]. Compared to other systems, the αR of Te@(10, 0) BNNTs is up to 2.65 eV Å, which 
is three or four times larger than those of the other Rashba systems, such as Bi/Ag(111) surface alloys[35], 
InGaAs/InAlAs31 and Si(557)-Au nanowires[32]. The αR of the Te@(10, 0) BNNTs is comparable with that of 
some giant 1D Rashba systems, such as the αR in the Pt/Si(111) nanowire is 1.36 eV Å[33], the Q2 structure for 
Bi on In/Si(111) is 2.1 eV Å and the H1 structure for Bi on In/Si(111) is 3.1 eV Å[34]. Due to the existence of 
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Table 1. Rashba energy (ER), momentum offset (ΔkR) and Rashba parameter (αR)

System ER (meV) kR (Å
-1) αR (eV Å) Reference

Te@(6,6) BNNTs 11.06 0.02 1.31 This work

Te@(10,0) BNNTs 20.64 0.02 2.65 This work

Te@(7,7) BNNTs 20.29 0.02 1.91 This work

Te@(12,0) BNNTs 20.60 0.02 1.76 This work

Isolated Te chains 24 0.057 0.84 Ref[12]

Distorted-23.13% stretched Te 111 0.102 2.18 Ref[12]

InGaAs/InAlAs < 1 0.028 0.51 Ref[31]

Si-Au nanowire N/A 0.05 N/A Ref[32]

Pt/Si(111)nanowire 81 0.12 1.36 Ref[33]

Q2 Bi on In/Si(111) 78.2 0.073 2.1 Ref[34]

surface dangling bonds or the presence of the (semi) metallic surface states, the performance of these 
semiconductor nanowires degraded.

CONCLUSIONS
In this study, we have established how the size and chirality of CNTs/BNNTs affect the atomic and 
electronic structures of confined Te chains. The optimal structures of Te chains confined in CNTs and 
BNNTs are predominately determined by the size of the nanotubes rather than their chirality or type. 
Remarkably, the Te@BNNTs show even superior Rashba splitting, compared with the isolated Te chains, 
while the Te@CNTs show no splitting at all. The striking contrast is mainly due to the large bandgaps of 
BNNTs that accommodate and maintain the band edges of Te chains where the Rashba splitting emerges. 
Our results reveal an interesting conclusion: the relative independence of the electronic structure between 
the confined and protective materials is an essential prerequisite for protective realization without 
degrading the performance of confined materials. These results are expected to shed light on the 
development of nano spin devices.
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