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Abstract
Acquired resistance to molecularly targeted therapies remains a formidable challenge in the treatment of cancer, 
despite significant advancements over the last several decades. We critically evaluate the evolving landscape of 
resistance mechanisms to targeted cancer therapies, with a focus on the genetic, molecular, and environmental 
contributors across a variety of malignancies. Intrinsic mechanisms such as mutations, drug and drug target 
modifications, and, notably, the activation of the mitogen-activated protein kinase (MAPK) and phosphoinositide 
3-kinase (PI3K)/Akt pathways are mechanisms different malignancies use to combat therapeutic effectiveness. 
Furthermore, extrinsic alterations to the tumor microenvironment contribute to therapeutic resistance. We 
highlight similarities and differences in mechanisms across a wide spectrum of cancers including hematologic 
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malignancies, non-small cell lung cancer, gastrointestinal, breast, and prostate cancers, pancreatic, ovarian, 
endometrial, and intracranial gliomas. Emerging strategies to overcome resistance, including multi-targeted 
approaches, combination therapies, and exploitation of synthetic lethality, are all critically discussed. We advocate 
for a nuanced understanding of resistance mechanisms as a cornerstone for developing future therapeutic 
strategies, emphasizing the necessity for integrated approaches that encompass genomic insights and precision 
medicine to outpace the dynamic and complex nature of cancer evolution and therapy resistance.
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INTRODUCTION
Global cancer burden and epidemiological trends
Cancer ranks as a leading cause of disease-related mortality across the globe. Per projections, this burden is 
estimated to increase by 47% in 20 years[1]. This alarming trend is hypothesized to be driven by an aging 
population, an increasing amount of exposure to environmental carcinogens, evolving dietary patterns, 
physical inactivity, and rising obesity rates in both high-income and low- to middle-income countries 
(LMICs)[1,2]. Importantly, the distribution of cancer types and risk factors varies considerably across 
geographic regions. This is reflected via the differences in healthcare infrastructure, screening programs, 
and prevalence of infectious agents associated with malignancies [i.e., hepatitis B virus (HBV) and human 
papillomavirus (HPV)][1].

Disparities in access to targeted therapies and precision oncology also contribute to global inequalities in 
cancer outcomes. While molecularly targeted therapies (MTTs) have revolutionized treatment paradigms in 
well-resourced settings, patients in resource-limited regions often lack access to genetic testing required to 
identify actionable mutations. This results in delayed diagnosis, inappropriate treatment selection, and 
poorer survival outcomes. Therefore, discussions of acquired resistance in targeted therapies must account 
for global treatment gaps, acknowledging that resistance dynamics in high-resource settings - where 
molecular profiling is routine - may differ significantly from those in settings where empirical therapy is the 
norm[3,4].

As MTTs become more affordable and accessible globally, understanding the interplay between tumor 
biology, treatment access, and socio-environmental factors will be crucial for designing resistance-
prevention strategies that are relevant across diverse populations[1,3,4]. This globalized perspective not only 
enhances scientific relevance but also aligns with the broader goals of reducing global cancer health 
disparities through the equitable application of precision medicine. All that being said, it is imperative for 
researchers and scientists alike to formulate and implement effective treatment approaches for patients with 
cancer[1,2].

Precision oncology and MTTs
Since their initial clinical endorsement in the late 1990s, MTTs have shown pronounced anticancer 
capabilities for both specific cancers and across cancer types. These therapies, which include small molecule 
inhibitors and therapeutic monoclonal antibodies that block signal transduction, have become integral to 
precision oncology. In 2001, the US Food and Drug Administration (FDA) approved imatinib, the first 
small-molecule targeted drug to be authorized for clinical use against chronic myeloid leukemia (CML)[3,4]. 
Since then, there has been a dramatic increase in the production of drugs. There are currently 89 small-
molecule targeted anticancer drugs that have been approved by the US FDA and National Medical Products 
Administration (NMPA) of China[5]. An overview of representative MTTs including their mechanisms of 
action, associated resistance pathways, and clinical indications is provided in Table 1. While this has 



Page 3 of Stubbs et al. Cancer Drug Resist. 2025;8:27 https://dx.doi.org/10.20517/cdr.2024.189 27

Table 1. Overview of MTTs and resistance mechanisms

Drug Class Target(s) Mechanism of action Resistance mechanisms Tumor type(s)

Vincristine Vinca alkaloid Tubulin Inhibits microtubule 
formation → mitotic arrest

P-gp overexpression, tubulin 
mutations

Leukemia, lymphoma

Trastuzumab Monoclonal 
antibody

HER2 Blocks HER2 dimerization 
and signaling, induces 
ADCC

HER2 mutations, pathway 
bypass, TME effects

Breast cancer

Ponatinib TKI BCR-ABL1 (incl. 
T315I)

ATP-binding site inhibition Compound mutations, efflux, 
microenvironment interactions

CML, Ph+ ALL

Imatinib TKI BCR-ABL1 Competitive ATP-binding 
site inhibition

BCR-ABL mutations (esp. T315I) CML, Ph+ ALL

Bosutinib TKI BCR-ABL1 ATP-binding site inhibition BCR-ABL mutations, off-target 
toxicity

CML

Asciminib STAMP 
inhibitor

BCR-ABL1 
(Myristoyl 
pocket)

Allosteric inhibition Emergent compound mutations CML

Blinatumomab Bispecific 
antibody

CD19 T-cell engagement and 
cytotoxicity

CD19 downregulation, lineage 
switch

B-ALL (including Ph+ 
ALL)

TMZ Alkylating 
agent

DNA DNA methylation at O6-
guanine

MGMT overexpression Glioblastoma

Bevacizumab Monoclonal 
antibody

VEGF Neutralizes VEGF Alternate angiogenesis pathways Glioblastoma, colorectal 
cancer, NSCLC

Erlotinib TKI EGFR ATP-competitive EGFR 
inhibition

EGFR T790M mutation, MET 
amplification

NSCLC

Osimertinib TKI EGFR (T790M) Irreversible covalent 
inhibition

EGFR C797S mutation, bypass 
pathways

NSCLC

Gefitinib TKI EGFR ATP-competitive EGFR 
inhibition

EGFR T790M mutation, MET 
amplification

NSCLC

Crizotinib TKI ALK, MET ATP-competitive inhibition ALK resistance mutations 
(L1196M)

NSCLC

Ceritinib TKI ALK ATP-competitive inhibition ALK mutations, bypass signaling NSCLC

Lorlatinib TKI ALK ATP-competitive inhibition Complex ALK mutations, off-
target effects

NSCLC

Vemurafenib TKI BRAF V600E Selective mutant BRAF 
inhibition

MEK reactivation, alternate 
splicing

Melanoma

Dabrafenib TKI BRAF V600E Selective mutant BRAF 
inhibition

MEK reactivation, alternate 
splicing

Melanoma

Trametinib MEK inhibitor MEK1/2 Inhibits MEK kinase activity Secondary MEK mutations, 
pathway reactivation

Melanoma

Sunitinib TKI VEGFR, PDGFR Multikinase inhibition Hypoxia-induced resistance, 
alternative angiogenesis

Renal cell carcinoma, 
GIST

Sorafenib TKI RAF, VEGFR, 
PDGFR

Multikinase inhibition Adaptive hypoxia response Hepatocellular carcinoma, 
renal cell carcinoma

Olaparib PARP inhibitor PARP1/2 Inhibits DNA repair HR proficiency, replication fork 
protection

OvCa, breast cancer

Niraparib PARP inhibitor PARP1/2 Inhibits DNA repair HR proficiency, replication fork 
protection

OvCa

Rucaparib PARP inhibitor PARP1/2 Inhibits DNA repair HR proficiency, replication fork 
protection

OvCa

Pembrolizumab Checkpoint 
inhibitor

PD-1 Blocks PD-1/PD-L1 
interaction

Immunoediting, loss of MHC 
expression

Melanoma, NSCLC

Nivolumab Checkpoint 
inhibitor

PD-1 Blocks PD-1/PD-L1 
interaction

Immunoediting, loss of MHC 
expression

Melanoma, NSCLC

This table summarizes key molecularly targeted cancer therapies, their drug class, specific targets, mechanism of action, known resistance 
mechanisms, and associated tumor types. Targeted agents include TKIs, monoclonal antibodies, immune checkpoint inhibitors, and other 
therapeutic classes designed to disrupt oncogenic signaling. Resistance mechanisms are categorized based on genetic mutations (e.g., BCR-ABL1 
mutations in chronic myeloid leukemia), pathway reactivation (e.g., MEK reactivation in BRAF-mutant melanoma), and alterations in the TME 
(e.g., hypoxia-induced resistance in renal cell carcinoma). Understanding these mechanisms provides insights into strategies for overcoming 
resistance and improving therapeutic efficacy. MTTs: Molecularly targeted therapies; HER2: human epidermal growth factor receptor 2; ADCC: 
antibody-dependent cellular cytotoxicity; TME: tumor microenvironment; TKI: tyrosine kinase inhibitor; ATP: adenosine triphosphate; CML: 
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chronic myeloid leukemia; ALL: acute lymphocytic leukemia; STAMP: specifically targeting the ABL myristoyl pocket; TMZ: temozolomide; 
MGMT: methyltransferase; VEGF: vascular endothelial growth factor; NSCLC: non-small cell lung carcinoma; MET: mesenchymal-epithelial 
transition factor; ALK: anaplastic lymphoma kinase; MEK: mitogen-activated protein kinase kinase; PARP: poly (ADP-ribose) polymerase; OvCa: 
ovarian cancer; HR: homologous recombination; PD-1: programmed cell death protein 1; PD-L1: programmed death-ligand 1; MHC: major 
histocompatibility complex.

dramatically changed the way cancer is treated, the challenge of acquired resistance has sparked an ongoing 
struggle to understand how to effectively manage tumor growth.

FOUNDATIONS OF THERAPEUTIC RESISTANCE
Defining therapeutic resistance
Resistance to MTTs can be separated into two categories: Intrinsic (primary), where resistance mechanisms 
pre-exist prior to therapy initiation, or acquired, where therapy itself exerts selective pressure that promotes 
clonal evolution and survival of resistant subpopulations[6]. Acquired resistance often reflects a dynamic 
process involving genomic instability, epigenetic reprogramming, and interaction with the tumor 
microenvironment (TME), all of which promote a more treatment-refractory tumor phenotype[7]. Due to 
the evolutionary aspect of this concept and the difficulty encountered when attempting to address these 
changes, acquired resistance will remain the main focus of this manuscript.

The causes of acquired resistance are varied and can involve many different aspects including drug-target 
modifications, alternative signaling pathway activation, and/or shifts in the TME usually initiated by genetic 
adaptations[8]. Understanding the mechanisms surrounding different treatment failures is vital for 
improving patient outcomes, as this will help us develop new treatment strategies and therapeutic targets.

Key pathways underpinning resistance dynamics
Before diving into the various mechanisms of resistance to MTTs, it is important to gain an understanding 
of signaling pathways that promote tumorigenesis. The landscape of cancer resistance mechanisms is 
significantly influenced by the reconfiguration of key cellular signaling pathways, notably the mitogen-
activated protein kinase (MAPK) and the phosphoinositide 3-kinase–protein kinase B/Akt (PI3K-PKB/Akt) 
pathways[9,10]. These pathways play pivotal roles in the survival, proliferation, and therapy resistance 
observed across various cancer types. Thus, understanding how these pathways contribute to resistance is 
vital for the development of effective counterstrategies.

MAPK
The MAPK pathway is integral to the regulation of cell growth and survival, as shown in Figure 1. 
Activation of this pathway begins at the cell membrane with the binding of growth factors to their respective 
receptor tyrosine kinases (RTKs), which, in turn, activate their associated RAS GTPases to relay signals 
downstream[11]. RAF family kinases (ARAF, BRAF, CRAF) are the direct effectors of RAS, which 
phosphorylates and activates MEK, to then phosphorylate ERK, which translocates to the nucleus to 
regulate gene expression by activating transcription factors[11]. The linear progression from growth factor 
stimulation to transcriptional regulation underscores the MAPK pathway’s pivotal role in mediating cellular 
responses to external cues. The MAPK pathway also has crosstalk with other signaling pathways, including 
PI3K/Akt, where mTORC2 appears to convey a portion of the oncogenic Ras signal in melanoma and likely 
in other contexts[11].

Mutations in any components of this pathway, particularly in RAS or RAF, can lead to its constitutive 
activation, driving oncogenesis by promoting uncontrolled cell proliferation and survival. For example, in 
melanoma, the BRAF V600E mutation results in constitutive activation of the MAPK pathway, promoting 



Page 5 of Stubbs et al. Cancer Drug Resist. 2025;8:27 https://dx.doi.org/10.20517/cdr.2024.189 27

Figure 1. Schematic representation of parallels between PI3K/Akt and MAPK signal pathways. Both pathways become activated when 
growth factors bind to their respective RTKs, causing RAS GTPases to relay signals downstream. Activation of these pathways promotes 
increased cell proliferation and survival. Some of the intricacies in signaling by mTORC1 and mTORC2 are shown leading to some 
distinct effects on metabolism and cell fate. PI3K: Phosphoinositide 3-kinase; Akt: protein kinase B; MAPK: mitogen activated protein 
kinase; RTK: receptor tyrosine kinase; RAS: oncogene; PTEN: phosphatase and tensin homolog; PIP2: phosphatidylinositol 4,5-
bisphosphate; PIP3: phosphatidylinositol 3,4,5-triphosphate; PDK1: 3-phosphoinositidedependent protein kinase 1; mTORC1: mTOR 
complex 1; mTORC2: mTOR complex 2; RAF: rapidly accelerated fibrosarcoma; MEK: mitogen-activated extracellular signal-regulated 
kinase; ERK: extracellular signal-related kinase. Created in BioRender. Purcell, C. (2025) https://BioRender.com/3us5vg.

uncontrolled cell growth. Though BRAF inhibitors were initially impactful for melanoma, resistance, 
particularly to vemurafenib, eventually emerged, facilitated by secondary mutations reactivating the MAPK 
pathway. Much like the initial base switch mutation that causes permanent activation of BRAF, base switch 
mutations in MEK1 and MEK2 can also cause them to become aberrantly activated and continue to affect 
downstream pathways[12]. Other mechanisms known to cause resistance include overexpression and 
resultant amplification of the RAF kinases (BRAF, CRAF) along with downstream activating mutations in 
N-RAS, MEK1, or Akt1[13-16].

PI3K/Akt
Parallel to the MAPK pathway, the PI3K/Akt pathway plays a crucial role in cancer cell metabolism, growth, 
and survival, as seen in Figure 1. This pathway’s activation also begins with the binding of growth factors to 
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the extracellular regions of their respective RTKs and GPCRs[17,18]. Upon activation, RTKs recruit and 
activate the PI3K. Once turned on, these PI3Ks catalyze downstream reactions, which eventually recruit Akt 
to the plasma membrane for further mediators like 3-phosphoinositidedependent protein kinase 1 (PDK1) 
and mTOR complex 2 (mTORC2) to act on it, activate it, and facilitate a myriad of downstream targets to 
increase cell proliferation and survival[17].

In discussing tumorigenesis, this pathway is constantly activated following either mutations in PIK3CA or 
the loss of the tumor suppressor PTEN, which acts as a key regulator of Akt activation[19]. When discussing 
melanoma and BRAF resistance, the PI3K pathway is often implicated as a bypass mechanism conferring 
survival following targeted therapy[20,21]. The interaction between the MAPK and PI3K/Akt pathways 
exemplifies the complexity of intracellular signaling networks and their role in cancer resistance. Crosstalk 
between these pathways allows cancer cells to maintain proliferative and survival signaling even when one 
pathway is pharmacologically inhibited. The scenario can be even more complicated by NRAS mutations, 
present in a notable subset of melanomas[22]. Alterations in NRAS lead to activation of the RAS-RAF-MAPK 
and PI3K-Akt pathways at similar levels seen with BRAF mutations[22,23]. Furthermore, NRAS mutations 
rarely occur with changes in the PI3K-Akt pathways, suggesting a dominant role for NRAS mutations in 
these signaling processes. As a result, there is a disruption in cell cycle regulation that promotes survival 
mechanisms and cellular proliferation[22]. As BRAF inhibitors are seemingly ineffective in these tumors, the 
development of downstream MEK inhibitors served the purpose of slowing growth in these tumors[24,25]. 
Unfortunately, however, MEK frequently mutates following MEKi treatment, resulting in either 
overactivation of MEK or the inability of the inhibitor to bind MEK[26,27]. This crosstalk is particularly 
evident as the mutations lead to concurrent activation of both pathways, presenting a significant challenge 
to single-targeted therapies.

EGF/EGFR
Beyond the PI3K/Akt and MAPK pathways, the EGF/EGFR signaling axis also plays a pivotal role in 
resistance development[28]. EGFR overexpression, activating mutations, and autocrine signaling loops 
contribute to both intrinsic and acquired resistance. Additionally, the tumor suppressor PTEN - an 
upstream regulator of the PI3K pathway - is frequently lost or mutated in resistant cancers, further 
amplifying downstream survival signaling[29]. The insulin-like growth factors (IGFs) and their receptors also 
play a role, driving pro-survival signals and metabolic reprogramming that enhances cancer cell fitness 
under therapeutic pressure[30,31].

THE TME AND THERAPY RESISTANCE
Definition and core components of the TME
The interaction between cancer cells and their surrounding TME plays another important role in 
developing resistance to targeted therapies[32]. The TME is a supportive meshwork of biological components 
that aid in the growth and development of a tumor[33-35]. More specifically, these components are immune 
cells, stromal cells, extracellular matrix (ECM), extracellular vesicles (EVs), cytokines, and growth 
factors[33-35]. Collectively, these elements contribute significantly to therapeutic resistance through direct and 
indirect interactions with cancer cells.

Myeloid cells and resistance
Tumor-associated macrophages (TAMs) originate from bone marrow and play an important role in the 
TME and subsequent therapeutic resistance[36-38]. Studies have shown that TAMs can directly induce 
epithelial-to-mesenchymal transition (EMT) of tumor cells and are heavily involved in ECM remodeling of 
the TME[36-38]. Activation of EMT induces stem cell properties in cancer cells[36-38]. Cancer cells with stem cell 
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properties are known to be resistant to various treatments, including chemotherapy, targeted therapy, 
radiation, and immunotherapies. EMT inducers, such as transforming growth factor-β (TGF-β)[39] and 
tumor necrosis factor-α (TNF-α), are secreted by TAMs along with proteases like cathepsins and matrix 
metalloproteinases (MMPs) to help to facilitate ECM degradation. Thus, there is subsequent enhanced 
tumor cell motility and therapeutic resistance. The role of TAMs also extends to promoting angiogenesis 
within the tumor tissue, which supports tumor growth and subsequent expansion.

Myeloid-derived suppressor cells (MDSCs) can also impact tumor therapeutic resistance by promoting an 
immunosuppressive environment within the TME[40]. For example, it has been shown that MDSCs secrete 
interleukin 10 (IL-10), which serves to inhibit macrophage activation and consequently reduces the 
secretion of immunogenic cytokines, thereby dampening intratumoral immunity[41]. This suppression of 
immune activity contributes to an environment where tumor cells can evade immune surveillance and resist 
therapeutic interventions.

Stromal cells and resistance
Beyond myeloid cells, cancer-associated fibroblasts (CAFs) within the TME can also play a pivotal role in 
modulating cancer resistance[42]. Like TAMs and MDSCs, CAFs secrete proteins, exosomes, and factors 
involved in ECM remodeling[42]. Furthermore, these factors can influence tumor cells in a paracrine manner 
and activate signaling pathways such as Wnt/β-catenin, PI3K/Akt, and MAPK[43-45]. CAFs also secrete 
growth factors such as TGF-β, fibroblast growth factor (FGF), epidermal growth factor (EGF), and 
hepatocyte growth factor (HGF) to induce EMT-like CAMs and exacerbate the aggressiveness and 
resistance of tumor cells[46].

Role of EVs in therapy resistance
EVs are increasingly recognized as critical mediators of drug resistance in cancer[47-49]. These vesicles 
facilitate intercellular communication by transferring oncogenic proteins, drug-efflux pumps, and non-
coding RNAs between cancer cells, thereby spreading resistance traits across the tumor population[47-49]. For 
example, EVs derived from resistant tumors have been shown to deliver P-glycoprotein to neighboring 
sensitive cells, promoting multidrug resistance[47-49]. Additionally, EVs play an important role in remodeling 
the TME, modulating immune evasion, and promoting angiogenesis, all of which contribute to the 
development of resistance[50].

ACQUIRED RESISTANCE MECHANISMS ACROSS CANCER TYPES
Following the preview of the underlying pathways that contribute to therapy resistance and the multifaceted 
role of the TME in fostering these resistances, we can now pivot our attention toward a comprehensive 
examination of acquired resistance mechanisms as they unfold across a spectrum of cancer types. Each 
cancer type presents unique challenges and elucidates the adaptive nature of cancer cells in the face of 
targeted therapies. This section aims to highlight the nuanced intricacies of resistance mechanisms, 
providing a foundation for the development of more effective, multifaceted treatment strategies that 
anticipate and counteract these adaptive responses.

Genetic and molecular basis of resistance in hematologic malignancies
The battle against hematologic malignancies, particularly CML and acute lymphocytic leukemia (ALL), has 
been at the forefront of personalized medicine, driven by the advent of MTTs. However, the emergence of 
acquired resistance represents a formidable challenge, undermining the efficacy of these treatments and 
complicating patient management strategies.



Page 8 of Stubbs et al. Cancer Drug Resist. 2025;8:27 https://dx.doi.org/10.20517/cdr.2024.18927

CML and therapeutic resistance
In the context of CML, the main driver mutation is a t(9;22)(q34;q11) balanced reciprocal translocation 
event, which results in the formation of the Philadelphia chromosome characterized by a BCR:ABL1 fusion 
gene[51]. This gene encodes a constitutively active tyrosine kinase, resulting in an unchecked 
myeloproliferative state diagnostic of CML[51]. The Philadelphia chromosome, resulting from the t(9;22) 
translocation, occurs in approximately 25% of adult ALL cases and 2%-5% of pediatric ALL cases, 
significantly influencing treatment decisions and prognosis[52]. From this finding, the focus shifted to the 
manufacturing of tyrosine kinase inhibitors (TKIs) like imatinib, bosutinib, dasatinib, and nilotinib and 
helped to revolutionize CML treatment. Although not considered curative, they are effective for the long-
term prevention of disease progression in a majority of individuals with life expectancy in patients with 
CML nearing that of the general population[53-56]. In chronic-phase CML, TKI therapy has achieved 
remarkable success, with 5-year overall survival rates exceeding 90%. In contrast, the prognosis for Ph+ ALL 
remains more guarded, with 5-year survival rates in relapsed or refractory cases below 50%, even with newer 
therapies[53-56]. Despite this progress, unfortunately, approximately 20% of patients develop resistance to 
first-line TKIs. This most commonly occurs through the development of point mutations in the catalytic 
domain of the BCR:ABL1 protein, rendering first-line agents ineffective[53-56]. The most famous and 
prominent resistance mutation is the T315I mutation, as it notoriously confers resistance to all first-line TKI 
treatments[57-59]. This results in the use of alternative, more toxic agents to slow the progression of disease.

Beyond the BCR:ABL1-specific forms of resistance, independent forms may be acquired through TKI-
resistant leukemic stem cells, which can act as a reservoir for the propagation of new tumor cells once 
treatment stops[59]. Oftentimes, in BCR:ABL1-independent TKI-resistant CML, the RAF/MEK/ERK 
pathway will be activated through the increased expression of PKCη, whose subsequent phosphorylation of 
CRAF leads to increased proliferation and cell survival[60]. Resistance may also occur through the improper 
activation of the mTOR pathway, which induces aberrant autophagy that protects cells from TKI-induced 
apoptosis[61]. Both pathways may be activated irrespective of BCR:ABL1 signaling[60,61]. The aforementioned 
mechanism of resistance underlines the multifaceted nature of this disease, highlighting the necessity for 
comprehensive treatment approaches[57-59]. A recent breakthrough in CML management is asciminib, a first-
in-class STAMP inhibitor targeting the ABL myristoyl pocket[60]. Unlike ATP-competitive TKIs, asciminib 
offers a novel mechanism that bypasses several common resistance mutations, including T315I. Clinical 
trials such as ASCEMBL have demonstrated superior efficacy and safety compared to bosutinib in resistant 
chronic-phase CML[62,63].

ALL and therapeutic resistance
In a similar fashion to CML, ALL arises through the uncontrolled proliferation of lymphocyte precursor 
cells in the bone marrow and peripheral blood. Seventy-five percent of these cancers develop from 
precursors of the B cell lineage and the remaining twenty-five percent are derived from the T cell lineage[64]. 
Like many other hematologic malignancies, the genetic architecture of this disease is highly heterogeneous, 
with diverse mutations arising and frequent chromosomal translocation events even resulting in the 
occasional development of the Philadelphia chromosome much like CML[65,66]. In the case of Philadelphia 
chromosome-positive ALL, treatment with a TKI like imatinib is the current standard of care like CML, and 
thus, similar resistance mechanisms are likely to arise[67,68]. For Philadelphia chromosome-negative ALL, the 
highly efficacious treatment combination of anthracycline-like drugs, vincristine, and glucocorticoids (GC) 
results in complete remission for 80% of patients[68]. Vincristine, a vinca alkaloid chemotherapy agent, binds 
to tubulin, which inhibits microtubule formation during mitosis and eventually leads to cell cycle arrest in 
metaphase[69]. This mechanism makes it particularly effective against rapidly dividing cancer cells, such as 
those found in leukemias and lymphomas. Additionally, analogous to CML, the good prognosis of primary 
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ALL is often overshadowed by dismal recurrence rates. In Ph+ ALL, ponatinib - a third-generation TKI - is 
particularly effective against the T315I mutation and is now considered a preferred frontline option in 
combination with reduced-intensity chemotherapy[70-74]. By binding the ATP-binding site of the BCR-ABL1 
fusion protein, ponatinib blocks oncogenic signaling that drives proliferation and survival in Philadelphia 
chromosome-positive (Ph+) leukemias[70-74]. Its broad kinase inhibition profile also targets several off-target 
kinases, contributing to its efficacy, but also to its toxicity profile[70-74]. Furthermore, chemotherapy-free 
regimens combining ponatinib with blinatumomab, a CD19-targeting bispecific antibody, show promising 
efficacy in both frontline and relapsed settings[75]. Despite ponatinib’s potency, resistance can still emerge 
through compound mutations in BCR-ABL1, altered drug efflux, and leukemic microenvironment 
interactions[74].

Anthracycline resistance is most commonly acquired through the increased expression of efflux ATP-
binding cassettes (ABC)-transporters, reducing intracellular drug concentration[76]. For vincristine, there is 
evidence that resistance is acquired through mutations that can stabilize microtubules, offsetting the 
primary mechanism of therapeutic action[69]. Furthermore, resistance to GCs and subsequent relapse has 
been observed when mutations develop in the NR3C1 and BTG1 genes, which encode for the GC receptor 
and promote increased GC receptor expression, respectively[77,78]. BTG1 has been shown to stabilize 
glucocorticoid receptors (GR) by interfering with proteasome-mediated receptor degradation, thereby 
increasing receptor abundance and potentiating glucocorticoid signaling in lymphoid malignancies[77]. Like 
many cancers, increased RAF/MEK/ERK signaling has also been associated with relapse and GC 
resistance[78].

Pathway reconfiguration and drug resistance in solid tumors
Moving from the genetic and molecular landscape characterizing resistance in hematologic malignancies, 
the realm of solid tumors unfolds a distinct yet intricate narrative. Non-small cell lung carcinoma (NSCLC), 
gastrointestinal cancers, prostate cancer (PCa), breast cancer, ovarian cancer (OvCa), glioblastoma, and 
pancreatic cancer epitomize the sophisticated mechanisms through which solid tumors counteract targeted 
therapies.

NSCLC and tyrosine kinase
NSCLC serves as a primary case study in the adaptation against targeted treatments, especially against 
tumors harboring specific genetic markers like EGFR mutations and ALK rearrangements. NSCLC 
comprises up to 85% of lung cancer in the US, with development being due to driver mutations of different 
tyrosine kinases like KRAS, EGFR, ALK, ROS1, MET, RET, NTRK, human epidermal growth factor 
receptor 2 (HER2), and BRAF[79,80]. Much like what was discussed in CML, the discovery of these 
constitutively active receptors led to the development of molecular targeted therapies, with those against 
EGFR and ALK being the most efficacious[81].

Despite the high initial response rates, NSCLC widely develops resistance through several proposed 
mechanisms, including on-target mutations, off-target mutations. On-target drug resistance occurs via a 
secondary mutation in the drug target. For instance, with first- and second-generation EGFR inhibitors, 
many EGFR-mutant NSCLC patients developed the T790M gatekeeper mutation, which hinders the drug 
from interacting with the kinase[82]. Analogously, the ALK mutation L1196M has been characterized as a 
gatekeeper mutation, preventing ALK inhibitors like crizotinib access to the kinase’s ATP binding site[83]. 
Though less common, another potential mechanism of on-target resistance is the amplification of the target 
kinase itself, which has been described for both EGFR and ALK[84,85]. The amplification of target genes, such 
as EGFR and ALK, further demonstrates how cancer cells can override the blockade established by targeted 
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drugs, maintaining proliferative signaling despite treatment[86,87]. While direct modulation of treatment effect 
is paramount in TKI resistance in NSCLC, off-target mechanisms can essentially work in parallel to further 
diminish treatment efficacy following exposure to the drug. An example of such a mechanism is exemplified 
by the amplification of c-MET (an alternative tyrosine kinase), which can operate in parallel to EGFR and 
activate the same PI3K/Akt pathway, thereby negating the therapeutic benefit of EGFR inhibition[86]. This 
highlights the intricate web of signaling pathways within cancer cells and their inherent capacity to find 
alternate survival routes under therapeutic pressure.

Gastrointestinal carcinoma and 5-fluorouracil resistance
5-fluorouracil (5-FU) has been recognized as a cornerstone in therapeutic efficacy in the domain of 
gastrointestinal carcinoma (GIC)[87]. Unfortunately, therapeutic efficiency has diminished as resistance to 
this agent started to emerge. Mechanisms such as enhanced DNA repair mechanisms, shifts in drug 
metabolism, and the activation of survival pathways collectively forge a robust front against 5-FU.

Enhanced DNA repair, specifically through the base excision repair (BER) and mismatch repair (MMR) 
pathways, has been shown to play significant roles in promoting resistance to 5-FU[88,89]. The APC gene, 
identified as a BER-related protein, is notable in this context as tumors lacking functional APC exhibit 
resistance to 5-FU[90]. This occurs via the enzyme thymidylate synthase (TS), which functions as the target 
enzyme of 5-FU[89]. Overexpression is postulated to lead to reduced drug efficacy by providing an alternative 
pathway for DNA synthesis[90,91]. Dihydropyridine dehydrogenase (DPD) is another enzyme that plays a 
pivotal role in the catabolism of 5-FU, with its overexpression resulting in 5-FU degradation[92,93]. 
Furthermore, studies have demonstrated that tumors with deficient mismatch repair (dMMR) mechanisms 
are resistant due to an increased expression of TS and DPD, in comparison to proficient mismatch repair 
(pMMR) cells[94]. The enzymatic degradation of 5-FU via overexpressed DPD and the bypass mechanisms 
provided by elevated levels of TS reflect the dynamic interplay between drug efficacy and tumor survival 
strategies.

Activation of cellular survival pathways represents another dimension of 5-FU resistance. Notably, 
pathways such as PI3K/Akt, Wnt, and MAPK/ERK have been implicated in promoting cell survival and 
proliferation, enabling cancer cells to withstand the cytotoxic effects of 5-FU[95-97]. The activation of these 
pathways in response to 5-FU treatment underscores the adaptability of cancer cells, facilitating their 
survival in the face of therapeutic challenges. EMT has also been recognized as a key factor in 5-FU 
resistance[98,99]. In GIC, this process is associated with increased metastatic potential as it promotes tumor 
stemness and invasiveness.

Collectively, these mechanisms illustrate the intricate network of pathways contributing to 5-FU resistance 
in GIC. The insights garnered from understanding these resistance mechanisms are instrumental in the 
development of novel therapeutic strategies aimed at mitigating resistance and enhancing the efficacy of 5-
FU-based treatments.

Breast carcinoma and resistance to HER-2 targeted therapies
When discussing difficult-to-treat solid tumors, it is essential that breast carcinoma (BC) is mentioned, as it 
is the most common malignancy affecting women in the United States[100]. HER-2-positive BC is a specific 
subtype of breast cancer characterized by overexpression of the HER2 protein[101]. The HER-2/neu (EGFR2 
or ErbB2) is a transmembrane oncoprotein encoded by the HER2/neu gene and is a member of the family of 
RTKs that also includes EGFR (HER1, ErbB1), ErbB3, and ErbB4[102]. HER-2/neu is weakly detectable in 
epithelial cells of normal tissues but is overexpressed in approximately 20% to 25% of invasive breast cancers 
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and has been linked to a poor prognosis and a high risk of cancer relapse[103]. Among FDA-approved HER2-
targeted drugs are monoclonal antibodies (mAb), TKIs, and antibody-drug conjugates (ADC)[103-105]. Despite 
the benefits of anti-HER2 therapies in the survival rate of HER2 BC patients, unfortunately, it too follows 
the overarching theme of this manuscript.

Resistance is often acquired following initial treatment, with some patients being non-responsive from the 
start despite having the mutation of interest[102,103,106-108]. Acquired resistance to trastuzumab is often 
encountered in metastatic BC, making the search for clinically relevant mechanisms crucial to 
understanding how to prevent this event from occurring[108]. Trastuzumab is a monoclonal antibody that 
selectively targets the HER-2 receptor, an RTK overexpressed in approximately 20% of breast cancers[109]. By 
binding the extracellular domain (ECD) of HER2, trastuzumab blocks ligand-independent receptor 
dimerization, reduces downstream proliferative signaling (via PI3K/Akt and MAPK pathways), and 
enhances antibody-dependent cellular cytotoxicity (ADCC)[109]. Despite its efficacy, primary and acquired 
resistance to trastuzumab remain significant challenges. These resistance mechanisms include factors 
hindering trastuzumab binding to HER2; upregulation of HER2 downstream signaling pathways; and 
signaling through alternate pathways[110-116].

As suspected, one of the more common mechanisms of acquired resistance is receptor modification. More 
specifically, this resistance is characterized by p95HER2 overexpression[117]. p95HER2 is an amino terminally 
truncated membrane-bound fragment that is generated from the cleavage of the ECD following ligand 
binding[117]. High expression levels of p95HER2 make the cells resistant to trastuzumab as it cannot bind to 
p95HER2 due to ECD loss, which, unsurprisingly, is correlated with distant metastases and resultant 
decreased survival[117].

Upregulating downstream HER-2 signaling pathways is another mechanism in which BC can resist targeted 
therapy. Just as it is in other cancers, the RAS/Raf/MAPK and the PI3K/Akt cascades are the primary 
downstream signaling pathways in BC and play an important role in BC survival[118]. Specifically, loss-of-
function PTEN deletions and activating mutations of PI3KCA, two of the most frequent genetic alterations 
in BC, cause increased activity of the PI3K/Akt pathway and can contribute to trastuzumab resistance[118].

While HER-2 is a key mediator of cell survival, there are other receptors (EGFR/HER1, HER3, and HER4) 
within the HER family that also have the potential to form dimers and mediate signaling[117]. Therefore, even 
with successful trastuzumab binding and inhibition, crosstalk still allows for the activation of alternative 
signaling pathways such as ER, IGF-1R, and HER3 signaling pathways[117]. For instance, IGF-1R is crucial in 
resistance and overexpressed in approximately 43%-50% of primary BC[117-119]. Aberrant activation of IGF-1R 
has been shown to upregulate the expression of the p27Kip1 ubiquitin ligase, SKP2[117-119]. This leads to the 
degradation of the cyclin-dependent kinase inhibitor (CDKI) p27Kip1, causing a loss of growth arrest[117-119]. 
Another example is HER3 acting as a crucial cofactor for sustaining cell proliferation in HER-2-
overexpressing cell lines[120]. The heterodimerization of HER2 with HER3 activates the PI3K/Akt signaling 
pathway through the phosphorylation of HER3 receptors at multiple tyrosine residues[120]. The c-MET 
receptor and its ligand, HGF, further contribute to trastuzumab resistance by inhibiting trastuzumab-
mediated p27 induction and continued Akt activation[120-122]. The increased expression of the receptor 
tyrosine kinase Eph receptor A2 (EphA2) has also been implicated in both intrinsic and acquired 
trastuzumab resistance[120-122].

In breast cancer, these alterations contribute to therapeutic resistance, especially in HER-2-positive subtypes 
treated with trastuzumab. The resistance mechanisms encompass not only direct alterations affecting HER2 
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but also downstream pathway modulations, further highlighting the complexities involved in treating 
resistant tumors[122].

Prostate carcinoma and androgen receptor resistance
PCa is the most common cancer in men, and there will be nearly 35,250 PCa-related estimated deaths in 
2024, ranking second in cancer-related deaths in the United States[123-125]. Although most patients present 
with localized disease, progression to metastatic disease and its management remain significant clinical 
challenges. Most patients with advanced disease progress to metastatic castration-resistant prostate cancer 
(mCRPC), associated with a median OS of 4-5 years[126]. The prostate epithelium, as well as the cancerous 
cells, express high levels of AR, which encodes the androgen receptor (AR), and this has been associated 
with hormonal dependency in PCa[127]. The shift between an AR signal mainly associated with epithelial 
growth and differentiation to signaling associated with indiscriminate growth in the cancer scenario is 
unclear; nonetheless, although this AR pathway is the cornerstone of current therapies, resistance arises in 
the context of androgen deprivation therapy (ADT) and androgen blockade[128,129]. It is vital to note that AR 
activity is necessary for tumor development and is the primary driver of disease progression to the 
castration-resistant phase during ADT. The AR predominantly functions as a transcription factor in normal 
prostate homeostasis[130,131]. Genes such as KLK3, encoding prostate-specific antigen (PSA), are direct 
transcriptional targets of the AR, and their expression is often used as a surrogate for AR activity in PCa 
research and clinical monitoring[132]. The disease state is established where AR primarily drives a growth-
related genetic program. Significantly, ADT is associated with alterations in the AR pathway, especially 
regarding AR overexpression and/or post-translation modifications that can lead to therapy resistance 
through multiple mechanisms. In this regard, most described mechanisms leading to castration resistance 
are mediated by AR or its related axis.

In mCRPC, for instance, there are increased mutations, amplifications of, and gain-of-function of AR. 
Amplification of the AR has been identified in up to 20% of mCRPC patients and is associated with 
response to the low levels of circulating and/or intra-tumor androgens[132]. It should also be noted that AR 
amplification is a unique characteristic of prostate tumors that have been exposed to androgen deprivation, 
indicating that AR amplification is a consequence of hormone therapy[133]. Reportedly, 70% of mCRPC 
patients have amplification or alterations of regulators for AR transcription, such as FOXA1[134]. Some genes 
that repress AR pro-tumorigenic signaling, like tumor suppressors ZBTB16 and NCOR1, have inactivating 
mutations or deletions[130,131]. By contrast, for metastatic castration-sensitive PCa, follow-up targeted genetic 
studies in matched samples of patients who later displayed progression onto mCRPC have shown that AR is 
altered in only 2%-6%, suggesting an acquired role for AR amplifications and mutations in mCRPC.

There are also reports of enhancers and regulators that have the potential to increase the expression of the 
AR gene independently of AR locus amplification in response to ADT[135]. In metastatic PCa, ADT has been 
associated with a mechanism of increased sensitivity to circulating androgens. A substitution of valine with 
leucine at codon 89, which is associated with more aggressive and early-onset PCa, has also been associated 
with increased 5α-reductase levels in a subset of mCRPC patients, rendering this population with higher 
levels of DHT despite low circulating levels of testosterone[135]. The substitution of threonine with alanine at 
codon 877 on the ligand binding domain of the AR, as well as L701H, V715M, and W741C substitutions, 
are among point mutations identified in the AR gene that lead to increased AR activity in the presence of 
low levels of androgens as well as non-androgenic steroids, such as hydrocortisone and estradiol.

There are also several AR co-activators, such as SRC1, SRC2, SRC3, ARA70, and PIAS1, that can interact 
with the AR and subsequently enhance its activity[136,137]. The key AR regulators, TIF2 and SRC1, have been 
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associated with higher expression levels following androgen deprivation and are overexpressed in mCRPC 
samples. For instance, TIF2 enhances the AR transcriptional activation in response to adrenal androgens 
(DHEA and androstenedione)[138].

Identifying androgen receptor variants (AR-Vs) in tumors derived from mCRPC patients provides further 
mechanistic insight into the CRPC phenotype development[139,140]. AR-Vs are splice variants of AR that are 
constitutively active due to the loss of the C-terminal LBD. Significantly, treatment-induced AR 
amplification in CRPC may contribute to developing receptor variants. In a recent report, a 48-kb deletion 
in AR intron 1 was linked to the expression of the AR-V7/AR3 splice variant in the CWR-R1 cell line. After 
AR blockade with enzalutamide, the AR-V7/AR3-expressing clone was associated with tumor growth 
during ADT, providing mechanisms of AR splice variants in the pathogenesis of CRPC[139,140].

Pancreatic cancer and resistance to KRAS-targeted therapies
To date, pancreatic cancer remains one of the most challenging malignancies to treat, with a 5-year survival 
rate approaching 13%. In PAAD, the KRAS mutation is understood to be an early driver of tumorigenesis, 
as it is mutated in around 90%-95% of cases[141]. These mutations usually occur at the G12 site, with the 
G12D and G12V mutations making up 39.2% and 32.5% of alterations, respectively, followed by G12R and 
G12C at 17.1% and 1.7%[142].

The resultant effect is continual activation of KRAS downstream signaling, which promotes cancer cell 
growth and proliferation[143]. Aside from tumor intrinsic effects, mutant KRAS is also known to cultivate a 
proinflammatory and immunosuppressive environment by causing increased levels of TGFβ and IL-10 in 
the TME[144]. Additionally, in vivo studies demonstrated that KRAS mutation can drive highly mesenchymal 
subclones of PAAD cells that exhibit increased drug resistance[145]. Heterogeneity-driven resistance of PAAD 
is not just limited to varying states of EMT. The many parallel and redundant pathways branching off KRAS 
that drive cell survival and growth cause the effectiveness of KRAS inhibition to be highly context-
dependent and subject to non-genetic acquired mechanisms of resistance.

The combination of all these effects from mutant KRAS primes the target to resist targeted therapies against 
it. This resistance is further compounded by the fibrotic nature and low vascularity of PAAD tumors, 
alongside a highly immunosuppressive TME[146]. This can create a formidable barrier against therapeutic 
interventions aimed at curbing tumor growth. However, the main reason underlying this tumor’s 
challenging target involves the dynamic and redundant signaling pathways activated by KRAS mutations. 
For instance, although ERK inhibition will reduce MAPK signaling in the short term, the drug-induced loss 
of the endogenous negative feedback capability eventually leads to MAPK activation rebounding to a new 
steady state, preventing a durable drug response[147]. A further factor limiting the effectiveness of inhibiting 
nonmutated proteins of the KRAS effector pathways is that therapies are not selective to mutant KRAS 
PAAD cells, substantially narrowing the therapeutic window due to toxic effects on normal physiological 
processes[142].

OvCa and resistance to poly (ADP-ribose) polymerase inhibitors
Despite advances in understanding the biology underpinning OvCa in the last decade, with an annual 
burden of 300,000 new cases, it continues to be the major cause of gynecological cancer-related deaths 
globally and the eight-leading cause of cancer deaths in women[148-150]. In most patients, OvCa tends to be 
diagnosed at an advanced stage, which, in combination with its heterogeneous molecular makeup, lends to 
its high mortality rate[151-153]. In 2023, the United States had an estimated 13,270 OvCa-related deaths and 5-
year survival outcomes of around 30%-50%, depending on the stage at diagnosis[149]. The most common 
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histological subtype of epithelial OvCa is high-grade serous ovarian cancer (HGSOC), which accounts for 
60%-80% of all cases[148]. The mainstay of treatment is cytoreductive surgical debulking and platinum- or 
taxane-based chemotherapeutic regiments. Maintenance therapy typically includes VEGF inhibitors such as 
bevacizumab or, more recently, poly (ADP-ribose) polymerase inhibitors (PARPi). Some strategies to 
overcome PARP inhibitor resistance have been suggested[154-157].

PARPs are some of the best-known components of the DNA damage response (DDR)[158]. They detect 
single-strand breaks (SSBs) and recruit additional repair factors through poly-ADP ribosylation 
(PARylation) of target proteins, including chromatin-associated proteins[158]. By inhibiting PARP activity, 
PARPi prevent the repair of SSBs, leading to the accumulation of double-strand breaks and synthetic 
lethality in tumors with defective homologous recombination repair (HRR) (e.g., BRCA1/2-mutant 
cancers)[158]. HGSOC are under immense DNA replication stress and rely on DNA HRR via tumor 
suppressors such as BRCA1 and BRCA2 to maintain chromosomal stability. PARPi take advantage of this 
dependency by binding the active site of PARP, inhibiting its catalytic activity and trapping the PARP-DNA 
complex and destabilizing replication forks[159,160]. Initially approved for maintenance treatment of recurrent 
platinum-sensitive BRCA1/2 mutant epithelial OvCa, PARPi have shown benefits beyond these indications 
for HGSOC[161]. Despite all these advances, treatment-induced acquired resistance arises, which erodes the 
efficacy of these agents. Acquired resistance can be attributed to increased drug efflux from overexpression 
of multidrug efflux proteins, upregulation of survival pathways, and downregulation of DNA damage repair 
mechanisms[162]. Efflux proteins utilize ATP pumps to actively pump out the drug molecules before they can 
exert their effects intracellularly. The most notable examples are the adenosine triphosphate-binding 
cassette superfamily[163].

Activation of alternate oncogenic pathways such as PI3K/Akt/mTOR and RAF/MEK have also been 
described as potential mechanisms for resistance to PARPi due to the PARP-PI3K-Akt crosstalk with HRR. 
Preclinical studies show increased activation of the PI3K-Akt pathway in the setting of PARPi, inducing 
apoptosis resistance and limiting the cytostatic efficacy of PARPi[164]. Due to its regulation of key cellular 
processes including metabolism, motility, and growth, it stands to reason why PI3K/Akt/mTOR 
dysregulation leads to the aberrant proliferation of cancer cells.

A wide array of genomic alterations has been described involving PIK3CA, PTEN, AKT, TSC1, LKB1, and 
MTOR[165]. Early phase studies showed promising activity using a combination of a pan-PI3K inhibitor 
(buparlisib) and MEK inhibitor (trametinib) to overcome resistance in patients with low-grade serous OvCa 
with refractory RAS or RAF mutations and yielded an ORR of 29%. However, a significant portion of the 
patients had grade 3/4 AEs, including transaminitis, creatinine kinase elevation, and rash, which might limit 
the future utility of these agents in combination therapy[165-167].

A potential clinical predictive marker for PARPi resistance may be sensitivity to platinum-based 
chemotherapy. In HGSOC, both drug classes target DNA repair via pathways that likely share resistance 
commonalities such as secondary BRCA reversion mutations, loss of 53BP1, and replication fork 
protection[168-170]. Resistance to PARPi gives rise to dependence on other DNA repair pathways, leading to 
additional therapeutic opportunities. Since TP53 is almost ubiquitously lost in HGSOC, it points toward 
increased oncogenic stress. Ataxia telangiectasia and Rad3-related kinase (ATR) is a well-known regulator 
of cell death and controls cell cycle arrest from the S to G2 phases. In cells with TP53 mutation, ATR 
promotes checkpoint-defective cells, and the inhibition of this target may prove synthetically lethal[159,171,172]. 
Overcoming acquired resistance in OvCa will take combination therapy for continued improvements. The 
combination of PARPi and ATRi has shown a synergistic effect in terms of DNA damage and durable 
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tumor regression. The CAPRI trial evaluated the combination of Olaparib and ceralasertib in platinum-
sensitive HR-deficient HGSOC, which progressed on prior PARPi and had an ORR of 46% (n = 6) and 
median PFS of 7.5 months with acceptable toxicity[172]. Other combinations such as ATRi plus gemcitabine 
have also shown clinical efficacy in platinum-resistant HGSOC[173]. Combinations of PARPi and PI3K/Akt 
inhibitors are also currently being clinically evaluated[174,175]. Alternate treatment paradigms are also being 
evaluated, including ADC such as mirvetuximab[176], next-generation PARPi with higher selectivity, PDL1/
PD1 inhibitors, and other additional promising targets such as DNA polymerase theta (POLθ)[177,178] and 
novel oncogenes such as UBE2S[179].

Glioblastoma and treatment resistance
WHO grade IV, IDH-WT astrocytoma (GBM) is the most common aggressive form of primary brain 
cancer[180]. The development of targeted therapies for GBM has been significantly challenged by the complex 
mechanisms of resistance inherent to the tumor’s biology.

One of the primary treatment challenges in treating GBM is the blood-brain barrier (BBB), a network of 
endothelial cells, pericytes, and astrocytic foot processes that prevent many therapeutic compounds from 
entering the brain[181,182]. Even though the integrity of this network is relatively compromised in GBM, the 
aberrant features of GBM allow for the formation of the blood-brain tumor barrier (BBTB)[181,182]. While 
more permeable to circulating nutrients that the tumor needs, drug delivery remains an issue owing to an 
upregulation of efflux transporters such as MDR1 and P-glycoprotein that expel drug molecules[183-185]. 
Mechanical disruption methods like osmotic disruption and focused ultrasound have been attempted to 
enhance drug delivery through these barriers; however, these strategies have had limited success due to 
ineffectiveness or an unacceptable level of toxicity[186,187]. To date, nanocarriers and peptide-based drug 
delivery methods are being explored to improve penetration across this barrier, but more research is needed 
to validate the long-term efficacy and safety[188,189].

A major obstacle in treating GBM is the profound intra- and intergenetic heterogeneity. Because of this, 
effective targeted therapies are difficult to develop as treatments may only be effective against a specific 
subtype of cells, leading to recurrence following treatment as the resistant (non-targeted) cell populations 
continue to proliferate[190-192]. While there are several signaling pathways that are implicated in GBM 
pathogenesis, the Cancer Genome Atlas (TCGA) identified the RTK/RAS/PI3K, p53, and Rb pathways as 
foundational to GBM development[193]. As such, genetic alterations in these pathways contribute 
significantly to treatment resistance as crosstalk allows for the upregulation of downstream elements even in 
the presence of highly specific inhibitors. This is evident from the limited success of EGFR inhibitors despite 
the high prevalence of EGFR amplifications (including the unique variant EGFRvIII) in GBM[194,195]. In a 
similar fashion, the PI3K/Akt/mTOR pathway is also frequently activated in GBM, but is difficult to target 
due to redundancy with other signaling pathways and poor penetration across the BBB[196]. These pathways 
do not function in isolation; instead, they interact and compensate for one another.

Along with redundancy, these tumors also have developed specific resistance mechanisms to various agents. 
The most well-known is the developed resistance to the alkylating agent temozolomide (TMZ). TMZ acts by 
methylating guanine nucleosides, which nicks DNA and leads to apoptosis due to the inability to repair the 
damaged DNA[197]. However, when the DNA repair enzyme O6-methylguanine (O6-MeG)-DNA 
methyltransferase (MGMT) is active, it specifically reverses this action and renders TMZ ineffective[191,198].

Epigenetic silencing plays a role in keeping this protein at bay; however, once TMZ therapy is initiated, the 
tumor undergoes genetic remodeling, leaving the MGMT promoter region unmethylated and promoting 
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tumoral resistance[191,198]. While this mechanism is the main cause of drug resistance in the therapy of 
recurrent GBM, other mechanisms such as MMR deficiencies can also contribute to TMZ resistance. When 
the MGMT enzyme is absent during DNA replication, the DNA polymerase enzyme incorrectly inserts 
thymine at the site of O6-MeG, which initiates the formation of the MMR complex[199,200]. Although not 
directly cytotoxic, the O6-MeG lesion induces cellular toxicity due to MMR complex recognition and 
processing, triggering cell death either by futile cycling or direct signaling[201].

Glioma-initiating cells (GICs) can also play a role in resistance in GBM. These cells reside in the hypoxic 
core of these tumors, where they contribute to resistance to radiotherapy via the kinases Chk1 and 
Chk2[202,203]. These kinases are activated in response to DNA damage signals, and their activity results in 
reduced sensitivity to radiation therapy[204,205]. GICs also express ABC at higher rates, which function as 
another obstacle for different therapies. Specifically, in GICs, hypoxia leads to upregulation of ABCC1 and 
ABCB1, promoting resistance to targeted therapies[206]. Hypoxia can also complicate matters as it both 
promotes the growth of GICs and upregulates hypoxia-inducible factor 1 (HIF-1), which has many 
downstream tumorigenic pathways[206,207]. Hypoxia-induced autophagy is a mechanism GICs use to survive 
under stress, which doubles as a resistance mechanism to these tumors. There are promising results 
showing that by inhibiting this specific autophagy in GICs with agents like chloroquine, sensitivity to TMZ 
is increased[206,208-210].

EMERGING STRATEGIES TO OVERCOME RESISTANCE
Throughout this discussion, we have delved into the myriad ways through which both solid and 
hematologic tumors develop resistance to targeted therapies. It is clear there are considerable overlaps in the 
adaptations these tumors employ, shedding light on the intricate struggle against cancer resistance. Equally 
as important, however, is looking at the various strategies employed to overcome these hurdles.

Synthetic lethality and exploiting genetic vulnerabilities
Synthetic lethality [Figure 2] explains a scenario where alterations in two specific genes simultaneously lead 
to cell death[211]. Cancer cells possessing a mutation in only one of a particular pair of genes may rely on the 
unmutated partner gene to survive. Targeting and disrupting the activity of this unmutated partner gene 
could result in the death of the cancer cells. Investigating the concept of synthetic lethality offers insights 
into gene function and aids in the creation of novel cancer therapies. For example, in NSCLC, overcoming 
resistance to EGFRi can be approached through synthetic lethality by targeting the NF-κB pathway[212,213]. 
Some studies highlight the role of NF-κB in promoting resistance to EGFRi treatment, showing that 
silencing specific genes related to the NF-κB and Fas death receptor signaling pathways can sensitize 
NSCLC cells to erlotinib[212,213]. The introduction of PBS-1068, an inhibitor targeting the RELA subunit of 
NF-κB, demonstrates promising results in not only enhancing the response to erlotinib but also inducing 
apoptosis in both intrinsic and acquired EGFRi resistance scenarios[213].

Adaptive and dynamic therapy approaches
Overcoming acquired resistance to MTTs will require a paradigm shift from linear, single-agent treatments 
to adaptive, dynamic therapeutic strategies. One promising avenue is the application of adaptive therapy, 
which intentionally cycles drugs or adjusts dosing to prevent resistant clones from gaining dominance[214]. 
This approach leverages the concept of competitive suppression, wherein sensitive tumor cells keep resistant 
clones in check, effectively turning tumor heterogeneity into a therapeutic advantage (CUSP9 
protocol)[215,216].



Page 17 of Stubbs et al. Cancer Drug Resist. 2025;8:27 https://dx.doi.org/10.20517/cdr.2024.189 27

Figure 2. Exploitation of synthetic lethality in cancer therapy. The concept of synthetic lethality is represented along with examples of its
clinical or experimental use in cancer therapy. Created in BioRender. Purcell, C. (2025) https://BioRender.com/hbbdh35.

Simultaneously, advances in multiomic profiling - integrating genomics, transcriptomics, epigenomics, and 
proteomics - will allow clinicians to map the evolving resistance landscape in real time, guiding treatment 
modifications based on the tumor’s shifting vulnerabilities[217]. This personalized “resistance fingerprinting” 
could transform therapeutic decision making, shifting from reactive to proactive resistance management.

Targeting TME and non-oncogene dependencies
Beyond established targets, the future will also emphasize non-oncogene dependencies - exploiting 
metabolic bottlenecks, stress response pathways, and epigenetic vulnerabilities that emerge specifically in 
resistant cells[217]. Drugs targeting CAF signaling, exosome biogenesis, or tumor metabolic crosstalk may 
work synergistically with targeted therapies to block resistance-enabling interactions within the TME[218,219].

One example of targeting the TME is the inhibition of Tie2-expressing monocytes, which has been shown to 
impair tumor angiogenesis and progression[220]. Another approach is the use of tasquinimod, which inhibits 
MDSCs and angiogenesis within the TME, demonstrating the potential of disrupting non-oncogenic 
pathways to counteract resistance[221].

Next-generation molecularly targeted agents
Next-generation molecularly targeted agents will be engineered not only to inhibit driver pathways but also 
to anticipate common resistance mutations, incorporating elements of induced synthetic lethality to exploit 
vulnerabilities that arise only after resistance emerges. These future agents will likely combine multi-target 
inhibition with context-dependent activation to selectively disable both primary oncogenic drivers and the 
adaptive pathways that resistant cells rely on for survival[222,223].

A prime example of next-generation targeted therapy is the development of Hedgehog pathway inhibitors 
such as vismodegib and sonidegib, which are designed to block a key signaling pathway implicated in tumor 
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progression and therapy resistance[224].

Together, these approaches represent a necessary evolution from static, pathway-centered therapy to 
dynamic, system-aware intervention, where therapy itself adapts in parallel with the evolving tumor.

CONCLUSION
Although much progress has been made in unraveling tumor biology, developing models, analyzing human 
tumor tissues at high resolution, defining cancer hallmarks, and devising novel therapeutic strategies, 
significant challenges remain in prolonging survival or curing more cancers. In the United States alone, 
each year, there are more than 600,000 cancer-related deaths despite all the advancements in research and 
treatment[1]. The complexity of tumor and host heterogeneity, along with the evolutionary dynamics of 
tumor adaptation, presents an ongoing challenge in the field. Tumors constantly evolve under selection 
pressure imposed by therapy, leading to resistance mechanisms that necessitate the development of 
multifaceted approaches[225].

The interplay between tumor microenvironmental factors, immune evasion, and metabolic reprogramming 
further complicates treatment strategies. Understanding these ecological and evolutionary dynamics not 
only presents obstacles but also provides opportunities for novel therapeutic interventions[226,227]. Another 
significant barrier remains the toxicity of cancer therapies, both in physiological and financial terms, which 
limit accessibility and tolerability for many patients[228].

Future research directions must integrate a holistic approach that acknowledges the complexity of the TME, 
the evolving resistance mechanisms, and the heterogeneity of cancer[228]. Advancements in precision 
oncology will continue to drive highly individualized treatment strategies, leveraging adaptive resistance-
targeting therapies such as synthetic lethality-based interventions and real-time multiomic profiling. The 
next phase of drug development must incorporate therapies that anticipate resistance mutations and 
dynamically adapt to the evolving tumor landscape[229,230].

Moving forward, a dynamic and system-aware treatment paradigm is required - one that embraces 
continuous adaptation and innovation in oncology. This will necessitate interdisciplinary collaborations, 
novel computational and genomic methodologies, and the sustained refinement of precision medicine 
strategies to ultimately improve patient outcomes in the battle against acquired resistance.
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