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Abstract
Under certain working conditions, the car-following performance and longitudinal ride comfort of adaptive cruise
control (ACC) vehicles are contradictory. Therefore, the extension coordinated control is introduced into theweighted
design of each performance index under themodel predictive control (MPC) framework to optimize the overall vehicle
driving performance. In this article, the dynamic model of the ACC vehicle and the variable time headway model
are established, and then the predictive model and its corresponding cost function under the MPC framework are
designed. By using the co-simulation platform of CarSim and Matlab/Simulink, three different simulation conditions
are established and compared with the traditional ACC operating results. It was determined that the tracking speed
error in the acceleration stage can be reduced by approximately 40% and the acceleration amplitude can be reduced
by between 8%–17%. Therefore, there is an optimization effect under this control method. This study provides a
foundation for curving ACC under an extension coordinated control theory.

Keywords: Extension coordinated control, adaptive cruise control, model predictive control, advanced driver assis-
tance systems

1. INTRODUCTION
With the development of the automotive industry, the advanced driver assistance system (ADAS) has become
a key research direction for various institutions aimed at improving ride comfort, safety, and fuel economy
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during vehicle operation. Among them, the adaptive cruise control (ACC) has become a focal point of re-
searchers due to its wide range of applications. In recent years, in order to achieve energy conservation and
emission reduction, the consideration criteria of vehicle fuel economy, ride comfort, and driving safety have
been integrated into the design of the ACC system. At the same time, in order to reduce the incidence of traffic
accidents caused by driver fatigue, integrating ACC into driverless vehicles has become a promising solution.
Yin et al. established the objective function based on an optimal control theory and verified the effectiveness
of the algorithm on straight and curved roads [1]. Compared with the traditional PID control method, model
predictive control (MPC) can better meet the control precision of unmanned vehicles and complicated driv-
ing conditions, and it is more fit with the nonlinear characteristic of the vehicles [2]. To improve the safety,
comfort, and fuel economy of the ACC system, Qu et al. proposed a multi-mode switching intelligent driving
longitudinal ACC strategy [3]. In order to improve the performance of autonomous vehicles in path tracking,
Wang et al. combined a fuzzy adaptive weight control theory to design a new MPC controller [4]. Vasebi et al.
presented a holistic literature review of energy-optimal adaptive cruise control algorithms which provided a
useful insight into the development of this research field [5]. However, when the ACC vehicle needs to meet
better following performance, it may adopt larger acceleration and deceleration to meet the following distance
requirements, which leads to poor ride comfort and fuel economy. In this case, a single control method could
not adapt to the time variability of the environment; that is, the traditional fixed weight matrix could not meet
the requirements, so extension control is introduced to coordinate this deficiency under the multi-objective
MPC framework [6]. Zhao et al. fromNanjing University of Aeronautics and Astronautics designed an extensi-
ble controller to effectively handle the conflict between control output and control effect in extreme operating
conditions [7]. In the traditional lane keeping system, global-region control adopts a single control algorithm,
which often leads to poor control of some control areas. In order to solve this problem, Wang et al. used
extension control theory combined with Takagi-Sugeno-Kang fuzzy control to create a new controller for the
system [8]. Under the background of multi-objective control, the extension theory uses the correlation evalua-
tion of the system characteristic state and the optimization of the control parameters by the correlation degree
and then divides the measurement mode to realize the multi-region switching control, thus improving the con-
trol precision and performance. Under traditional fixed matrix control conditions for multi-objective ACC,
in order to achieve better following performance, it leads to poor riding comfort and fuel economy. The main
contributions of this article with respect to this issue are the following twofold.

•An MPC controller and cost function based on the motion state relationship between the host vehicle and
the preceding vehicle and extension coordinated control theory were established.

•A correlation function was introduced for comfort, fuel economy, and other objectives to form a real-time
weightedmatrix for optimization. The feasibility and effectiveness of the control method were verified through
joint simulation using Matlab/Simulink and Carsim.

The remainder of this paper is organized as follows. The adaptive cruise vehicle model is established in Section
2. Multi-target adaptive cruise under extension control is described in Section 3. In Section 4, simulation
results are illustrated, and the conclusion is described in Section 5.

2. ADAPTIVE CRUISE VEHICLE MODEL
2.1. Variable time headway model
In the theory of variable time headway (VTH), it is believed that the time headway 𝜏 is influenced by en-
vironmental variables. In this paper, it is established that when the relative speed between two vehicles is
constant, the time headway should be increased when the preceding vehicle decelerates and decreased when
the preceding vehicle accelerates [9].
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Figure 1. Longitudinal following diagram.

Therefore, the calculation formula is designed as follows:

𝜏 = 𝜏0 − 𝑎 ∗ (𝑣𝑝 − 𝑣) − 𝑏 ∗ 𝑎𝑝 (1)

In the formula, 𝑎𝑝 stands for acceleration of the preceding vehicle, 𝑣𝑝 stands for the speed of the preceding
vehicle, 𝑣 stands for the speed of the host vehicle, 𝜏0 represents the default time headway, set to 1.5s; 𝑎 and 𝑏
are parameters set to 0.3 and 1.5, respectively. Meanwhile, the upper and lower limits of the time headway are
considered, with a range of 1.4-2.2s.

2.2. Longitudinal dynamic model
Thecorrespondingmechanical balance equation can be established for the vehicle in the longitudinal direction:

𝐹𝑑 = 𝑚 ∗ 𝑎𝑥 + 𝑚 ∗ 𝑔 ∗ 𝑓 ∗ cos 𝜃 + 𝑚 ∗ 𝑔 ∗ sin 𝜃 + 1
2
∗ 𝜌 ∗ 𝐶𝐷 ∗ 𝐴 ∗ 𝑣2

𝑥 (2)

Where 𝐹𝑑 represents the longitudinal force of the tire, 𝑚 represents the mass of the vehicle, 𝑔 represents the
gravitational acceleration, 𝑓 represents the coefficient of friction of the road, 𝜃 represents the road slope, 𝑎𝑥 rep-
resents the longitudinal acceleration of the vehicle, 𝜌 represents the air density,𝐶𝐷 represents the air resistance
coefficient, 𝐴 represents the frontal area, and 𝑣𝑥 represents the longitudinal velocity of the vehicle [10].

3. MULTI-TARGET ADAPTIVE CRUISE UNDER EXTENSION CONTROL
3.1. Model predictive control
3.1.1. Prediction model
The kinematic models for the host vehicle and the preceding vehicle can be expressed as follows [11]:

Δ𝑥(𝑘) = 𝑥𝑝 (𝑘) − 𝑥(𝑘)
Δ𝑥d𝑒𝑠 (𝑘) = Δ𝑥0(𝑘) + 𝜏𝑣(𝑘)
𝛿(𝑘) = Δ𝑥(𝑘) − Δ𝑥d𝑒𝑠 (𝑘)

(3)

Here,Δ𝑥 represents the actual following distance, Δ𝑥d𝑒𝑠 represents the desired following distance, 𝑥𝑝 represents
the position of the preceding vehicle, 𝑥 represents the position of the host vehicle, 𝑘 represents the discrete time
index, and 𝛿 represents the error between the actual following distance and the desired following distance [12].
The dynamic model is shown in Figure 1.

𝑎(𝑘) = 𝑣(𝑘) − 𝑣(𝑘 − 1)
𝑇𝑠

𝑗 (𝑘) = 𝑎(𝑘) − 𝑎(𝑘 − 1)
𝑇𝑠

(4)
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where 𝑎(𝑘) represents the acceleration of the host vehicle at time 𝑘 , 𝑗 (𝑘) represents the acceleration change
rate at time 𝑘 , and 𝑇𝑠 stands for the discrete sampling period [13], which is represented by the calculation step
size in Matlab.

Under discrete conditions, the state variables based on kinematics can be selected as distance, relative velocity,
host speed, host acceleration, and the rate of change of host acceleration, which can be expressed as follows [14]:

Δ𝑥(𝑘 + 1) = Δ𝑥(𝑘) − 𝑣r𝑒𝑙 (𝑘) ∗ 𝑇𝑠 +
1
2
∗ 𝑎(𝑘) ∗ 𝑇2

𝑠 (5)

𝑣r𝑒𝑙 (𝑘 + 1) = 𝑣r𝑒𝑙 (𝑘) + 𝑎𝑝 (𝑘) ∗ 𝑇𝑠 − 𝑎(𝑘) ∗ 𝑇𝑠 (6)

𝑣(𝑘 + 1) = 𝑣(𝑘) + 𝑎(𝑘) ∗ 𝑇𝑠 (7)

𝑎(𝑘 + 1) = (1 − 𝑇𝑠
𝑡
) ∗ 𝑎(𝑘) + 𝑇𝑠

𝑡
∗ 𝑢(𝑘) (8)

𝑗 (𝑘 + 1) = −1
𝑡

∗ 𝑎(𝑘) + 1
𝑡
∗ 𝑢(𝑘) (9)

𝑣r𝑒𝑙represents the relative velocity between two vehicles, 𝑎𝑝 represents the acceleration of the preceding vehicle,
𝑡 represents the control time constant, and 𝑢 represents the desired acceleration.

In this paper, the disturbance variable is chosen as the acceleration of the preceding vehicle, and the state vari-
ables are selected as relative distance, host vehicle speed, relative speed, acceleration, and acceleration change
rate [15]: 𝑥(𝑘) = [Δ𝑥(𝑘), 𝑣(𝑘), 𝑣r𝑒𝑙 (𝑘), 𝑎(𝑘), 𝑗 (𝑘)]T. The system output variables are the relative distance error,
relative velocity, acceleration, and acceleration change rate: 𝑦(𝑘) = [𝛿(𝑘), 𝑣r𝑒𝑙 (𝑘), 𝑎(𝑘), 𝑗 (𝑘)]T. Based on the
selected state and output variables, the predictive model can be established as follows:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐺𝑤(𝑘) (10)

𝑦(𝑘) = 𝐶𝑥(𝑘) − 𝑍 (11)

where 𝐴, 𝐵,𝐺,𝐶, and 𝑍 are system state-space matrices.

𝐴 =



1 0 𝑇𝑠 − 1
2𝑇

2
𝑠 0

0 1 0 𝑇𝑠 0
0 0 1 −𝑇𝑠 0
0 0 0 1 − 𝑇𝑠

𝑡 1
0 0 0 − 1

𝑡 0


, 𝐵 =



0
0
0
𝑇𝑠
𝑡
1
𝑡


, 𝐺 =



1
2𝑇

2
𝑠

0
𝑇𝑠
0
0


, 𝐶 =


1 −𝜏 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0


, 𝑍 =


Δ𝑥0
0
0
0


In this paper, the reference trajectory [16] is defined as:𝑦𝑟 (𝑘) = 0.95 ∗ 𝐼𝑖𝑑, where 𝐼𝑖𝑑 stands for identity ma-
trix, 𝑦𝑟 (𝑘) = [𝛿r𝑒 𝑓 (𝑘), 𝑣r𝑒𝑙𝑟 𝑒 𝑓 (𝑘), 𝑎r𝑒 𝑓 (𝑘), 𝑗r𝑒 𝑓 (𝑘)]T, where 𝛿r𝑒 𝑓 (𝑘) represents the reference value of relative
distance error, 𝑣r𝑒𝑙𝑟 𝑒 𝑓 represents the reference value of relative velocity, 𝑎r𝑒 𝑓 (𝑘) represents the reference value
of acceleration, and 𝑗r𝑒 𝑓 (𝑘) represents the reference value of acceleration change rate. The standard form of
the discrete linear MPC prediction model is:

𝑋𝑝 (𝑘 + 𝑝 |𝑘) = 𝐴𝑥(𝑘) + 𝐵𝑈 (𝑘 + 𝑚) + 𝐺𝑊 (𝑘 + 𝑝) + 𝐻𝑒𝑥 (𝑘) (12)

𝑌𝑝 (𝑘 + 𝑝 |𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑈 (𝑘 + 𝑚) + 𝐸𝑊 (𝑘 + 𝑝) + 𝐹𝑒𝑥 (𝑘) − 𝑍 (13)

In these equations, p represents the prediction time horizon, andm represents the control time horizon. 𝑋𝑝 (𝑘+
𝑝 |𝑘) and𝑌𝑝 (𝑘 + 𝑝 |𝑘) represent the predicted values of the state and output variables at future time 𝑘 + 𝑝, based
on the information available at time 𝑘 , respectively. 𝑒𝑥 represents the set of outputs of the system, that is,
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the expected acceleration. 𝑊 (𝑘 + 𝑝) represents the error between the actual and predicted values of the state
variables. represents the disturbance matrix [17].

𝑋𝑝 (𝑘+𝑝 |𝑘) =


𝑥̂𝑝 (𝑘 + 1|𝑘)
𝑥̂𝑝 (𝑘 + 2|𝑘)

...

𝑥̂𝑝 (𝑘 + 𝑝 |𝑘)


, 𝑌𝑝 (𝑘+𝑝 |𝑘) =


𝑦̂𝑝 (𝑘 + 1|𝑘)
𝑦̂𝑝 (𝑘 + 2|𝑘)

...

𝑦̂𝑝 (𝑘 + 𝑝 |𝑘)


,𝑈 (𝑘+𝑚) =


𝑢(𝑘)

𝑢(𝑘 + 1)
...

𝑢(𝑘 + 𝑐 − 1)


,𝑊 (𝑘+𝑝) =


𝑤(𝑘)

𝑤(𝑘 + 1)
...

𝑤(𝑘 + 𝑝 − 1)


𝑒𝑥 = 𝑥(𝑘) − 𝑥(𝑘 − 1)

𝐴, 𝐵, 𝐺, 𝐻, 𝐶, 𝐷, 𝐸 , 𝐹, and 𝑍 are the discrete matrices, and the correlation coefficient matrices are given as
follows [18]:

𝐴 =


𝐴

𝐴2

...

𝐴𝑝−1

 𝑝∗1
, 𝐵 =



𝐵 0 . . . 0

𝐴𝐵 𝐵 . . .
...

. . . . . .
... 0

𝐴𝑝−1𝐵 𝐴𝑝−2𝐵 . . .
𝑝−𝑐∑
𝑙=0

𝐴𝑙𝐵

 𝑝∗𝑐
, 𝐺 =


𝐺 0 . . . 0

𝐴𝐺 𝐺 . . .
...

. . . . . .
... 0

𝐴𝑝−1𝐺 𝐴𝑝−2𝐺 . . . 𝐺

 𝑝∗𝑝

𝐻 =


𝐻1
𝐻2
...

𝐻𝑃

 𝑝∗1
, 𝐶 =


𝐶𝐴

𝐶𝐴2

...

𝐶𝐴𝑝−1

 𝑝∗1
, 𝐷 =



𝐶𝐵 0 . . . 0

𝐶𝐴𝐵 𝐶𝐵 . . .
...

. . . . . .
... 0

𝐶𝐴𝑝−1𝐵 𝐶𝐴𝑝−2𝐵 . . .
𝑝−𝑐∑
𝑙=0
𝐶𝐴𝑙𝐵

 𝑝∗𝑐
𝐸 =


𝐶𝐺 0 . . . 0

𝐶𝐴𝐺 𝐶𝐺 . . .
...

. . . . . .
... 0

𝐶𝐴𝑝−1𝐺 𝐶𝐴𝑝−2𝐺 . . . 𝐺𝐶𝐺

 𝑝∗𝑝
, 𝐹 =


𝐶𝐻1
𝐶𝐻2
...

𝐶𝐻𝑃

 𝑝∗1
, 𝑍 =


𝑍

𝑍
...

𝑍

 𝑝∗1
3.1.2. Performance index
For longitudinal following performance, a safe following distance must be guaranteed [19]:

Δ𝑥(𝑘) = 𝑥𝑝 (𝑘) − 𝑥(𝑘) ≥ 𝑑𝑠 (14)

In the process of driving, the acceleration of the host vehicle and the change rate of acceleration can be selected
as the evaluation indices for the ride comfort. While driving, the smaller the change in the rate of acceleration,
the better the ride comfort. In the case of fuel economy, the acceleration of the host vehicle is themain affecting
factor. Generally, during the driving process, the smoother the speed change, the higher the fuel economy.
Therefore, it is advisable to minimize the time required for the vehicle to undergo significant longitudinal
acceleration or deceleration during the following process and reduce the amplitude of the acceleration change
rate, which can effectively improve the fuel economy of vehicles. Therefore, the following indicators exist:

𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑘) ≤ 𝑣𝑚𝑎𝑥 (15)

𝑎𝑚𝑖𝑛 ≤ 𝑎(𝑘) ≤ 𝑎𝑚𝑎𝑥 (16)

𝑗𝑚𝑖𝑛 ≤ 𝑗 (𝑘) ≤ 𝑗𝑚𝑎𝑥 (17)
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3.1.3. Cost function
Themulti-objective optimization problem is converted into a quadratic programming problemby linearweight-
ing.

𝐽 = 𝑞𝛿 (𝛿 − 𝛿𝑟𝑒 𝑓 )2 − 𝑞𝑣 (𝑣𝑟𝑒𝑙 − 𝑣𝑟𝑒𝑙𝑟 𝑒 𝑓 )2 + 𝑞𝑎 (𝑎 − 𝑎𝑟𝑒 𝑓 )2 + 𝑞 𝑗 ( 𝑗 − 𝑗𝑟𝑒 𝑓 )2 (18)

Where 𝑞𝛿 stands for the weight of relative distance error, 𝑞𝑣 stands for the weight of relative velocity, 𝑞𝑎 stands
for the weight of acceleration, and 𝑞 𝑗 stands for the weight of acceleration change rate.

After eliminating terms that are irrelevant to control variables, the cost function of the established prediction
model can be expressed as:

𝐽 = 2{𝑥𝑇 (𝑘) [𝐶𝑇 − 𝐶𝑇Φ𝑇 ]𝑄𝐷 +𝑊 (𝑘 + 𝑝)𝑇𝐸𝑇𝑄𝐷 − [𝑍𝑇 − 𝑍𝑇Φ𝑇 ]𝑄𝐷 + 𝑒𝑥(𝑘)𝑇𝐹𝑇𝑄𝐷}

∗𝑈 (𝑘 + 𝑐) +𝑈 (𝑘 + 𝑐)𝑇 (𝑅 + 𝐷𝑇𝑄𝐷)𝑈 (𝑘 + 𝑐)
(19)

Here, 𝑄 is the weighting coefficient matrix for the output variables [20], 𝑄 = 𝑑𝑖𝑎𝑔(𝑞𝛿, 𝑞𝑣 , 𝑞𝑎 , 𝑞 𝑗 ), and 𝑅 is the
weighting coefficient for the control variables.

By incorporating the performance indices as constraints into the predictive model, the following expressions
are obtained: 

𝑀 ≤ 𝐿𝑋𝑝 (𝑘 + 𝑝) ≤ 𝑁

𝑈 (𝑘 + 𝑚) ≤ 𝑈𝑚𝑎𝑥
−𝑈 (𝑘 + 𝑚) ≤ −𝑈𝑚𝑖𝑛

(20)

The coefficient matrices in the above equation are:

𝑀 =


𝑑𝑐
𝑣𝑚𝑖𝑛
𝑎𝑚𝑖𝑛
𝑗𝑚𝑖𝑛


, 𝑁 =


∞
𝑣𝑚𝑎𝑥
𝑎𝑚𝑎𝑥
𝑗𝑚𝑎𝑥


, 𝐿 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 10 1


,𝑈𝑚𝑎𝑥 =


𝑢𝑚𝑎𝑥
...

𝑢𝑚𝑎𝑥

 ,𝑈𝑚𝑖𝑛 =

𝑢𝑚𝑖𝑛
...

𝑢𝑚𝑖𝑛


𝑀 =


𝑀

𝑀
...

𝑀

 𝑝∗1
, 𝑁 =


𝑁

𝑁
...

𝑁

 𝑝∗1
, 𝐿 =


𝐿 . . . 0
...

. . .
...

0 . . . 𝐿


After rearrangement, the standard form of the quadratic programming can be obtained as follows [21]:{
𝑚𝑖𝑛{𝑈 (𝑘 + 𝑚)𝑇𝐾1𝑈 (𝑘 + 𝑚) + 2𝐾2𝑈 (𝑘 + 𝑚)}

𝑠.𝑡.Ω𝑈 (𝑘 + 𝑚) ≤ 𝑇
, where 𝐾1 = 𝑅 + 𝐷𝑇𝑄𝐷,

𝐾2 = {𝑥𝑇 (𝑘) [𝐶𝑇 − 𝐶𝑇Φ𝑇 ]𝑄𝐷 +𝑊 (𝑘 + 𝑝)𝑇𝐸𝑇𝑄𝐷 − [𝑍𝑇 − 𝑍𝑇Φ𝑇 ]𝑄𝐷 + 𝑒𝑥(𝑘)𝑇𝐹𝑇𝑄𝐷},

Ω =


𝐿𝐵

−𝐿𝐵
𝐼

−𝐼


, 𝑇 =


𝑁 − 𝐿𝐺𝑊 (𝑘 + 𝑝) − 𝐿𝐴𝑥(𝑘) − 𝐿𝐻𝑒𝑥 (𝑘)
−𝑀 + 𝐿𝐺𝑊 (𝑘 + 𝑝) + 𝐿𝐴𝑥(𝑘) + 𝐿𝐻𝑒𝑥 (𝑘)

𝑈𝑚𝑎𝑥

−𝑈𝑚𝑖𝑛


3.2. Extension control
3.2.1. Partition of characteristic variables and extension sets
It is essential to ensure the longitudinal performance stability of theACC systemmentioned in this paper before
considering ride comfort, fuel economy, and other factors. Therefore, when the longitudinal following state
is not within an acceptable range, it is necessary to adjust the weight matrix of MPC. Based on actual driving
experience, it is known that the impact on passengers caused by the relative distance between two vehicles is
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Figure 2. One-dimensional extension set of following distance error.

more significant than the relative vehicle speed [22]. Therefore, in this paper, the longitudinal following error is
chosen as the characteristic variable, and the weight 𝑞𝛿 is adjusted further while setting 𝑞𝑣 , 𝑞𝑎 , 𝑞 𝑗 to constant
values. As a result, the evaluation criteria are that when the longitudinal following distance error is small, it
indicates that the ACC system’s following ability is strong; when the following distance error is large, it indicates
that the ACC system’s following ability is weak.

As shown in Figure 2, a one-dimensional extension set is established, and the boundary values of the classical
domain and the extension domain are defined as 𝑑1 and 𝑑2, respectively. According to the definition of the ex-
tension domain, 𝑑2 is specified as the maximum allowable value of the following distance error. The boundary
value of the classical domain is usually the smaller value, so their calculation formulas are as follows:

𝑑2 = 𝑑𝑚𝑎𝑥 ∗ 𝑆𝐷𝐸−1 (21)

𝑑1 = 0.1 ∗ 𝑑2 (22)

𝑆𝐷𝐸−1 = 𝑘𝑆𝐷𝐸𝑣𝑥 + 𝑑𝑆𝐷𝐸 (23)

where 𝑆𝐷𝐸−1 represents the sensitivity of the intelligent vehicle to the following distance error, and the values
of the relevant parameters are selected based on driver test data [23]:𝑑𝑚𝑎𝑥 = 7.2𝑚,𝑘𝑆𝐷𝐸 = 0.06,𝑑𝑆𝐷𝐸 = 0.12𝑚.

3.2.2. Calculate correlation degree
In the theory of extension control, it is believed that the correlation degree 𝐾 (𝑆) = 0 and 𝐾 (𝑆) = −1 reflect
qualified and unqualified responses to whether a feature variable can be accepted [24]. In the case of the lon-
gitudinal following distance error, the point of zero indicates the absence of the following distance error and
is also the ideal point of this feature variable. Additionally, the extensible distance is defined as the distance
from a point to a set. As shown in Figure 3, the classical domain is < 𝑂, 𝑑1 >= 𝑋𝑐 , and the extensible domain
is < 𝑑1, 𝑑2 >= 𝑋𝑒 . Therefore, the distance from point Q to the classical domain is defined as 𝜌(𝑄, 𝑋𝑐), and the
distance from point Q to the extensible domain is defined as 𝜌(𝑄, 𝑋𝑒):

𝜌(𝑄, 𝑋𝑐) =
{
−|𝑂𝑑1 |, 𝑄 ∈< 𝑂, 𝑑1 >

|𝑂𝑑1 |, 𝑄 ∈< 𝑑1, +∞ >
(24)

𝜌(𝑄, 𝑋𝑒) =
{
−|𝑂𝑑2 |, 𝑄 ∈< 𝑂, 𝑑2 >

|𝑂𝑑2 |, 𝑄 ∈< 𝑑2, +∞ >
(25)


𝐾 (𝑆) = 𝜌(𝑄, 𝑋𝑒)

𝐷 (𝑄, 𝑋𝑒, 𝑋𝑐)
𝐷 (𝑄, 𝑋𝑒, 𝑋𝑐) = 𝜌(𝑄, 𝑋𝑒) − 𝜌(𝑄, 𝑋𝑐)

(26)

3.2.3. Real-time weight design
According to the value of the correlation degree 𝐾 (𝑆), the measurement pattern can be divided as follows:

𝑀1 = {𝑆 |𝐾 (𝑆) > 1}
𝑀2 = {𝑆 |0 < 𝐾 (𝑆) < 1}

𝑀3 = {𝑆 |𝐾 (𝑆) < 0}
(27)

http://dx.doi.org/10.20517/ces.2023.15
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Figure 3. Measurement mode recognition flowchart.

The symbols𝑀1, 𝑀2, and 𝑀3 correspond to the classic domain, expandable domain, and non-domain, respec-
tively. When the following distance error is in 𝑀1, it indicates that the error is acceptable and the weight does
not need to be adjusted. When it is in 𝑀2, it means the error is about to exceed the limit and the weight needs
to be adjusted promptly. When in 𝑀3, it means the error is unacceptable and the weight must be increased im-
mediately to meet system requirements [25]. Figure 3 shows the calculation process of the measurement modes.

Therefore, the real-time weight calculation formula can be designed as follows:

𝑞𝛿 =


0.3, 𝐾 (𝑆) > 1

0.3 + 0.4 ∗ (1 − 𝐾 (𝑆)), 0 < 𝐾 (𝑆) < 1
0.4, 𝐾 (𝑆) < 0

(28)

3.3. Lower controller
First, an inverse engine model is established, assuming that the vehicle is traveling on a straight road with a
zero slope [26]:

The vehicle driving equation is as follows:

𝐹𝑡 = 𝐹 𝑓 + 𝐹𝑤 + 𝐹𝑗 (29)

Where 𝐹𝑡 represents driving force, 𝐹 𝑓 represents rolling resistance, 𝐹𝑤 represents air resistance, and 𝐹𝑗 repre-
sents acceleration resistance. Furthermore, 𝑇𝑑𝑒𝑠 = 𝐹𝑡 ∗

𝑟𝑒 𝑓 𝑓
𝑖𝑔𝑖0𝜂𝑇

, which can be obtained after unfolding:

𝑇𝑑𝑒𝑠 =
(𝑚𝑔 𝑓 + 1

2𝐶𝐷𝐴𝜌𝑣
2 + 𝛿𝑚𝑎𝑑𝑒𝑠)𝑟𝑒 𝑓 𝑓

𝑖𝑔𝑖0𝜂𝑇
(30)

𝛿 = 1 + 1
𝑚

∑
𝐼𝑤
𝑟2 + 1

𝑚

𝐼 𝑓 𝑖
2
𝑔𝑖

2
0𝜂𝑇

𝑟2 (31)
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Figure 4. Throttle opening curve surface.

In the equation, 𝑇𝑑𝑒𝑠 stands for desired engine torque, 𝑚 stands for the total the vehicle mass, 𝑔 stands for the
gravitational acceleration, 𝑓 stands for the road friction coefficient, 𝐶𝐷 stands for the air resistance coefficient,
𝐴 stands for the frontal area,𝛿 stands for the rotational mass conversion coefficient, 𝑟𝑒 𝑓 𝑓 stands for the effective
radius of the wheel, 𝑖𝑔 stands for the transmission ratio of the gearbox [27], 𝑖0 stands for the transmission ratio
of themain reducer, 𝜂𝑇 stands for the transmission efficiency, 𝐼 𝑓 stands for the rotational inertia of the flywheel,
and 𝐼𝑤 stands for rotational inertia of the wheel [28].

Based on the throttle opening curve shown in Figure 4, the current expected throttle opening can be obtained
from the expected torque and engine speed and output to the vehicle model.

Secondly, an inverse brake model is established, assuming a linear relationship between the brake master cylin-
der pressure and the braking torque [29]: The magnitude of braking torque can be derived from the resistance
torque function:

𝐹𝑏𝑟 = 𝐹 𝑓 + 𝐹𝑤 + 𝐹𝑗 (32)

𝐹𝑏𝑟represents the sum of the braking forces acting on the wheels, and there is 𝑇𝑏𝑟 = 𝐹𝑏𝑟 ∗ 𝑟𝑒 𝑓 𝑓 . Therefore:

𝑇𝑏𝑟 = 𝑟𝑒 𝑓 𝑓 (𝛿𝑚𝑎𝑑𝑒𝑠 − 𝑚𝑔 𝑓 −
1
2
𝐶𝐷𝐴𝜌𝑣

2) (33)

𝑃𝑏𝑟 = 𝑇𝑏𝑟/𝐾1 (34)

Where 𝑇𝑏𝑟 stands for braking torque, 𝑃𝑏𝑟 stands for brake pressure, and 𝐾1 stands for the linearity coefficient.
The next step is to establish the logic for switching between the accelerator and brake. Based on experimental
data, the baseline for the switching logic can be obtained. In order to avoid frequent switching between the
accelerator and brake and ensure the smoothness and fuel economy of the vehicle, we set threshold values for
the accelerator and brake by shifting the curve up and down. The switching curve is shown in Figure 5.

4. RESULTS
4.1. Simulation condition settings
The E-type car in Carsim was selected for use in this paper, and the setting of vehicle parameters can be seen
in Figure 6.

At the same time, the input variables of the Carsim interface are set as brake master cylinder pressure signals
and open loop throttle control signals; output variables are relative distance, relative speed, host vehicle longi-
tudinal speed, host vehicle acceleration, engine crankshaft spin, transmission gear ratio. The simulated road
conditions are set to a straight track with a length of 500 meters, and the road friction coefficient is set to a
constant value of 0.9. As shown in Figure 7, in the driver control section, the initial speed is set to 30 km/h, and

http://dx.doi.org/10.20517/ces.2023.15
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Figure 5. Throttle/brake switching logic diagram.

Figure 6. Parameters of vehicle model.

the brake control signal is provided by the upper controller, so it is set to a constant value of 0; the transmission
is set to 6-speed transmission.

4.2. Analysis of simulation results
According to the previous introduction, the overall control structure is built, as shown in Figure 8.

Three distinct working conditions were set to verify the effectiveness of the proposed control method, and
the control results under the traditional MPC were taken as the control. The simulation results are shown in
Figures 9-11.

In working condition 1, the target speed is set as the sine curve between 30 km/h and 50 km/h. (A), (B), and
(C) in Figure 9 show the variation curves of vehicle speed, the relative speed of the preceding and host vehicles,
and the acceleration of the host vehicle, respectively. It can be seen from the speed curve that in the whole
simulation process, the speed of the host vehicle controlled by an extension theory is closer to the speed curve
of the target vehicle, with a maximum error of 0.6km/h. Furthermore, the relative speed of the two vehicles
is smaller than that controlled under traditional MPC. The overall amplitude variation range is reduced by
50%, which indicates that the tracking effect of the host vehicle is better. In addition, it can be seen from the
acceleration curve that the variation amplitude of vehicle acceleration under the extension control is smaller.
Compared with the traditional MPC, the oscillation amplitude of acceleration is reduced by 8%; therefore, the
ride comfort and fuel economy of the vehicle are also optimized. In the second condition, the speed of the
preceding vehicle is set to accelerate to 50 km/h and maintained for 5 s, and then it changes between 30 km/h

http://dx.doi.org/10.20517/ces.2023.15
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Figure 7. Settings of the host vehicle model.

Figure 8. Model control structure.

and 50 km/h. It can be seen from the speed curve and relative speed curve that extension control has more
advantages in tracking effect in the acceleration stage. The control method has a certain optimization effect,
and the maximum error of tracking speed is 0.66km/h. However, in the deceleration stage, for example, the
range of relative speed variation of 35–40 s is larger than that in the traditional MPC, and the range increases
by 43%. This indicates that the control effect of extension control on relative distance error is not ideal under
the current working conditions, so the extension control on relative speed can be considered to generate a new
real-time weight matrix for further optimization.

In the third condition, the speed of the preceding vehicle was set to accelerate from 30 km/h to 50 km/h, and it
remained unchanged in the following simulation process. It can be found that in the entire simulation process,
the vehicle speed under the extension control is closer to the target speed, the maximum relative speed error is

http://dx.doi.org/10.20517/ces.2023.15
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(a)

(b)

(c)

Figure 9. Simulation results of working condition No.1. a: condition No.1 vehicle speed; b: condition No.1 relative speed; c: condition No.1
acceleration.

0.64 km/h, and the variation range of relative speed and acceleration is reduced by 40% and 17%, respectively.
The results show that when compared with the traditional MPC, there is an optimization effect, and the goal of
multi-objective ACC is achieved. However, in the 35–50 s range, that is, the constant speed stage, the relative
speed curve has a small amplitude of oscillation, which also appears in the acceleration curve. The amplitude
increases by 20% compared with that controlled by the traditional MPC, indicating that the current control
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(a)

(b)

(c)

Figure 10. Simulation results of working condition No.2. a: condition No.2 vehicle speed; b: condition No.2 relative speed; c: condition No.2
acceleration.

method can improve the vehicle performance to a greater extent in the acceleration stage. However, under
the condition of constant speed, the weight setting corresponding to the acceleration change rate needs to be
updated. Therefore, an extension control theory should be applied to the corresponding state variable in future
research to optimize the control results.
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(a)

(b)

(c)

Figure 11. Simulation results of working condition No.3.a: condition No.3 vehicle speed; b: condition No.3 relative speed; c: condition No.3
acceleration.

5. DISCUSSION
When the traditional MPC is working under straight road conditions and the following distance between two
vehicles is kept within the expected range, the risk of deterioration of ride comfort and fuel economy of the ve-
hicle will be greatly increased. Therefore, the extension theory is introduced to construct the real-time weight
matrix, and the weight coefficient of multiple targets is coordinated to improve other performance under the
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premise of ensuring safety. This paper chooses the longitudinal following distance error of vehicles as the
state vector and divides the classical, extendable, and non-domain based on an extension theory. According
to different measurement modes, this paper selects different weight coefficient values to construct a real-time
variable weight matrix. The simulation results of target vehicle speed tracking effects and acceleration change
ranges show that the performance of the ACC vehicle controlled by an extension theory under the three work-
ing conditions is optimized compared with that controlled by the traditionalMPC.Thismeans that this control
method can improve the ride comfort and fuel economy of the vehicle to achieve multi-target ACC.

This paper has several limitations:(1) In vertical control, selecting only one state variable for optimization
cannot fully utilize the advantages of the extension theory; (2) The difference between simulated working
conditions is not particularly significant: it cannot represent an optimization effect on the actual vehicle. In
future research, the lateral stability of the vehicle should be further investigated, the horizontal and longitudinal
jointMPC control should be established, and extension coordinated control theory should be utilized to change
the weighted matrix coefficients in real time to adapt to curved driving conditions.
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