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Abstract
Aim: Alzheimer’s disease (AD) is marked by insufficient blood supply to the brain, leading to progressive loss 
of memory and cognitive skills. The continuous reduction of cerebral blood flow resulting from chronic cerebral 
hypoperfusion leads to the overproduction of reactive oxygen species that triggers inflammation, causing 
cognitive decline. Till now, there is no cure for AD and the only option is symptomatic treatment. The current 
study evaluates the effect of edible bird’s nest (EBN) on hippocampal neurons, specifically in the CA1 hippocampal 
region, by using a rat model of chronic cerebral hypoperfusion-induced neuroinflammation.

Methods: Chronic cerebral hypoperfusion (CCH) was induced by permanent bilateral common carotid artery 
occlusion (2VO) in rats to trigger the neuroinflammatory process. Rats were divided into 4 groups: sham, 2VO, 
and two 2VO groups treated with two different doses (60 mg/kg, 120 mg/kg) of EBN, which was administered 
daily by oral gavage. After 8 consecutive weeks, rats were euthanized and the hippocampi were examined 
histopathologically by counting viable neuronal cells and the levels of F2- Isoprostane in hippocampal tissue was 
measured by ELISA.
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Results: A significant decrease in neuronal cell death and a significant decline in F2-Isoprostane levels were 
observed in rats treated with EBN.

Conclusion: This is the first study to associate the neuroprotective effect of EBN in the prevention of dementia 
related to AD. EBN could be used as a complementary treatment to delay or treat dementia in AD patients.

Keywords: Alzheimer’s disease, chronic cerebral hypoperfusion, edible bird’s nest, F2-Isoprostanes

INTRODUCTION
The most prevalent neurodegenerative disorder that has dramatically increased over the last 60 years 
is Alzheimer’s disease (AD). AD is a chronic disorder that starts years before the detection of any 
clinical cognitive decline, with memory loss and a decline in cerebral blood supply[1-3]. Chronic cerebral 
hypoperfusion (CCH), along with various types of vascular insufficiency may initiate a cascade of events 
such as oxidative stress and inflammatory reactions that trigger vascular dementia[3-6]. As an established 
animal model for imitating the reduction in cerebral blood flow in human aging, permanent bilateral 
occlusion of common carotid arteries in rats (2-Vessel Occlusion, 2VO) has been introduced[7,8]. A 
continuous decrease in regional cerebral blood flow (CBF) in different areas in the rat brain including the 
cerebral cortex and hippocampus causes neuronal dysfunction and impairs spatial learning, leading to 
memory deficits and dementia[3,7,9]. Previous studies of neuropathological changes caused by CCH focused 
on the hippocampus due to its essential role in learning and memory[8,10-12]. Furthermore, the hippocampal 
CA1 area is the most vulnerable in CCH[11,13,14]. In order to diagnose and treat the pathophysiological 
changes of CCH in an animal model, the detection of essential biomarkers would have a critical role. 
F2-Isoprostanes (F2-IsoPs) are prostaglandin-like molecules that are formed from the peroxidation of 
arachidonic acid. IsoPs are considered an accurate predictor of lipid peroxidation due to their biological 
stability[13-16]. 

Recent alternative medicines have underscored the neuroprotective and anti-inflammatory ability of 
edible bird’s nest (EBN). EBN is one of the most valuable animal products eaten by humans, either for its 
therapeutic properties or as a delicacy in South East Asia[17,18]. It is formed naturally from salivary secretions 
of glutinous glycoprotein through the sublingual glands of swiftlets birds during their nesting and breeding 
season. The nest is built high on walls and the roofs of caves in the shape of a bowl over a period of 35 
days. The solidified secretions enable the nest to carry the swiftlets and their eggs to remain attached to the 
wall during breeding season[17-19]. Researchers have investigated the therapeutic effects of EBN such as its 
anti-oxidative effect, anti-inflammatory effect, alleviation of osteoarthritis[20-22], increased proliferation of 
the uterus, the enhancement of cell proliferation in corneal wound healing[23,24] and its antiviral effect[25,26]. 
Moreover, it has the ability to reduce the risk of hypercoagulation caused by cardiovascular diseases 
associated with a high-fat diet[27]. Hou et al.[28] (2017) underscored the neuroprotective effect of EBN with 
elevated antioxidant activity in an ovariectomized rat model. EBN is also beneficial in reducing severity 
of neurodegenerative disorders due to its antioxidative effects on valuable bioactive components such as 
lactoferrin and ovotransferrin-like compounds[29]. Furthermore, sialic acid in EBN can enhance memory 
and improve cognitive function[30,31]. Additionally, EBN has epidermal growth factor-like activity, and is a 
rich source of proteins, carbohydrates, amino acids and minerals[18,32-34]. With such previous encouraging 
results, the current study investigated the neuroprotective and anti-inflammatory effects of EBN using a 
chronic cerebral hypoperfusion model. The occlusion of common carotid arteries triggers the formation of 
oxidative stress, causing inflammation in the brain hippocampus that then leads to neuronal death[6,11-14,35]. 
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METHODS
Animals
The study was conducted using 24 male Sprague Dawley rats from a local vendor. We included only 
male rats to avoid possible confounding effect of the neuroprotective effect of female estrogen. Rats are a 
good animal model for establishing 2VO because they have a complete circle of Willis like humans and 
upon complete occlusion of one of the main branches of this circle, the body will react by forming new 
collaterals to bypass this obstruction to maintain cerebral blood flow[7]. The age of the rats was about 2 
months and they weighed 200-250 g. The rats were fed with food pellets and tap water ad libitum at room 
temperature with a 12 h/12 h dark/light cycle. Laboratory animal care was based on the guidelines and 
recommendations of the Integrated Centre for Research Animal Care and Use, IIUM and the Malaysian 
National Animal Welfare Foundation. After 1 week of acclimatization, rats were divided into four groups 
(A, B, C, and D) with 6 rats per group: sham group (A), which had surgery without permanent bilateral 
common carotid arteries occlusion; 2VO group (B) with permanent bilateral common carotid artery 
occlusion without any treatment; 2VO group that received a daily dose of 60 mg/kg EBN orally as treatment 
(C); and 2VO group that received a daily dose of 120 mg/kg EBN orally as treatment (D).

2VO procedure in rats
Anesthetic agents, which consisted of ketamine (90 mg/kg) and xylazine (20 mg/kg) mixture were given via 
intraperitoneal injection. Ventral incisions (2-3 cm) were made in the neck area. The connective tissue and 
muscles layers were dissected to expose the common carotid arteries (CCAs) on both sides. Both CCAs 
were then carefully separated from the carotid sheath and vagus nerve, and then double ligated by sterilized 
silk sutures. Next, both arteries were cut between the two ligatures. Finally, the incision was closed with 
silk sutures and sterilized with povidone iodine[13,14]. The rat’s body temperature was controlled during 
surgery and the recovery period under a heat lamp. Water and food were provided when rats became fully 
conscious. The Sham group followed similar procedures but without ligation of common carotid arteries. 
EBN treatment with oral gavage was started on the first postoperative day and was given for 8 consecutive 
weeks.

EBN preparations
EBN was provided by Glycofood Sdn Bhd, Balakong, Selangor, Malaysia in a dry powder form. One 
gram of EBN powder was dissolved in 100 mL of distilled water and heated for 45 min at 60 °C. The EBN 
solution was brought to room temperature and administered by oral gavage depending on the rat’s body 
weight. We administered two doses, 60 mg/kg and 120 mg/kg daily to Group C and D respectively by 
oral gavage for 8 consecutive weeks[24,28]. The treatment was given by oral gavage to mimic the mode of 
consumption of EBN in humans. Traditionally, EBN is prepared in the form of a soup and not taken as a 
medicine in tablets or injection form. Additionally, oral gavage was utilized to be sure the rats received the 
exact daily doses of EBN[30].

Histopathological study
After the 8th postoperative week, all rats were euthanized with inhalational ether. The rat brains were 
rapidly removed and immersed in ice-cold normal saline. The two hemispheres were separated and the 
hippocampi on both sides were carefully isolated. For histopathological examination, the left hippocampus 
was fixed in 10% neutral buffered formalin while the right hippocampus was washed with ice-cold water, 
dried and then stored in Eppendorf tubes at -80 °C to measure the levels of F2-isoprostane by Enzyme-
Linked Immunosorbent Assay (ELISA). After the fixation and processing procedures, the left hippocampus 
was embedded in paraffin. Coronal sections of the dorsal hippocampus were taken within 1 mm of the 
horizontal distance from CA1, and sections of 5µm thickness were made with a rotatory microtome for 
staining with cresyl violet. Differences among the viable and non-viable neuronal cells were observed 
under a light microscope [model BX51TF (Olympus, Tokyo, Japan)] connected to a camera with 40× 
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magnification. Viable neuronal cells (3 sections per animal) within 1 mm of the horizontal distance of the 
dorsal hippocampal CA1 were counted by using Image J software (USA). 

Biochemical analysis 
Total protein assay
Total protein concentration was determined by using bicinchonic acid protein Assay Kits, following the 
protocol recommended by the manufacturer (Thermo Scientific, USA). Bovine serum albumin was used as 
the standard with the absorbance of 562 nm. 

F2-Isoprostane measurement
To quantify the level of F2-Isoprostane in right hippocampi, tissues were minced and washed with 
phosphate buffer solution (PBS). The samples were then weighted and homogenized in PBS with a glass 
homogenizer (1gm of tissue: 9 mL of PBS). Next, the samples were centrifuged for 5 mins at 500xg and 
the supernatant was collected. After that, ELISA was performed according to the protocol provided by the 
manufacturer (Elabscience-USA; ELISA kit of 8-epi-PGF-8-Epi-ProstaglandinF2Alpha).

Statistical analysis
All data were analyzed and presented as mean ± SEM values with Minitab software version 17 (USA) and a 
P value less than 0.05 (P < 0.05) was considered statistically significant. To compare the differences between 
means of various groups, One-way Analysis of Variance followed by Tukey post hoc test was conducted. 

RESULTS
Histopathological results
Histopathological findings in the CA1 region of the hippocampus [Figure 1] revealed clear morphological 
differences between the Sham and 2VO groups. In the Sham group, the pyramidal cells have good density 
with a typical triangular shape, a well-defined cell membrane and a distinct nucleus with a fairly stained 
cytoplasm. However, the 2VO group revealed degenerated pyramidal cells with irregular cell membranes 
and dark pyknotic nuclei along with shrunken cytoplasm. On the other hand, the treated groups with 
different doses of EBN maintained the structures of the stratum pyramidal without significant neuronal cell 
loss. This indicated minimal neuronal damage compared to the untreated group (2VO group). Statistically, 
there was a significant increase in viable neuronal cells in the CA1 region in the Sham group compared to 

Figure 1. Cresyl violet stain shows histopathological changes in pyramidal cells within 1 mm of the hippocampus CA1 area in the Sham 
group (A), 2VO group (B), and EBN groups with different doses (C & D) under light microscope. Arrows show the viable, well-defined 
neuronal cell with a distinct nucleus and fairly stained cytoplasm in A (Sham), C and D (EBN). In Group B (2VO), the arrow shows the 
pyknotic nuclei along with shrunken cytoplasm.
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the 2VO groups (P < 0.001). The count of viable neuronal cells in the Sham and 2VO groups were (154.4 ± 0.477) 
and (54.8 ± 6.11) respectively. Conversely, there was a significant increase in viable neuronal cells in 
the treated groups of 2VO with different doses of EBN as compared to the untreated 2VO group. The 
number of viable neuronal cells in EBN (60 mg/kg) treated group was (124.6 ± 1.45) and EBN (120 mg/kg) 
treated group was (136.2 ± 1.22) with a p-value less than 0.05 (P < 0.05) compared to the untreated group. 
Interestingly, there was no significant difference between both EBN treated groups compared to the Sham 
group [Figure 2 and Table1].

Biochemical results 
F2-Isoprostane level measurement
As shown in Figure 3 and Table 1, the level of F2-IsoPs per mg protein in the untreated 2VO group (1.436 
± 0.141 pg/mg protein) was significantly higher (P < 0.001) compared to the Sham group (0.5617 ± 0.0915 
pg/mg protein). On the other hand, the hippocampal F2-IsoPs levels were significantly reduced in the 2VO 
group treated with 60 mg/kg of EBN (0.8605 ± 0.0705 pg/mg protein) and 120 mg/kg of EBN (0.7661 ± 
0.0388 pg/mg protein) respectively when compared to the untreated 2VO group. On further analysis, the 
F2-IsoPs levels in both EBN treated groups showed no significant difference when compared to the Sham 
group. 

DISCUSSION
AD is considered one of the biggest socio-economic problems that can cost billions of dollars. Despite 
enormous advancements in drug research, the prevalence of AD worldwide continues to be on the rise due 

Figure 2. Bar chart indicates the number of viable neuronal cells in 1 mm of the hippocampus CA1 area of all groups. There was a 
decrease in the number of viable cells in the 2VO group compared to sham and the treated groups with EBN. Results are shown as mean 
± SEM. **P < 0.001 (Sham vs. 2VO); #P < 0.05 (2VO vs. treated EBN groups); *P > 0.05 (Sham vs. treated EBN groups).

Parameters Sham 2VO
2VO

EBN 60 mg/kg EBN 120 mg/kg
Viable Neuronal cell 154.4 ± 0.477* 54.8 ± 6.11** 124.6 ± 1.45# 136.2 ± 1.22#

F2 IsoPs level in hippocampus CA1 0.5617 ± 0.0915* 1.436 ± 0.141** 0.8605 ± 0.0705# 0.7661 ± 0.0388#

Table 1. Mean differences in neuronal cell count and F2-Isoprostane in all studied groups. Data are expressed as Mean ± SEM

This table demonstrates the difference in mean value of viable neuronal cells and the mean value of F2-isoprostane in all the study groups 
with **P < 0.001 (Sham vs. 2VO); #P < 0.05 [2VO vs. 2VO + (EBN 60 mg/kg & EBN 120 mg/kg)]; *P > 0.05 (Sham vs. EBN treated 
groups).
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to its associated long-term complications. The challenges in AD research today include the discovery of 
strategies for early identification and new therapies for disease prevention and cure[1,36,37].

Chronic cerebral hypoperfusion can be induced by 2VO with reduction in cerebral blood flow in a rat 
model. This occlusion is irreversible and permanent, leading to pathophysiological changes that increase 
the incidence of AD and vascular dementia in animal models[11,38]. The most vulnerable area of the brain 
affected by chronic cerebral hypoperfusion is the hippocampal CA1 that leads to learning and memory 
impairment[13-14]. Several studies support the notion that oxidative stress is a significant contributor in AD 
development[39-41]. The lack of reactive oxygen species protection in the aging brain leads to progression 
of the disease. Several pathological mechanisms are activated by cerebral hypoperfusion such as oxidative 
stress and inflammation that culminate in neuronal cell death[12,38,42]. In chronic cerebral hypoperfusion, 
there is an increased level of free radicals within the brain due to imbalance between oxidants and 
antioxidants[14,40]. Furthermore, the inflammatory response triggered by oxidative stress causes the release 
of cytokines, chemokines, activated microglia and astrocytes, which then release more pro-inflammatory 
cytokines that cause neuronal cell death[4,11,14,43].

Several researchers have also indicated that cognitive functions are linked to the number of neurons in 
the hippocampal CA1 area. Therefore, neuroprotection can lead to positive outcomes in cognitive abilities 
via several natural products[6,8,9,11,40] as adjuncts to the available pharmacological treatments for AD. The 
treatment strategy by using natural antioxidants and anti-inflammatory drugs may be helpful in scavenging 
the free radicals to prolong the survival of neuronal cells in cerebral hypoperfusion[11-14,40-44].

In the current study, we induced long term brain ischemia in male rats by permanent occlusion of 
the common carotid arteries bilaterally, which triggers the formation of oxidative stress in the brain 
hippocampus. We used relatively young rats to tolerate the 2VO surgery, which is an invasive operation. 
The main aim of the current study is to investigate the neuroprotective effect of EBN and not its treatment 
potential. Therefore, young rats were used to extrapolate our data to younger individuals with risk factors 
that may predispose to developing dementia later. Also, we can mirror our data to cognitively impaired 
individuals to improve their cognitive abilities and prevent further deterioration. We started the treatment 

Figure 3. Bar chart shows the F2-Isoprostane level in the hippocampus of different groups. The results showed an increased level of F2-
Isoprosten in the 2VO group compared to Sham, while the level declined in the EBN treated groups. There was no significant difference 
between the Sham and treated groups with EBN. Results represented as mean ± SEM **P < 0.001 (2VO vs. Sham). #P < 0.05 [2VO vs. 
(2vo + 60 mg/kg EBN and 2vo + 120 mg/kg EBN)]. P > 0.05 (Sham vs. EBN treated group).



Ismaeil et al. Neuroimmunol Neuroinflammation 2021;8:297-306  I  http://dx.doi.org/10.20517/2347-8659.2020.63        Page 303

a day after surgery to protect neurons from damage as the CBF decreases dramatically after occlusion 
(acute phase), and stop after 8 weeks as CBF returns to normal due to the establishment of new collaterals. 
Our findings show that 2VO rats have decreased number of viable neuronal cells and increased levels of 
lipid peroxidation F2- isoprostane within the hippocampal CA1 area. Interestingly, after treatment with 
EBN for eight consecutive weeks, there was an improvement in pathological changes of neuronal cells 
associated with an increase in viable neuronal cell count in the CA1 hippocampal area. In addition, the 
decreased levels of oxidative stress in the hippocampus compared to untreated groups is in agreement with 
previous studies that demonstrate the antioxidant and anti-inflammatory effects of EBN contribute towards 
the reduction of neuronal damage and oxidative stress[45,46]. Our results are consistent with several studies 
that have demonstrated the health benefits of EBN as a safe, natural food with anti-oxidant and anti-
inflammatory functions. A study done in 2015 on estrogen deficiency in a rat model demonstrated that 
EBN was able to reduce neurological dysfunctions in the hippocampus and frontal cortex with an increase 
in antioxidant enzyme activity and decrease in oxidative stress[47]. Furthermore, EBN has also been shown 
to enhance cognitive function[28] and is able to improve the learning skills of offspring in mice by increasing 
the number of viable neuronal cells in the hippocampal CA1, CA2 and CA3 regions[48]. Careena et al.[30] 
demonstrated in 2018 the anti-inflammatory impact of sialic acid in EBN. It improves learning and 
memory in Wistar rats by inhibiting neuro-inflammation and oxidative stress. Therefore, EBN may be 
suggested as a new-alternative treatment in neurodegenerative disorders such as AD and Parkinsonism that 
are triggered by oxidative stress[49]. All these findings indicate that EBN could reduce the neurodegeneration 
and cognitive deterioration induced by inflammation and oxidative stress. 

In conclusion our results show that CCH, which was triggered by 2VO, causes a reduction in viable 
neurons in the hippocampal CA1 region. This damage could be ameliorated by the administration of 
EBN, which exhibits a neuroprotective effect via increasing the viable neuronal cell count, and a decline in 
oxidative stress levels. Our results underscored the possible effects of EBN in delaying the progression of 
dementia in AD patients if used early in the disease. Moreover, EBN may be used as an adjuvant treatment 
with any cognitive enhancer drugs (CED) in patients with AD or dementia to minimize its dose and hence, 
CED side effects while delaying the development of drug resistance. Furthermore, EBN can be taken 
prophylactically as a daily dietary supplement in the elderly to protect brain neurons against the aging 
process. Overall, EBN is a natural and safe supplement that could be used prophylactically for a long time.

Study limitations and perspectives
The current study is the first of its kind that investigated the possible neuroprotective effects of EBN. The 
current results underscored the potential effect of EBN in delaying the progression of AD dementia, if 
taken early before the onset of the disease. Our study has some methodological limitations. It would be 
ideal to use a validated anti-dementia drug as a positive control (e.g., Methylphenidate) to compare with 
the effects of EBN. Also, our sample size of six was relatively small. We plan to replicate the current study 
in the future using a bigger sample size. It is interesting to note that our data analysis are preliminary 
and requires further investigation with adding behavioral testing to assess the learning and memory 
effects of EBN. In future studies, it will be effective if we studied both gene and protein expression in the 
hippocampus and cortex in the brain, in addition to behavioral studies and clinical trials. Further, using 
other animal models e.g., mice, or zebra fish may be of great importance to investigate the neuroprotective 
effect of EBN in different species with different genetic profiles.
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