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Abstract
Globally, cancer, as a major public health concern, poses a severe threat to people’s well-being. Advanced and 
specialized therapies can now cure the majority of people with early-stage cancer. However, emerging resistance 
to traditional and novel chemotherapeutic drugs remains a serious issue in clinical medicine. Chemoresistance 
often leads to cancer recurrence, metastasis, and increased mortality, accounting for 90% of chemotherapy 
failures. Thus, it is important to understand the molecular mechanisms of chemoresistance and find novel 
therapeutic approaches for cancer treatment. Among the several factors responsible for chemoresistance, calcium 
(Ca2+) dysregulation plays a significant role in cancer progression and chemoresistance. Therefore, targeting this 
derailed Ca2+ signalling for cancer therapy has become an emerging research area. Of note, the Ca2+ signal and its 
proteins are a multifaceted and potent tool by which cells achieve specific outcomes. Depending on cell survival 
needs, Ca2+ is either upregulated or downregulated in both chemosensitive and chemoresistant cancer cells. 
Consequently, the appropriate treatment should be selected based on Ca2+ signalling dysregulation. This review 
discusses the role of Ca2+ in cancer cells and the targeting of Ca2+ channels, pumps, and exchangers. Furthermore, 
we have emphasised the role of Ca2+ in chemoresistance and therapeutic strategies. In conclusion, targeting Ca2+ 
signalling is a multifaceted process. Methods such as site-specific drug delivery, target-based drug-designing, and 
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targeting two or more Ca2+ proteins simultaneously may be explored; however, further clinical studies are essential 
to validate Ca2+ blockers’ anti-cancer efficacy.

Keywords: Calcium, cancer, chemoresistance, exosome, apoptosis, calcium channels, multidrug resistance

INTRODUCTION
Despite advances in technology and available treatments, cancer remains the second leading global cause of 
death[1]. With improved therapeutic approaches, most patients with early-stage cancer are now curable. 
There are several treatment options, including conventional and advanced treatments, based on cancer 
stage, histology, and biomarkers. Conventional treatments are chemotherapy, radiation, and surgery, while 
advanced treatment options include hyperthermia, ferroptosis-based therapy, immunotherapy, stem cell 
transplant, targeted therapy, hormone therapy, gene therapy, phototherapy, and others[2,3]. Of these, 
chemotherapy is the most preferred mode of treatment by oncologists as a primary treatment to reduce the 
cancer burden. Abraxane, bortezomib, cisplatin, docetaxel, doxorubicin, paclitaxel, and temozolomide are 
some examples of anti-cancer drugs used in chemotherapy[4]. However, chemotherapy has many challenges, 
such as non-specific drugs, side effects, rapid metabolism of drugs, and ineffective drugs. Furthermore, 90% 
of the major factor contributing to chemotherapy failure is chemoresistance[5]. Intrinsic or acquired 
chemoresistance is a major hurdle in successful cancer treatment as it often leads to cancer relapse and 
metastasis, which, in turn, reduces the efficacy of cancer treatment and causes patient death. This resistance 
can arise either to a single anti-cancer drug or to multiple anti-cancer drugs that differ structurally and/or 
functionally[6,7]. This is due to underlying genetic mutations, tumour heterogeneity, activated intrinsic 
pathways, pharmacological factors, and the tumour microenvironment (TME)[3,7,8]. Moreover, it is vital to 
find novel therapeutic strategies to overcome chemoresistance. For this, it is necessary to understand the 
molecular mechanisms of chemoresistance, which include tumour suppressor genes, transporters, pumps, 
oncogenes, mitochondrial alteration, autophagy, epithelial-mesenchymal transition (EMT), DNA repair, 
cancer stemness, and exosome[9-11].

Several studies have emphasised the role of calcium (Ca2+) in cancer progression and chemoresistance[12]. 
Being a secondary messenger, Ca2+ plays a crucial role in maintaining cellular functions, apoptosis, and 
regulating the network of Ca2+ signalling in cells. Disrupted Ca2+ signalling networks in cancer cells implicate 
a critical role of Ca2+ in assisting cancer cells in growing and overcoming the anti-cancer effects of drugs. In 
the past decade, there have been significant breakthroughs in our understanding of how the Ca2+ signal may 
influence or even drive pathways that are crucial for therapeutic resistance in cancer. Since it is not possible 
to review the large number of studies done in this area, cancer studies targeting the Ca2+ signalling proteins 
are briefly described here. In addition, studies targeting Ca2+ signalling and its proteins to overcome 
chemoresistance are also summarised. Thus, in this review, we aim to understand the role and potential 
therapeutic strategies of targeting Ca2+ proteins in chemoresistant cancer cells.

CA 2+ SIGNALLING VIA CA 2+ CHANNELS, PUMPS, AND EXCHANGERS
Ca2+ is a multifaceted tool that plays a significant role as a secondary messenger in several cellular functions, 
such as cell growth and division, migration, absorption, secretion, transcellular transport, signalling, and 
apoptosis[13]. In cells in the resting phase, the cytoplasmic Ca2+ concentration ([Ca2+]cyt) is 100 nM and the 
extracellular Ca2+ concentration ([Ca2+]ext) is 1-2 mM. In intracellular Ca2+ stores, such as endoplasmic 
reticulum (ER) ([Ca2+]ER), the Ca2+ concentration is > 100 µM. In mitochondria ([Ca2+]mit) and the nucleus, 
the Ca2+ concentration remains the same as in the cytoplasm. Upon activation of the Ca2+ signalling 
proteins, the [Ca2+]cyt can exceed 1 µM[14-18]. This changed Ca2+ level initiates several signalling cascades. 
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Sustained elevation of Ca2+ levels can lead to cell death; hence, a controlled Ca2+ level is maintained by Ca2+ 
channels, pumps, and exchangers. As illustrated in Figure 1, these Ca2+-related proteins are located on both 
the plasma membrane and cellular organelles, including the ER, mitochondria, Golgi apparatus (GA), and 
lysosomes[18-20]. Ca2+ binding proteins present in cells are calmodulin (CaM), parvalbumin, calcineurin, S100 
protein, and several other proteins that are present in both extracellular and intracellular regions[21].

On the plasma membrane, voltage-gated Ca2+ channels (VGCC), store-operated Ca2+ channels (SOCC), 
transient receptor potential (TRP) channels, Na+/Ca2+ exchanger (NCX), and plasma membrane Ca2+ 
ATPase (PMCA) are present. Depending on the electrophysiological properties and the genes encoding 
them, there are five types of VGCC: L-type (LTCC), P/Q type (P/QTCC), N-type (NTCC), R-type (RTCC), 
and T-type (TTCC). LTCC has four isoforms: Cav1.1-1.4. P/QTCC, NTCC, and RTCC each have one 
isoform: Cav2.1, Cav2.2, and Cav2.3, respectively. TTCC has three isoforms: Cav3.1-3.2[22]. These channels are 
activated upon reaching their respective voltage threshold during the voltage change in the membrane. 
LTCC, P/QTCC, NTCC, and RTCC are high-voltage-activated (HVA) channels, while TTCC is a low-
voltage-activated (LVA) channel. Therefore, HVA channels are mostly found in excitable cells, and TTCC is 
found mostly in non-excitable cells. However, HVA channels are also found to be expressed in some non-
excitable cells[18]. SOCC has two subunits: ORAI and stromal interacting molecule (STIM). ORAI is present 
on the plasma membrane, while STIM is located on the ER. ORAI has three isoforms: ORAI1-3. STIM has 
two isoforms: STIM1 and STIM2[23]. Upon Ca2+ depletion in the ER, ORAI and STIM proteins are 
relocalized to plasma membrane-ER junctions and interact afterwards with each other to activate Ca2+ 
influx[18,24-26]. This process is termed store-operated Ca2+ entry (SOCE). ORAI channels can also lead to Ca2+ 
influx driven by arachidonic acid without interacting with STIM proteins[18]. TRP has 28 different families 
divided into six subfamilies encoded by TRP genes such as TRPC (canonical), TRPV (vanilloids), TRPM 
(melastatin), TRPA (ankyrin), TRPP (polycystins), and TRPML (mucolipins)[27,28]. TRPC7 enhances cell 
growth and migration with the activation of Ca2+/CaM-dependent protein kinase II (CAMKII), 
phosphatidylinositol 3-kinase (PI3K)/Akt, and extracellular signal-regulated kinase (ERK)[29]. Three 
isoforms of NCX are found in cells: NCX1-3[30]. NCX functions in both forward and reverse modes. In the 
forward mode, it transfers three Na+ ions inside and two Ca2+ ions outside the cells and thus acts as an anti-
apoptotic channel. In the reverse mode, it transfers three Na+ ions outside and two Ca2+ ions inside and thus 
acts as a pro-apoptotic channel by increasing the Ca2+ accumulation in the cells[31]. PMCA is an ATP-based 
Ca2+ pump, helping to maintain low [Ca2+]cyt. PMCA has four isoforms: PMCA1-4[32,33]. This pump removes 
one Ca2+ ion per ATP molecule utilized[33].

On the ER membrane, sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), STIM, inositol-1,4,5-
trisphosphate receptor (IP3R), and ryanodine receptor (RyR) are present. Unlike PMCA, SERCA removes 
two Ca2+ ions from the cytosol to the ER[33]. Ca2+ release from the ER takes place with the help of IP3R and 
RyR. IP3R has three isoforms: IP3R1-3[26]. IP3R is involved in SOCE by reducing [Ca2+]ER and thereby 
stimulating the activation of STIM1 and ORAI1 to replenish the ER Ca2+ level[26]. RyR has three isoforms: 
RyR1-3[34]. Upon VGCC activation, the influx of Ca2+ from the extracellular region increases [Ca2+]cyt, which 
results in the inactivation of VGCC in a negative feedback mechanism. The resulting increased Ca2+ ions in 
the cytosol then induce activation of RyR, which in turn releases Ca2+ from the ER, and thus the process is 
called “Ca2+-induced-Ca2+-release” (CICR)[34-36]. On mitochondria, the mitochondrial Ca2+ uniporter (MCU) 
complex and Na+/Ca2+/Li+ exchanger (NCLX) are present. Cytosolic Ca2+ enters mitochondria through the 
MCU complex, controlled by a voltage-dependent anion channel (VDAC)[37]. Like NCX, NCLX also 
functions in forward and reverse modes. In the forward mode, NCLX transfers Ca2+ from mitochondria to 
the cytosol, and in the reverse mode, it transfers Ca2+ from the cytosol to mitochondria[38]. In the GA, along 
with IP3R, RyR, and SERCA, the secretory-pathway Ca2+ ATPase (SPCA) is also expressed. SPCA has two 
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Figure 1. Schematic representation of major Ca2+ signalling proteins. Extracellular Ca2+ is transported to the cytoplasm through VGCCs, 
SOCC (ORAI), and TRP channels. Organelle Ca2+ is transported to the cytoplasm through mitochondrial NCLX, IP3R, and RyR. 
Cytoplasmic Ca2+ is removed by NCX, PMCA, SOCC (STIM), SERCA, and MCU. NCLX: Na+/Ca2+/Li+ exchanger; SERCA: 
sarco/endoplasmic reticulum Ca2+ ATPase; VGCCs: voltage-gated Ca2+ channels; SOCE: store-operated Ca2+ entry; STIM: stromal 
interacting molecule; TRP: transient receptor potential; IP3R: inositol-1,4,5-trisphosphate receptor; NCX: Na+/Ca2+ exchanger; PMCA: 
plasma membrane Ca2+ ATPase; RyR: ryanodine receptor; VDAC: voltage-dependent anion channel; MCU: mitochondrial Ca2+ 
uniporter; SOCC: store-operated Ca2+ channels.

isoforms, SPCA1 and SPCA2. It transfers one Ca2+ ion at a time inside GA[39]. Lysosomes are also known to 
function as Ca2+ stores, though less extensively than the ER. Endocytosis,  Ca2+/H+ exchanger, TRP channels, 
and multiple Ca2+ sensors including CaM help in Ca2+ homeostasis in lysosomes[18,20].

During the cell cycle, Ca2+ is required in the early G1 phase and in the transition from G1 to S, G2 to M, and 
metaphase to anaphase. CaM and its downstream targets, CaMKII, calcineurin, and protein kinase C 
(PKC), are direct effectors of Ca2+ signalling. In turn, they regulate transcription factors such as the nuclear 
factor of activated T cells (NFATs), cyclic adenosine monophosphate (cAMP)-responsive element-binding 
(CREB) protein, and nuclear factor-κB (NFκB) for cell-cycle progression[12,13,40]. CaM assists in the 
progression through the G1 and M phases. Calcineurin is required for the transition from the G1 to S 
phases and cyclin D1 expression during the G1 phase[12]. Ca2+ and CaMKII also regulate centrosome 
duplication and the separation of chromosomes into daughter cells[12].

Ca2+ signalling in cancer cells
In pathological conditions like cancer, Ca2+ signalling is frequently disrupted due to the dysregulation of 
various Ca2+ channels, pumps, exchangers, and binding/storage proteins[13,41]. This dysregulation is caused by 
mutations, changes in expression, regulation, and/or subcellular targeting of the Ca2+ signalling proteins[13]. 
Excessive Ca2+ levels are toxic to cells, thus requiring tight regulation of Ca2+ signalling. Despite this, cancer 
cells can thrive in high-Ca2+ environments due to their additional need for Ca2+ to support increased cell 
division, cell signalling, and tissue invasion[18]. In contrast to this, some studies have reported that cancer 
cells have a reduced dependence on Ca2+ for proliferation[12] and evading apoptosis[13].
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Henceforth, dysregulated Ca2+ signalling proteins either increase or decrease Ca2+ levels in cancer cells 
depending on their perceived benefit to survival. Reduced expression of some VGCCs in cancer tissue 
compared to normal tissue is also seen, indicating the possible role of those Ca2+ channels as tumour 
suppressor gene markers[42]. Studies have also shown that monomeric and heteromeric channels exhibit 
different advantages or disadvantages to cancer cells. For example, ORAI1-ORAI3 heteromers induce 
apoptosis resistance in prostate cancer cells compared to ORAI1 monomers through reduced SOCE because 
the number of ORAI1 monomers is reduced. Similarly, because of the increase in the number of this 
heteromer, there is an increased proliferation signalling via arachidonic acid[40,43].

In cancer cells, increased production of reactive oxygen species (ROS) leads to the accumulation of ROS at 
the plasma membrane. This leads to post-translational modification of the plasma membrane channels, 
thereby promoting Ca2+ entry into the cells to counteract the ROS activities[18]. Furthermore, disrupted Ca2+ 
signalling promotes the activation of Ca2+-dependent transcription factors such as NFAT and G1 cyclins 
such as c-Myc, c-Jun, and c-Fos. These factors promote cancer growth by inducing the expression of G1 
and G1/S phase transition cyclins and associated cyclin-dependent kinases (CDK4 and CDK2)[12,13]. Ca2+ is 
also involved in pathways such as mitogen-activated protein kinases (MAPK) and PI3K/Akt that promote 
malignancy in cancer cells[29].

Excessive Ca2+ stimulates Ca2+-sensitive catabolic enzymes such as proteases and endonucleases[44]. As shown 
in Figure 2, elevated [Ca2+]cyt, facilitated by channels such as TRP and ORAI1-ORA3 heteromers, activates 
CaMKII, ultimately inhibiting caspases 8 and 9 and promoting cell survival[43]. However, cancer cells show 
reduced Ca2+ signalling from the ER required for apoptosis. Therefore, blockage of SERCA by Cartilage 
Oligomeric Matrix Protein (COMP1) reduces Ca2+ uptake in the ER. Furthermore, ORAI1 monomers are 
responsible for ER-induced apoptosis. Thus, downregulation of ORAI1 further inhibits apoptosis[43]. B-cell 
lymphoma-2 (Bcl-2), an anti-apoptotic protein, modulates ER Ca2+ signalling to regulate the apoptosis 
pathway. Several studies have shown that Bcl-2 is overexpressed in cancer cells[45]. Oncogenes such as rat 
sarcoma (RAS), Akt, and miR-25 also regulate Ca2+ signalling or proteins responsible for Ca2+-dependent 
apoptosis to prevent apoptosis[46]. Increased [Ca2+]mit is also associated with apoptosis. Increased Ca2+ levels 
in mitochondria reduce its membrane integrity by opening the mitochondrial permeability transition pore. 
Subsequently, pro-apoptotic factors are released from mitochondria[40]. However, regulation of oncogenes 
such as Kristen rat sarcoma (KRAS) 2 viral oncogene homolog and tumour suppressor proteins such as p53 
by Ca2+ signalling subsequently reduces [Ca2+]mit and thereby promotes cancer cell survival[25,40]. 
Mitochondrial-induced apoptosis is also inhibited by downregulating IP3R. IP3R is downregulated by 
COMP1 and F-box protein (FBXL2). Phosphatase and tensin homolog (PTEN) (deleted on chromosome 
10) inhibits the activity of FBXL2. However, its mutation or inactivation leads to the upregulation of FBXL2, 
which targets IP3R3 for proteasome degradation[17,43]. IP3R downregulation reduces [Ca2+]mit and thereby 
prevents mitochondrial-induced apoptosis. Apart from apoptosis, Ca2+ also regulates other cell death modes 
such as autophagy, necrosis, anoikis, entosis, and ferroptosis, reviewed in other papers[40,44,47,48]. Although 
there is still a lack of clear understanding regarding how Ca2+ regulates different cell death modes, increased 
and sustained [Ca2+]cyt is often associated with necrosis and other death modes such as necroptosis[40].

Ca2+ signalling is known to regulate many immune-associated pathways in cancer cells[27]. Examples include 
the activation of STAT3, a transcription factor in cancer, as well as MAPK pathway, Akt pathway, and Wnt 
pathway[27]. TME is also remodelled due to Ca2+ signalling[27]. Ca2+ also induces chemoresistance by 
facilitating cancer cell invasion and metastasis[25]. Metastasis accounts for more than 90% of cancer-related 
deaths. Overexpression of several Ca2+ proteins is associated with metastasis[25]. Prerequisite steps in 
metastasis such as pro-migratory signals, movement rate, directional control, and extracellular matrix 
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Figure 2. Apoptosis inhibition in cancer cells. Increased Ca2+ influx through upregulated VGCC, TRP, and ORAI1-ORAI3 heterodimer
leads to activation of CAMKII, which inhibits pro-apoptotic caspases 8 and 9. Downregulation of ORAI1 monomer and SERCA reduces
[Ca2+]ER. IP3R downregulation leads to decreased [Ca2+]mit and hence inhibition of caspases 8 and 9. Reduced [Ca2+]ER and [Ca2+]mit lead
to apoptosis inhibition. (red up arrow: upregulation, blue down arrow: downregulation, ┴: inhibition). SERCA: sarco/
endoplasmic reticulum Ca2+ ATPase; VGCC: voltage-gated Ca2+ channel; TRP: transient receptor potential; COMP1: cartilage
oligomeric matrix protein; IP3R: inositol-1,4,5-trisphosphate receptor; VDAC: voltage-dependent anion channel; CAMKII: Ca2+/CaM-
dependent protein kinase II; MCU: mitochondrial Ca2+ uniporter; PTEN: phosphatase and tensin homolog; FBXL2: F-box protein.

(ECM) degradation are dependent on Ca2+ signalling[40]. Channels like ORAI1 and TRPV2 play roles in 
cancer cell invasion through the ECM and formation of invadopodia. Other pathways such as ROS 
production and cAMP pathways are also modulated by Ca2+, contributing to cancer cell migration and 
invasion. However, Ca2+ proteins involved in cancer cell migration and invasion vary among cancer types 
and stimuli[40].

Furthermore, Ca2+ signalling is also known to regulate epigenetic mechanisms[49]. Changes in the DNA 
methylation and histone post-translational modifications are in good relation with the altered gene 
expression of Ca2+ signalling proteins such as the cadherin and VGCCs in all breast cancer subtypes[50]. 
Targeting Ca2+ signalling can reactivate tumour suppressor genes silenced by cancer cell epigenetics. In 
colon cancer, altered Ca2+ signalling results in activated Ca2+ CaM kinase which plays a central role in 
tumour-suppressor genes reactivation and suppressing cancer cell growth[51]. Program death ligand 1 
(PDL-1), an immune suppressive molecule that binds to receptor program death protein 1 (PD-1) and 
promotes tumour progression by evading immune response, is present in exosomes produced from cancer 
cells. Ca2+ signalling is known to control both the generation and secretion of exosomes produced from 
cancer cells[52] by influencing the Rab GTPase family and membrane fusion factors[53]. Preclinical studies 
with CT26 tumour-bearing mice have mentioned that blocking Ca2+ channels using dimethyl amiloride 
(DMA) inhibits exosome release[54]. Combining anti-PDL-1 antibody therapy with exosome secretion 
inhibition using Ca2+ channel blockers (CCBs) may enhance efficacy. Exosome PDL-1 represents a 
prominent therapeutic target in immunotherapy resistance[52].
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TARGETING CA 2+ SIGNALLING PROTEINS INVOLVED IN CANCER
Ca2+ proteins present in the plasma membrane
The plasma membrane serves as a crucial interface for Ca2+ signalling. Targeting the plasma membrane Ca2+ 
signalling proteins can significantly impact [Ca2+]cyt by modulating the entry and exit of Ca2+ ions through 
VGCCs, ORAI, TRPs, NCX, and PMCA. This modulation can either decrease or increase [Ca2+]cyt, thereby 
placing a burden on intracellular Ca2+ signalling proteins to maintain [Ca2+]cyt. However, sustained 
modulation is impractical due to the interconnected activities of plasma membrane and intracellular 
proteins.

Dysregulation of various channels, pumps, transporters, and proteins occurs in different cancer types, 
leading to either upregulation or downregulation depending on their survival benefits[42,55]. For instance, in a 
clinical study on lung adenocarcinoma, TRPC7 expression varied among patients[29]. Consequently, studies 
have explored the modulation of Ca2+ levels as a therapeutic target. In hepatocarcinoma cells, fluorouracil 
(5FU) induced cell death by inhibiting Ca2+ influx through ORAI1 channels[56], while in colon carcinoma 
cells, it exerted cytotoxic effects by elevating [Ca2+]cyt level to activate CaM, triggering apoptosis via p53 
phosphorylation[57].

Overexpression of Ca2+ channels, pumps, or exchangers is associated with cancer prognosis. For example, 
NTCC overexpression correlates with poor survival in patients with non-small cell lung cancer (NSCLC)[58] 
and adult adrenocortical carcinoma (ACC)[59], while it predicts good prognosis in gliomas[60]. Similarly, 
TRPM2 expression negatively correlates with prognosis in hepatocellular carcinoma patients[61]. In lung 
adenocarcinoma patients, overexpression of TRPC7 is associated with poor prognosis and lower survival 
rates[29]. The study by Wang et al. has shown that overexpression of PMCA4 is associated with good 
prognosis in gastric cancer patients[62].

Targeting these proteins induces cancer cell death through various modes, including apoptosis, autophagy, 
necrosis, entosis, and ferroptosis. Different channels are associated with different modes of cell death. For 
instance, ORAI1 plays a role in entosis in cancer development via the septin-ORAI1-Ca2+/CaM-myosin light 
chain kinase (MLCK)-actomyosin axis[63]. The study by Lee and Park showed that when blocking or 
knocking out the ORAI1 channel, there was reduced entosis in the MCF7 breast cancer cells[63]. Notably, the 
role of entosis in cancer remains unclear[64], but both invading and engulfing cells require intracellular Ca2+ 
signalling for entosis.

Ca2+ proteins present in intracellular organelles
Similar to plasma membrane Ca2+ signalling proteins, Ca2+ signalling proteins within intracellular organelles 
are associated with different modes of cell death and cancer prognosis. Reduced [Ca2+]ER protects cancer 
cells from apoptosis and resistance to cisplatin and taxol[58,65]; increased [Ca2+]ER, facilitated by upregulated 
IP3R and RyR, promotes proliferation, migration, invasion, malignancy, and apoptosis in various cancer 
cells[66].

Increased [Ca2+]mit is associated with apoptosis and necrosis[58,65]. MCU promotes ferroptosis under cystine 
deprivation, while inhibiting ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition[67,68]. 
Accumulation of lipid ROS, either due to cysteine deprivation or inactivated GPX4 (the enzyme required to 
remove lipid ROS), leads to ferroptosis[68]. Cells overexpressing MCU upregulate cysteine consumption to 
remove lipid ROS. This leads to cysteine deprivation, which in turn induces the transcription of 
“Ferroptosis Signature” genes[67]. This ferroptosis due to cysteine deprivation is inhibited on MCU 
knockout[67]. In contrast, in a study by Marmolejo-Garza et al., it is shown that MICU1 from the MCU 
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complex has a protective role against ferroptosis. On knocking out MICU1 in HT22 (mouse hippocampal 
neuronal cell line) and mouse embryonic fibroblasts (MEF) cells, they showed increased sensitivity of these 
cells toward ferroptosis[69]. Moreover, altered expression of the MCU complex is associated with poor 
prognosis, increased metastasis, migration, invasion, and metabolic stress resistance in cancers[67,70].

Furthermore, SPCA1 and SPCA2 overexpression in the GA is associated with a pro-survival role in breast 
cancer[71-73]. Knocking down SPCA1[73] and SPCA2[72] has shown to reduce MDA-MB-231[73] and MCF-7[72] 
breast cancer cells proliferation, respectively. Knockdown of SPCA2 has also shown anchorage-independent 
growth of MCF-7 cells and tumour formation in mice models[72,73]. However, the role of SPCA2 in tumour 
progression is indirect by increasing Ca2+ influx across the plasma membrane by activating ORAI1 channels 
after SPCA2 is localized at the plasma membrane on its overexpression[73].

Further, it is reported that lysosomal Ca2+ signalling through TRPML1 and TPC2 regulates autophagy[20,74]. 
Targeting these channels has been shown to impair autophagy in non-cancer cells such as ARPE-19 (retinal 
pigment epithelium cell line)[74], thereby indicating the possibility of deregulating autophagy in cancer cells 
by targeting TRPM channels. In addition to autophagy, lysosomal Ca2+ signalling is also involved in 
proliferation, metastasis, angiogenesis, and multidrug resistance[74].

Table 1 summarizes the channels, pumps, and exchangers targeted in various studies and their effects on the 
subjects. Data reveal that each protein exhibits cell-specific, isoform-specific, and treatment-specific effects.

INTERSECTION BETWEEN CA 2+ SIGNALLING AND CHEMORESISTANCE: FROM 
PATHWAYS TO THERAPEUTIC INTERVENTIONS
Chemotherapy often produces encouraging responses in cancer patients. However, patient life expectancy is 
ultimately constrained by chemotherapy resistance throughout treatment. Ca2+ signalling also significantly 
contributes to chemoresistance in cancer cells. Of note, [Ca2+]cyt may play a role in the development of 
intrinsic and acquired chemoresistance[98,99].

The Ca2+ channel TRPC5 has been shown to induce resistance in non-resistant breast cancer cells by 
increasing Ca2+ influx. This typically occurs after the transfer of TRPC5, present in extracellular vesicles of 
resistant breast cancer cells, to non-resistant breast cancer cells. Subsequently, the Ca2+ influx induces the 
expression of multidrug resistant ATPase 1 (MDR ATPase) via the Ca2+-dependent transcription factor, 
NFATc3. Increased MDR ATPase then removes several types of anti-cancer agents from the cells, leading to 
chemoresistance[17,100,101].

The complexity of Ca2+ signalling and the multitude of Ca2+ signalling proteins make overcoming 
chemoresistance a multifaceted process. Therefore, various approaches can be employed to address intrinsic 
or prevent acquired chemoresistance. Apart from the possible role of Ca2+ pharmacological modulators as 
standalone anti-cancer drugs, several studies have demonstrated their role as adjuvants in enhancing the 
anticarcinogenic effects of anti-cancer drugs. However, considering the vast number of research in this field, 
encompassing all studies is beyond the scope of this review. Consequently, this section briefly discusses the 
role of Ca2+ in the TME, cellular pathways, cancer stem cells (CSCs), utilization of combination and 
sequential treatments, and relevant clinical studies.

Ca2+ signalling in the TME
The TME is one of the crucial elements in cancer progression, where various cell types, including 
endothelial cells, mesenchymal cells, immune cells, adipocytes, and pericytes, coexist alongside cancer 
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Table 1. List of channels, pumps, and exchangers targeted in various studies and the effects on the targeted subjects

Ca2+

proteins Isoforms  

Subjects Colon cancer cell lines (AZ-97 and HT-29)[75], ameloblastoma primary cells and cell line (AM-1)[76], 
mice[76]

Treatment BayK 8644[75,76], Verapamil[75,76], siRNA[76]

LTCC Not defined[75], 
Cav1.2[76]

Effects ApoptosisBayK8644[75], apoptosis inhibitionVerapamil[75], suppressed cell aggregation and collective 
migration[76], reduced invasion[76]

Subjects Neuroblastoma cells (SH-SY5Y)[77]

Treatment Cav2.1 mutants[77]

P/QTCC Cav2.1

Effects Reduced proliferation[77], apoptosis[77], decreased Bcl-2/Bax ratio[77]

Subjects Neuroblastoma glioma cells (NG108-15)[78]

Treatment Cannabinoid[78]

NTCC Cav2.2

Effects Inhibition of Ca2+ current[78]

Subjects Neuroendocrine tumour BON cells[79]

Treatment SNX-482[79]

RTCC Cav2.3

Effects Decreased chromogranin A secretion[79], reduced resting [Ca2+]cyt
[79]

Subjects Breast cancer cell line (T-47D)[80], glioblastoma cell lines[81], mice[82], 
lung cancer cell line (A549)[83,84], leukaemia cell lines[86]

Treatment NNC-55-0396[80,82,86], mibefradil[81,86], RNA interference[81,82], KYS05090[83], TTA-A2[84,85]

TTCC Cav3.1[80], 
Cav3.2[80,81], 
Cav3.3[80], 
not defined[82-85]

Effects Reduced proliferation[80-82,84,86], apoptosis[81,83,85,86], autophagy[83], increased sensitivity to anti-
cancer drug[81,82], no effect on tumour size[82], inhibition of survivin[81], activation of BAX, Caspase 9, 
PARP, p27, and Rb[81], cell cycle arrest[81] at G1 phase[82,86], inhibition of stemness marker CD133[81], 
increased expression of astrocytic marker GFAP[81], increased ROS level[83], reduced viability[84], 
reduced wound healing[84], altered cell and spheroid morphology[84,85], reduced colony formation 
efficiency[85]

Subjects Breast cancer cell line (MCF-7)[63,89], prostate cancer cell line[90], 
NSCLC cells[88], thyroid cancer cell line[87]

Treatment RNA interference[89,90], AnCoA4[63], knockdown[63,87], Afatinib[88]

ORAI1[63,87,88], 
ORAI3[89,90]

Effects Apoptosis[89,90], autophagy[88], reduced proliferation[87,89,90], cell cycle arrest at G1 phase[87,89]/G2-M 
phase[90], altered cell cycle proteins[89], reduced entosis[63], reduced cell viability[88], reduced 
invasion[87]

Subjects Non-small cell lung cancer cells[88], thyroid cancer cells[87], zebrafish[87], patient samples[87]

Treatment Afatinib[88], knockdown[87]

SOCC

STIM1[87,88]

Effects Autophagy[88], reduced cell viability[88], reduced invasion[87], reduced proliferation[87], increased 
sensitivity to anti-cancer drug[87], reduced tumour growth[87], apoptosis[87], cell cycle arrest at G1 
phase[87]

Subjects Patient-derived lung adenocarcinoma tissue[29], lung adenocarcinoma cells[29], lung squamous cell 
carcinoma cells[29], HCC cell lines[61], patient-derived HCC tissue[61], human adrenal gland and 
neuroblastoma tissues[91], neuroblastoma cell line (SH-SY5Y)[91], athymic female mice[91]

Treatment siRNA[29], A10[61], N-(p-amylcinnamoyl) ACA[61], lentivirus-coated shRNA[61], 
clotrimazole[91], TRPM2-S (short length of TRPM2)[91]

TRP TRPC7[29], 
TRPM2[61,91]

Effects Reduced proliferation[29,61], reduced cell migration[29], reduced invasion[29], altered cell cycle 
proteins[61], slowed growth of patient-derived xenografts and Huh-7 xenografts in mice[61], cell cycle 
arrest at G0/G1[29] or G1/S phase[61], increased sensitivity to anti-cancer drug[91], reduced tumour 
volume[91], reduced autophagy/mitophagy[91]

Subjects Glioblastoma cell line (U251)[30]

Treatment Nickel[30], bepridil[30]

NCX Not defined[30]

Effects Reduced wound healing[30], reduced proliferation[30]

Subjects Prostate cancer cell line (PC-3)[92], breast cancer cell line (MDA-MB 231)[32,93], 
gastric cancer cell lines[62], mice[62]

Treatment trans-resveratrol[92], siRNA[32,62,93]

Apoptosis[92], increased [Ca2+]cyt
[92], decreased cell viability[92], cell death in the presence of a 

stimulus[93], increased sensitivity to anti-cancer drug[93] 
PMCA1: no effect on cell viability[32], high ionomycin (3 µM) induced necrosis[32], no effect on ABT-
263-induced apoptosis[32], no effect on E-cadherin and vimentin expressions[62], no effect on wound 
healing rate[62] 
PMCA4: no effect on cell viability[32], no effect on ionomycin (3 µM) induced necrosis[32], augmented 
ABT-263-induced apoptosis[32], inhibition of NFκB translocation[32], increased metastasis[62], reduced 
expression of E-cadherin, GRHL2, and OVOL1[62], increased expression of vimentin[62], increased 

PMCA Not defined[92], 
PMCA2[93], 
PMCA1[32,62], 
PMCA4[32,62]

Effects

wound healing[62], increased [Ca2+]cyt
[62], increased nuclear NFATc1 accumulation[62]
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Subjects T-ALL[94,95], breast adenocarcinoma cell lines[95]

Treatment Xestospongin B[94], 2APB[95]

IP3R Not defined[94]

Effects Reduced mitochondrial respiration[94], cell death[94], increased NAD+/NADH ratio[94], inhibition of
ER-Ca2+ release[95], inhibition of ROS production[95], inhibition of immunepotent CRP-induced 
death[95]

Subjects NSCLC cells[88]

Treatment Afatinib[88]

SERCA SERCA2[88]

Effects Autophagy[88], reduced cell viability[88]

Subjects Breast adenocarcinoma cell lines[95], T-ALL cells[95], insulinoma cell line (INS-1)[96]

Treatment Dantrolene[95], knockout[96]

RyR Not defined[95], 
RyR2[96]

Effects Inhibition of ER-Ca2+ release[95], inhibition of ROS production[95], inhibition of immunepotent 
CRP-induced death[95], impaired SOCE[96], reduced [Ca2+]cyt

[96], elevated VGCC current density[96], 
increased action potential frequency[96]

Subjects MCU-knockout transformed fibroblast cells[37], mice[37], Pancreatic ductal adenocarcinoma 
tissue[67], mice[67], CRC[70]

Treatment Knockout[37,67], knockdown[70]

MCU Not 
defined[37,67,70]

Effects Small tumour size[37], reduced proliferation[37,70], cell cycle arrest at S phase[37], increased 
glycolysis[37], inhibited cell migration[67], inhibited invasion[37,67], inhibited soft agar colony 
formation[67], reduced tumour weight[67], reduced ROS level[67], ferroptosis inhibition[67], Nrf2 
upregulation[67], decreased mitochondrial content[70], decreased mtDNA copy number[70], decreased 
ATP production[70], decreased expression levels of oxidative phosphorylation-related proteins[70]

Subjects Pancreatic ductal adenocarcinoma tissue[67], colorectal cancer cell lines[97], knockout mice[97]

Treatment CGP37157[67], si/shRNA[97]

NCLX Not defined[67,97]

Effects Increased ferroptosis and lipid peroxidation in the absence of cysteine[67], no effect on cell viability in 
presence of cystine[67], 50% less tumours[97], smaller tumour[97], reduced dysplasia[97], increased 
metastasis[97], reduced proliferation[97], apoptosis[97], increased invasion[97], mitochondrial 
perturbations[97], increased mitochondrial ROS[97], stem cell-like phenotype[97], chemoresistance of 
CRC cells[97]

Subjects Breast cancer cell lines[71,72], mice[72]

Treatment Knockdown[71,72]

SPCA SPCA2[71,72]

Effects Reduced cell growth[71,72], cell cycle arrest at G0/G1 phase[71], diminished SICE[71], DNA damage[71], 
increased sensitivity to anti-cancer therapy[71], increased ROS level[71], delayed tumour formation[72]

LTCC: L-type Ca2+ channel; P/QTCC: P/Q type Ca2+ channel; Bcl-2: B-cell lymphoma-2; NTCC: N-type Ca2+ channel; RTCC: R-type Ca2+ channel; 
BAX: Bcl-2 associated X-protein; PARP: poly(ADP-ribose) polymerase; GFAP: glial fibrillary acidic protein; ROS: reactive oxygen species; NSCLC: 
non-small cell lung cancer; SOCC: store-operated Ca2+ channels; STIM: stromal interacting molecule; HCC: hepatocellular carcinoma; TRP: 
transient receptor potential; TRPC7: transient receptor potential canonical 7; TRPM2: transient receptor potential melastatin 2; ACA: anthranilic 
acid; NCX: Na+/Ca2+ exchanger; PMCA: plasma membrane Ca2+ ATPase; ABT-263: a Bcl-2 family inhibitor; NFκB: nuclear factor-κB; GRHL2: 
grainyhead like transcription factor 2; OVOL1: ovo like transcriptional repressor 1; NFATc1: nuclear factor of activated T cells 1; T-ALL: T-cell acute 
lymphoblastic leukaemia; IP3R: inositol-1,4,5-trisphosphate receptor; 2APB: 2-Aminoethoxydiphenyl borate; NAD+/NADH: nicotinamide adenine 
dinucleotide/nicotinamide adenine dinucleotide (NAD) + hydrogen (H); ER: endoplasmic reticulum; CRP: C-reactive protein; SERCA: 
sarco/endoplasmic reticulum Ca2+-ATPase; RyR: ryanodine receptor; SOCE: store-operated Ca2+ entry; VGCC: voltage-gated Ca2+ channel; MCU: 
mitochondrial Ca2+ uniporter; NCLX: Na+/Ca2+/Li+ exchanger; CRC: colorectal cancer cell lines; SPCA: secretory-pathway Ca2+ ATPase; SICE: 
store-independent Ca2+ entry.

cells[102]. These diverse cell populations help cancer cells by providing mechanical support and releasing 
cytokines. Tumour development is mediated by anti- or proinflammatory cytokines that shape the TME[28]. 
These changes in the TME pose challenges to successful treatment and help cancer cells evade immune 
responses[102]. Ca2+ plays a critical role in supporting cancer cell migration and invasion by phosphorylating 
contractile proteins, inducing matrix metalloproteinases (MMPs), and remodelling peripheral and focal 
adhesions[17].

Disrupted Ca2+ signalling regulates immune responses, contributing to chemoresistance in cancer 
cells[103,104]. Increased ROS in mitochondria, triggered by Ca2+ signalling, phosphorylates and translocates 
STAT3, a transcription factor, into the nucleus. There, STAT3 activates genes related to 
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immunosuppression[27]. Inflammation induced by these mechanisms reduces the efficacy of anti-cancer
drugs such as cisplatin[41]. Therefore, targeting Ca2+ signalling to reduce inflammatory mediators represents a
therapeutic approach in cancer treatment. Alhamed et al. demonstrated that although BTP2 (a SOCE
inhibitor) treatment alone showed no effect on inflammatory mediators when administered in combination
with cisplatin, it reversed cisplatin’s effect on increasing the gene expression of inflammatory mediators
such as COX2, IL-8, and Tumour Necrosis Factor-α (TNF-α)[41].

Hypoxic conditions within tumours induce EMT, allowing cancer cells to transition from an epithelial to a
mesenchymal phenotype, facilitating migration to other locations within the body. Additionally,
angiogenesis, another hallmark of cancer, promotes tumour growth and invasiveness[105]. Both EMT and
angiogenesis are regulated by Ca2+ channels such as VGCC and TRP channels. Consequently, chelating
cytosolic Ca2+ results in the blockage of several EMT markers such as vimentin, Twist, and N-cadherin,
potentially inhibiting angiogenesis[17,27,106].

Ca2+ signalling pathways in chemoresistance
Chemoresistance also arises from the activation of various cell signalling pathways including MAPK,
CaMKKβ/AMPKα/mTOR, PI3K/Akt, and Wnt/β-catenin pathways[17,27]. These pathways are important in
diverse cancer cell processes such as tumourigenesis, proliferation, protein synthesis, metastasis, and
invasion[27]. G-protein coupled receptors (GPCRs) play a central role in translating extracellular signals and
regulating Ca2+ signalling by coupling to G-proteins, adenylyl cyclase (AC), cAMPs, and protein kinases.
Given that GPCRs represent the largest family of membrane proteins and serve as targets for approximately
50% of therapeutic drugs, designing drugs based on GPCRs is crucial[107].

Various G-proteins modulate Ca2+ signalling[108], initiating a cascade of intracellular events. While the
complexity of cellular pathways involves numerous molecules and signalling cues, providing a detailed
description of each pathway is beyond the scope of this review. In brief, GPCRs have three types of
G-proteins: Gα, Gβ, and Gγ, with Gα further subdivided into Gαq, Gαs, and Gαi, each having its unique signal
transduction mechanism [Figure 3]. Upon Gαq activation, several pathways are initiated, including CaMKKβ
/AMPKα/mTOR, and MAPK. The Gαq subunit activates phospholipase C (PLC), which catalyzes the
conversion of Phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG). IP3 binds to IP3R, initiating the release of Ca2+ from the ER into the cytoplasm[108].

Activation of Gαs leads to AC activation, initiating cAMP production. cAMP activates protein kinase A
(PKA), which phosphorylates proteins regulating excitation-contraction coupling through VGCCs, RyRs,
and myosin-binding protein C[108]. Upon Gαi activation, the Gαi subunit inhibits cAMP production and
VGCCs[108] while activating the PI3K/Akt pathway. PI3K/Akt promotes cytoprotective autophagy, cell
proliferation, EMT, and apoptosis inhibition through the degradation of several molecules such as mTOR,
STAT3, NFκB, and p53. For instance, in prostate cancer cells (PCa cells), Ca2+ influx through TRPM8 leads
to Ca2+/CaM activation of Akt kinase, thereby increasing cell proliferation[43].

In a study by Wang et al., it was shown that in the human ovarian cancer cell line A2780 (resistant to
paclitaxel), human lung adenocarcinoma cell line A549 (resistant to paclitaxel), human breast cancer cell
line MCF7 (resistant to paclitaxel and cisplatin), and human immortalized myelogenous leukaemia cell line
K562 (resistant to paclitaxel, cisplatin, and Adriamycin), [Ca2+]cyt was reduced. Successful results were
obtained in reversing the chemoresistance by chelating Ca2+ ions using Ca2+-chelated self-assembled
nanoparticles (CSNPs). This intervention altered the expression of a chemoresistant gene and induced
apoptosis by inhibiting the NFκB signalling pathway[6]. TRPC7 has been implicated in mediating CaMKII,
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Figure 3. Ca2+ signalling pathways in cancer cells. GPCRs mediate cellular pathways such as MAPK, CaMKKβ/AMPKα/mTOR, and 
PI3K/Akt, thereby exerting regulatory control over Ca2+ channels. Consequently, Ca2+ ions modulate these cell pathways. The generation 
and regulation of transcription factors lead to cancer cell proliferation, EMT, metastasis, invasion, and survival. Akt and Murine Double 
Minute 2 (MDM2) inhibit Bad and p53, respectively, thereby supporting evasion from apoptosis. Inhibition of p53 releases Bcl-2, which 
in turn inhibits apoptosis. STAT3 and NFκB promote EMT, while mTOR promotes cell proliferation and cytoprotective autophagy. 
Transcription factors such as c-Fos, c-Jun, c-Myc, and CREB play pivotal roles in gene transcription crucial for cellular growth. VGCC: 
voltage-gated Ca2+ channel; SOCE: store-operated Ca2+ entry; TRP: transient receptor potential; GPCR: G-protein coupled receptor; PLC: 
phospholipase C; PIP2: phosphatidylinositol 4,5-bisphosphate; DAG: diacylglycerol; IP3: inositol-1,4,5-trisphosphate; PKC: protein kinase 
C; RAS: rat sarcoma; RAF: rapidly accelerated fibrosarcoma; ERK: extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinase; 
STAT3: signal transducer and activator of transcription 3; MAPK: mitogen-activated protein kinases; NFκB: nuclear factor-κB; CREB: 
cyclic adenosine monophosphate-responsive element-binding; AC: adenylyl cyclase; PKA: protein kinase A; cAMP: cyclic adenosine 
monophosphate; PI3K: phosphatidylinositol 3-kinase; EMT: epithelial-mesenchymal transition.

Akt, and MAPK signalling, which are crucial in cancer progression. Knockdown or inhibition of TRPC7 has 
been shown to suppress the activation of CaMKII, Akt, and ERK[29].

Targeting Ca2+ machinery in CSCs
CSCs are robust chemoresistant cells present in a dormant state in various cancer types[109-111]. Upon 
activation and subsequent differentiation into cancer cells, CSCs contribute significantly to cancer relapse. 
Similar to cancer cells, CSCs also use abnormally activated cell pathways, including Notch, Hedgehog, Wnt/
β-catenin, NFκB, PI3K/Akt, and PTEN pathways[112]. Therefore, targeting both CSCs and cancer cells would 
ensure effective cancer treatment and reduce cancer relapse. Studies suggest that Ca2+ channels play crucial 
roles in CSC functioning, with dysregulated Ca2+ signalling proteins promoting their differentiation into 
cancer cells and enhancing chemoresistance[113,114]. Dysregulation of various Ca2+ channels, including 
VGCCs[81,115], RyRs[116,117], IP3R[118], SOCE[119], or TRPs[120,121], has been observed in CSCs across different 
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cancer types. Targeting these dysregulated Ca2+ channels induces terminal differentiation of CSCs and 
sensitizes them to chemotherapy.

LTCCs are associated with stem cell differentiation, while TTCCs play a role in cell cycle progression and 
the self-renewal capacity of undifferentiated stem cells. Additionally, IP3Rs are implicated in maintaining 
CSC properties such as self-renewal, proliferation, and differentiation[113]. Some studies have shown that 
targeting Ca2+ channels inhibits proliferation and induces apoptosis in CSCs. For example, Zhang et al. 
demonstrated that blocking TTCC with mibefradil inhibited the proliferation, survival, and stemness of 
glioblastoma stem-like cells (GSCs) and sensitized them to temozolomide chemotherapy. This effect was 
attributed to the inhibition of the pro-survival Akt/mTOR pathway and stimulation of the pro-apoptotic 
Survivin and Bax pathways. Moreover, TTCC inhibition reduced the expression of oncogenes and increased 
the expression of tumour suppressor genes[81]. In another study, CCBs (manidipine, lacidipine, benidipine, 
and lomerizine) inhibited stemness and PI3K/Akt and ERK pathways in ovarian CSCs[112].

Therapeutic interventions targeting Ca2+ signalling
Combination therapy utilizing both anti-cancer drugs and Ca2+ protein blockers is often studied. Anti-
cancer drugs change Ca2+ signalling within cancer cells, by targeting pathways related to cell growth or 
inducing cell death, compromising cellular integrity, reducing ATP production, or blocking specific growth 
factors[17]. The effect of anti-cancer agents on Ca2+ signalling depends on the exposure time. During shorter 
exposure, for up to 8 h, there is an increase in Ca2+ influx, ER Ca2+ release, and ER-mitochondria Ca2+ 
transfer; however, longer exposure, spanning from hours to weeks, leads to heightened Ca2+ efflux, altered 
ER Ca2+ regulation, and elevated activity of the ER Ca2+ release channel[17]. For example, short-term exposure 
to 5FU increases Ca2+ influx via plasma membrane channels, while long-term exposure increases Ca2+ efflux 
via PMCA[17]. Conversely, inhibiting Ca2+ channels results in sensitized or increased anti-cancer effects of 
some drugs by lowering [Ca2+]cyt. For example, Andrographis sensitizes cancer cells synergistically to 
gemcitabine[122], cisplatin[123], 5-FU[124], and doxorubicin[125] in vitro. Co-treatment of Andrographis and 
gemcitabine decreases [Ca2+]cyt in gemcitabine-resistant cells[122]. Co-treatment of cisplatin and SOCE 
inhibitors increases cisplatin cytotoxicity in cisplatin-resistant breast cancer cells[41] and NSCLC[126]. 
Furthermore, BTP2 treatment reverses cisplatin-induced upregulation of SOCE components (ORAI1 and 
STIM1) genes[41]. Knockdown of ORAI1 and STIM1 has also been shown to sensitize cancer cells to anti-
cancer drugs[87,126,127]. However, in one study, it was shown that cisplatin cytotoxicity was reduced upon 
knockdown of ORAI1 and STIM1 in NSCLC and prostate cancer cells[128,129].

Silencing PMCA2 in MDA-MB-231 cells promoted the anti-cancer effects of doxorubicin[130]. Blocking 
TTCC with mibefradil sensitized platinum-resistant ovarian tumours to carboplatin in a mouse model[131] 
and increased the sensitivity of melanoma cells to MAPK inhibitors[132]. In diffuse large B-cell lymphoma 
(DLBCL) patients resistant to rituximab,  co-treatment of rituximab with Bay K8644 (an LTCC agonist) 
significantly induced apoptosis in DLBCL cell lines and markedly reduced tumour volume and weight in 
DLBCL patient-derived xenografted mice[133].

This increased sensitization to anti-cancer drugs through co-treatment with CCBs is further enhanced by 
sequential treatment. Blocking or knocking down Ca2+ channels arrest cells at specific phases of the cell 
cycle. For example, blocking or knockdown of TTCCs can arrest cancer cells at the G0/G1 phase[134]. 
Similarly, in one study, TRPC7 knockdown arrested lung adenocarcinoma cells, H1299, at the G0/G1 
phase[29],  synchronizing cells to a single phase. Consequently, when an anti-cancer drug such as Taxol, 
which inhibits microtubule depolymerization and stops cell division[135], is administered, a large number of 
cells are killed. Another advantage of sequential treatment is the requirement for smaller drug doses 
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compared to single or combination treatments. This was evidenced in one of our studies with A549 3D 
spheroids[136]. Sequential treatment of A549 3D spheroids with a TTCC blocker (TTA-A2) and paclitaxel led 
to a significant reduction in spheroid viability compared to combination treatment. Sequential treatment 
not only synchronizes cells to a single phase but also prevents or reduces nonspecific interactions of the 
second drug. For example,  paclitaxel, in addition to microtubules, can also interact with IP3R[137] and other 
Ca2+ channels such as TTCC[136]. Consequently, in combination treatment, paclitaxel may compete for 
binding sites with the TTCC blocker on TTCC. Since the paclitaxel interaction is not as strong as that of 
specific TTCC blockers, this results in weaker inhibition of these channels by paclitaxel and reduced anti-
cancer effects[136].

Clinical trials with Ca2+ protein blockers
The effects of targeting Ca2+ proteins in humans are relatively unexplored, as indicated by the limited 
number of clinical studies[138-142]. In a clinical trial by Fu et al., TRPV6 was targeted in individuals with 
advanced epithelial-origin tumours, revealing that SOR-C13, an inhibitor of TRPV6, exhibit anti-cancer 
effects without any typical chemotherapy-related complications[138]. This study highlights the potential of 
targeted therapy in managing cancer, and mitigating adverse effects associated with traditional 
chemotherapy.

Carboxyamido-triazole (CAI), a synthetic inhibitor of non-VGCCs, has been studied in clinical phase IB for 
recurrent and newly diagnosed glioblastoma and anaplastic gliomas[141], as well as phase II trials for 
glioblastoma[139] and ovarian cancer[142]. In phase IB trials, CAI combined with temozolomide or 
chemoradiation, showed promising results in terms of safety and efficacy in challenging cases[141]. However, 
in a phase II trial by Mikkelsen et al., CAI was tested along with radiation on patients with newly diagnosed 
glioblastoma multiforme. Results showed that even though CAI was safe to administer, it was ineffective in 
improving the survival rate[139]. In patients with relapsed ovarian cancer, CAI exhibited safety with limited 
toxicity and stabilized the cancer for over six months[142].

Additionally, a phase I study by Holdhoff et al. demonstrated the safety of sequential treatment involving 
mibefradil followed by temozolomide in glioblastoma patients, with some patients showing partial to 
complete responses to the regimen[140].

These varying results emphasize the complexity of targeting Ca2+ proteins for effective cancer treatments. 
While inhibitors such as SOR-C13 and CAI exhibit promising results in certain cancer types, their efficacy 
and impact on survival rates vary across cancer stages and types. Positive results from in vitro and in vivo 
studies, coupled with the lack of adequate clinical data, indicate the need for more extensive clinical studies 
to elucidate the role of targeting Ca2+ proteins as an effective cancer treatment option.

CONCLUSION
Although many novel drugs exhibit promising efficacy against chemoresistant cancers, Ca2+ signalling-
driven chemoresistance remains a major obstacle. The ubiquitous and varying role of Ca2+ in normal and 
cancer cells complicates targeting approaches and also raises safety concerns. A deeper understanding of 
Ca2+ disruptions across various cancers will facilitate the development of effective therapeutic approaches. 
Researchers worldwide are exploring innovative strategies, including site-specific drug delivery that can 
target cancer cells without harming normal cells by taking advantage of cancer biomarkers and designing 
drugs for cancer-specific Ca2+ protein splice variants or their proteins expressed in cancer cells. 
Simultaneously targeting of multiple dysregulated proteins and exploring intracellular organelles 
interactions, such as lysosome-mitochondria, using advanced models like 3D cell cultures or patient-derived 
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organoids, are promising approaches. Furthermore, an extensive increase in clinical studies is required to 
establish the anti-cancer efficacy of Ca2+ protein blockers, which have demonstrated positive in vitro and in 
vivo results.
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