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Abstract
RNA polymerase III (pol III) synthesizes short noncoding RNA (ncRNA) exclusively and is unique in having 
alternative paralogues of one of its subunits, POLR3G and POLR3GL. Although most pol III target loci can be 
transcribed by either isoform, exceptions have been found. For example, depletion of POLR3G curtails the 
production of BC200 and snaR ncRNAs that are implicated in cancer progression. Furthermore, POLR3G may 
protect pol III against repression by MAF1, a key physiological regulator. Expression of POLR3G is promoted 
selectively by MYC, NANOG and OCT4A, master regulators of stem cell pluripotency, resulting in its preferential 
accumulation in undifferentiated cells. Indeed, differentiation of prostate cancer cells is suppressed by a positive 
feedback mechanism between POLR3G and NANOG, involving the control of NANOG mRNA degradation by 
ncRNAs. Specific knockdown of POLR3G inhibits proliferation and induces differentiation of prostate cancer cells, 
but this response is not seen following comparable depletion of its POLR3GL paralogue. ML-60218 is a cell-
permeable small molecule pol III inhibitor that triggers the replacement of POLR3G with POLR3GL. Proliferation 
and viability of primary prostate cancer cells are suppressed by ML-60218, whereas differentiation is induced, 
effects that mimic POLR3G depletion. Transient exposure to ML-60218 reduced tumour initiating activity in a 
xenograft model. Untransformed prostate cells are much less sensitive to these treatments, raising the possibility 
of therapeutic benefit.
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POLR3G AND POLR3GL IN RNA POLYMERASE III TRANSCRIPTION
RNA polymerase III (pol III) is a 17-subunit complex required exclusively for the synthesis of untranslated 
RNAs, many of which have key roles in protein synthesis and RNA processing[1]. The most abundant pol III 
products are the tRNAs, 5S rRNA and the 7SL RNA scaffold of the signal recognition particle, but an 
eclectic variety of other short noncoding RNAs (ncRNAs) are also produced[1]. Mammalian cells contain 
two pol III isoforms that differ only in the presence of one essential subunit, either POLR3G or POLR3GL, 
which arose from a gene duplication event and share 49% protein sequence identity[2,3]. Expression of 
POLR3G is selectively promoted by several oncogenes that do not induce POLR3GL, including MYC[2,4,5]. 
Accordingly, the ratio of POLR3G to POLR3GL is significantly elevated compared to patient-matched 
controls in a variety of cancer types, such as lung and colorectal adenocarcinomas[5]. High POLR3G levels 
correlate with a worse prognosis for patients with lung adenocarcinomas, oesophageal, bladder urothelial 
and transitional cell carcinomas[5,6]. Furthermore, overexpression of POLR3G can have oncogenic effects 
both in cultured cells[2,3] and in mice[7]. Knockout of mouse POLR3G is lethal during early embryogenesis, 
whereas mice without POLR3GL survive until three weeks after birth, when they die with only half the body 
weight of their wild-type siblings[8]. For both knockouts, compensatory increases were seen in the expression 
of the remaining paralogue[8]. POLR3G levels are elevated in human or mouse embryonic stem cells (ESC) 
due to direct induction by pluripotency factors MYC, NANOG and OCT4A, but decrease strongly during 
differentiation[8-10]. Knockdown of POLR3G causes a loss of stem cell markers and induces differentiation of 
human ESC[11]. Overexpression of POLR3GL can rescue the defective differentiation of mouse ESC after 
knockout of POLR3G[8], but it is uncertain if this redundancy is physiological.

INDUCED DIFFERENTIATION OF PROSTATE CANCER CELLS BY TARGETING POLR3G
The pluripotency protection provided by POLR3G in ESC prompted tests for a similar role in the PC-3 cell 
line, which was isolated from a prostate cancer metastasis[12,13]. As well-differentiated tumours are generally 
associated with better survival prospects, suppression of pluripotency might prove to be beneficial. RNAi-
mediated depletion of POLR3G in PC-3 cells was found to cause a significant decrease in NANOG 
expression and induction of neuroendocrine (NE) markers, whereas markers of luminal and basal prostate 
epithelial cells were unchanged[13]. Proliferation also slowed significantly[13]. These observations suggest that 
POLR3G depletion promotes directional differentiation towards a specific cell type. In contrast, comparable 
knockdown of POLR3GL did not slow proliferation or induce differentiation, despite a similar decrease in 
pol III activity, as measured by tRNATyr synthesis[13]. Thus, POLR3G is implicated specifically in maintaining 
an undifferentiated proliferative state in PC-3 prostate cancer cells, as seen previously in ESC.

ML-60218 is a specific cell-permeable small molecule inhibitor of pol III[14,15]. It has been shown to induce 
differentiation of preadipocytes[16]. When PC-3 cells were treated with this inhibitor, proliferation was 
slowed, NANOG expression suppressed and NE markers induced, demonstrating a similar differentiation 
response as when POLR3G is depleted[13]. This can be explained by the observation that treatment with ML-
60218 provokes loss of POLR3G from the pol III complex and its replacement by POLR3GL[13]. The viability 
of PC-3 cells and their ability to invade matrigel were also compromised by ML-60218[13]. In contrast, the 
PNT2C2 line of immortalized healthy prostate epithelial cells shows little or no change in viability, 
proliferation and differentiation when exposed to ML-60218, despite comparable pol III inhibition to that 
seen in the PC-3 model[13]. This differential responsiveness may reflect the higher levels of POLR3G found 
in PC-3 cancer cells[13].



Page 128Malcolm et al. J Transl Genet Genom 2022;6:126-33 https://dx.doi.org/10.20517/jtgg.2021.50

POLR3G INFLUENCES THE EXPRESSION OF THE PLURIPOTENCY FACTOR NANOG
Short interspersed nuclear elements (SINEs) are found in large numbers throughout mammalian 
chromosomes and are weakly transcribed by pol III[17]. However, transcription by pol II can also occur if a 
SINE is located within a longer protein-coding gene, as is often the case due to their random integration 
through retrotransposition[17]. DR2 SINEs are a subset of the Alu family, and their transcripts are processed 
by DICER to produce small repeat-induced RNAs (riRNAs), which can target specific mRNA transcripts 
for degradation[18]. Such targets of DR2-derived riRNAs include the master regulators of cell stemness and 
pluripotency NANOG and OCT4; thus, overexpression of DR2 Alu in ESC reduces levels of NANOG and 
OCT4 mRNA and inhibits stem cell regeneration, whereas depletion of these Alu transcripts suppresses 
ESC differentiation[18,19]. In PC-3 cells, DR2 Alu expression is unaffected by depletion of POLR3GL, but 
RNAi-mediated knockdown of POLR3G increases levels of DR2 Alu transcripts, causing elevated riRNA 
and degradation of its NANOG mRNA target[13,18,19]. The specific response of DR2 Alu transcription and 
hence NANOG expression to knockdown of POLR3G but not POLR3GL provides some explanation as to 
the selective effect of POLR3G on pluripotency.

NANOG-Alu-Sx is a member of the DR2 Alu family, which lies ~6 kb upstream of the NANOG gene; 
transcription of this specific SINE produces riRNAs that are complementary to the 3’-UTR of NANOG 
mRNA, causing its specific degradation[18]. Whereas depletion of POLR3GL has minimal effect, knockdown 
of POLR3G increases expression of NANOG-Alu-Sx in PC-3 cells[13]. Transfection of PC-3 cells with a 33 nt 
synthetic RNA fragment corresponding to the NANOG-Alu-Sx riRNA suppresses proliferation and 
NANOG expression and induces NE differentiation markers[13]. This is consistent with previous evidence 
that synthetic RNAs corresponding to the DR2 Alu consensus sequence can suppress NANOG in ESC[18]. 
Therefore, maintenance of PC-3 proliferation and self-renewal by POLR3G can be explained at least in part 
by the selective repression of NANOG-Alu-Sx transcription, which allows accumulation of NANOG, a key 
driver of pluripotency.

Although Alu SINEs can be transcribed by pol III, expression of NANOG-Alu-Sx increases in response to 
the pol III inhibitor ML-60218[13]. This counterintuitive observation may be explained by the fact that pol III 
transcription of Alu is usually inefficient, but expression can be boosted by pol II in some cases[17]. As 
proliferation slows and differentiation commences in response to ML-60218, epigenetic changes might 
favour more active transcription by pol II. Further analysis will be necessary to establish the mechanistic 
details of this transition. Nevertheless, the available data show that treatment with ML-60218 allows more 
efficient transcription of NANOG-Alu-Sx by pol II, generating riRNA that targets NANOG mRNA for 
degradation, thereby favouring differentiation [Figure 1].

RESPONSES OF PRIMARY PROSTATE CELLS TO ML-60218
The positive feedback loop between NANOG and POLR3G expression, which maintains pluripotency and 
self-renewal of PC-3 cells, might indicate a novel target for therapeutic intervention. To test if human 
cancers respond in a similar way to the cell line, Gleason grade 7 prostate tumours were excised from four 
patients and cultured with 20 μM ML-60218 for 48 h, which was sufficient to reduce pol III transcription by 
~36%[13]. For two of the tumours, DR2 Alu SINEs, including NANOG-Alu-Sx, were induced by ML-60218 
treatment and this was accompanied by depletion of NANOG mRNA[13,20]. All four tumours displayed 
induction of differentiated epithelial markers, but cell fate determination varied, with three tumours 
favouring an NE lineage, as seen with PC-3 cells, but one differentiating towards a luminal phenotype[13]. 
The reasons for this mixed behaviour are uncertain and highlight the complexity of predicting patient 
responses[21].
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Figure 1. Model of NANOG regulation by DR2 Alu and the effect of POLR3G depletion. NANOG-Alu-Sx is a member of the DR2 family 
of Alu SINEs that lies approximately 6 kb upstream of the NANOG gene. A positive feedback loop exists between the expression of 
NANOG and the POLR3G subunit of pol III. Undifferentiated prostate cancer cells express NANOG, which binds the promoter of the 
POLR3G gene and stimulates its transcription by pol II. The POLR3G protein is incorporated into pol III, which binds to DR2 Alu SINEs, 
such as NANOG-Alu-Sx, but supports relatively inefficient transcription. POLR3G depletion by small molecule ML-60218 or RNAi 
allows replacement of pol III by pol II at DR2 Alu and increases transcription of these SINEs. DR2 Alu RNA is processed by DICER to 
generate small (~105 nts) repeat-induced RNAs (riRNA) with complementary sequence to the NANOG mRNA; this results in AGO-
mediated degradation of NANOG mRNA, inhibiting self-renewal and allowing differentiation.

Identical treatment of healthy prostate tissue from the same four patients resulted in minimal effects on 
expression of DR2 Alu, NANOG, basal or luminal markers and only weak induction of NE markers, despite 
similar levels of pol III inhibition by ML-60218, as determined by comparing pre-tRNATyr levels[13]. 
Proliferation was slowed in both healthy and tumour cells, but the latter were significantly more 
sensitive[13]. Furthermore, 48 h of 20 μM ML-60218 treatment reduced tumour cell viability by ~25%, 
whereas normal prostate cells remained fully viable[13]. A higher dose (50 μM) of the pol III inhibitor did 
decrease the viability of the normal cells, but they were still more tolerant of the cytotoxic effects than the 
cancer cells, which saw viability fall to ~40%[13].

The cancer stem cell (CSC) hypothesis places small clusters of pluripotent stem cells within tumours that 
are able to survive radiation and chemotherapy, and have the ability to self-renew and differentiate once the 
selective pressure of treatment has been removed, allowing recurrence of disease, often more aggressive 
than before[21,22]. Engrafting into mice extreme limiting dilutions of a heterogeneous cell population derived 
from tumours allows the frequency of tumour initiating CSC cells to be determined[23]. Androgen-
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independent tumour cells derived from a patient with castration-resistant prostate cancer were treated in 
culture for 48 h with 20 μM ML-60218, which induced NE differentiation markers and NANOG-Alu-Sx and 
reduced cell viability by ~25%[13]. Extreme limiting dilution analysis with equal numbers of viable treated or 
untreated cells revealed that pre-exposure to 20 μM ML-60218 for 48 h prior to engraftment delayed the 
subsequent onset of tumourigenesis by 25 days (100 days total) compared to untreated cells, which had a 
mean latency period of 75 days[13]. Furthermore, the ML-60218 pretreatment caused a significant four-fold 
reduction in the percentage of cells forming tumours[13]. Thus, transient exposure to ML-60218 can have 
enduring impact on tumour initiating activity, consistent with CSC depletion through differentiation and/or 
death. Therefore, a mechanism to target the CSC population in prostate cancer might include finding 
effective methods of inhibiting POLR3G-dependent transcription by pol III.

SELECTIVE TARGETING OF SPECIFIC NCRNA GENES BY POL III CONTAINING POLR3G
Small NF90-associated RNAs (snaRs) are ncRNAs of ~117 nucleotides encoded by a family of pol III-
transcribed tandemly repeated genes[24]. Elevated expression of snaR ncRNA has been observed in tumours 
and/or plasma of patients with liver, breast and ovarian cancer and can promote proliferation or 
metastasis[25-27]. ChIP-seq of human monocytes revealed that snaR genes are targets for pol III when it 
incorporates POLR3G, but not when bound by POLR3GL[5]. When monocytes differentiate, POLR3G is 
down-regulated and pol III disappears from snaR genes, which become silent; although POLR3GL levels 
remain stable, it seems unable to substitute for POLR3G at these loci[5]. Similar effects are seen following 
treatment with ML-60218, with specific loss of POLR3G and silencing of snaR genes[5].

The gene for BC200 ncRNA was also found to be targeted selectively by pol III containing POLR3G, relative 
to POLR3GL[5]. BC200 (BCYRN1) is a 200 nucleotide ncRNA that is found at elevated levels in several types 
of malignancy, including breast and oesophageal carcinomas, where high expression correlates with poor 
prognosis[28-31]. Manipulation of BC200 revealed an oncogenic role through alternative splicing of Bcl-x 
mRNA to inhibit apoptosis[30].

POLR3G may release pol III from a principle restraining influence
Pol III output is controlled in part through direct interaction with MAF1, a repressor that was first 
discovered in Saccharomyces cerevisiae and later shown to be conserved from yeast to humans[32-35]. The 
binding of MAF1 prevents pol III from being recruited to its target genes[36,37]. Such transcriptional restraint 
helps ensure that pol III output is sensitive to signalling through the mTOR pathway in response to growth 
factors, as MAF1 is a direct target for phosphorylation by mTOR[38]. This explains, at least in part, the 
elevated activity of pol III observed in prostate cancer cells following the loss of PTEN, a tumour suppressor 
that counteracts mTOR signalling[39]. Recent cryo-EM analysis revealed a striking difference in the 
interaction of the POLR3G and POLR3GL paralogues with the core of pol III, which greatly impacts 
binding and repression by MAF1[40]. It appears that POLR3G interacts more stably than POLR3GL with the 
pol III core and may therefore block the specific site which MAF1 would occupy[40]. This model predicts that 
pol III can evade one of its physiological restraints by utilizing POLR3G [Figure 2]. Thus, an ancient control 
mechanism may be bypassed in vertebrates through the evolution of a resistant form of pol III. This 
adaptation could have severely detrimental effects on cancers that overexpress POLR3G.

CONCLUSION
Pol III is a highly specialized RNA polymerase dedicated to the production of short ncRNAs. It is unique in 
having evolved a paralogue of one of its subunits that confers distinct properties. Whereas the canonical 
form of pol III containing the ancestral paralogue POLR3GL is repressed by MAF1 under conditions that 
are unfavourable to cell growth, this control may be compromised by POLR3G[40]. Not only is this likely to 
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Figure 2. MAF1 regulation of pol III may depend on subunit composition. POLR3GL (orange) is the ancestral paralogue and is expressed 
ubiquitously; it allows repression of pol III by MAF1. POLR3G (purple) is enriched in stem and cancer cells; its incorporation may make 
pol III more resistant to MAF1 and thereby contribute to unregulated transcription and selective induction of ncRNAs such as BC200 
and snaR. ncRNAs: Noncoding RNAs.

have quantitative effects on overall pol III output, but it may also promote the selective synthesis of ncRNAs 
that promote cancer progression, such as snaR and BC200 ncRNAs[5]. POLR3G can also suppress 
differentiation through a positive feedback loop involving the pluripotency factor NANOG. Accordingly, 
poor prognosis in several cancer types correlates with elevated POLR3G[5,6]. Knockdown experiments in the 
PC-3 model of metastatic prostate cancer provide evidence that targeting POLR3G can slow proliferation 
and promote differentiation[13]. This effect can be mimicked pharmacologically using the small molecule pol 
III inhibitor ML-60218, which triggers the replacement of POLR3G by POLR3GL, potentially restoring the 
sensitivity of pol III to MAF1-mediated control[13]. This inhibitor reduces viability, proliferation and 
invasion of PC-3 cells and stimulates their differentiation[13]. The response to ML-60218 of primary cells 
from prostate tumours is similar to that of PC-3 cells, whereas healthy prostate from surrounding tissue is 
significantly more resistant[13]. Although these features can be considered beneficial, an undesirable 
direction of differentiation was triggered in PC-3 cells and three of the four tumours exposed to ML-60218 
assumed NE features that are linked with low survival[13,41]. However, the tumour from one patient 
differentiated towards a luminal phenotype without induction of NE markers[13], suggesting a more 
favourable outcome. It is possible that this reflects a subgroup of cancers that would respond well to 
therapeutic targeting of POLR3G, perhaps using PROTAC technology. Potentially the most important 
finding is that transient exposure ex vivo to ML-60218 can significantly reduce tumour initiation frequency 
of castration-resistant prostate cancer cells from a patient undergoing palliative care for advanced metastatic 
disease[13]. It was estimated through limiting dilution that 0.04% of the cells in this tumour were capable of 
seeding a new tumour in mouse xenografts, but this subpopulation with cancer stem cell properties was 
depleted ~4-fold by ML-60218, most likely through differentiation[13]. Pol III may therefore be worth 
considering as a novel therapeutic target.
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