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Cardiomyocyte loss followed by scar formation is the leading cause of heart failure upon pathological injury, 
chronic or acute stress, and aging. Despite decades of investigation, therapeutic development to enhance 
cardiomyocyte turnover and restore the structural and functional integrity of the heart has been limited due 
in part to the inherent lack of proliferative capacity within adult cardiomyocytes. A therapeutic solution to 
the conundrum of post-mitotic cardiomyocytes has long been sought after, leading to a range of pre-clinical 
interventional approaches including (but not limited to) overexpression of cell cycle proteins, induction of 
systemic hypoxemia, as well as transcriptional and hormonal regulation. The consensus outcome reveals 
dedifferentiation rather than proliferation potential of adult mammalian cardiomyocytes based upon 
phenotypic changes such as (1) loss of myofibrillar structure; (2) expression of stem cell markers; and (3) 
exhibition of immature metabolic functions[1]. In retrospect, the yet to be resolved refractory nature of adult 
cardiomyocytes with respect to cell cycle progression and cell division necessitates the need for an 
innovative approach to promote adult cardiomyogenesis.

Cellular reprogramming via the four pluripotency factors, OCT4, SOX2, KLF4, and MYC (OSKM), is a 
promising approach to epigenetically remodel somatic cells of various lineages into an induced pluripotent 
stem cell state. Partial reprogramming (PR) via the transient introduction of OSKM reverses age-associated 
phenotypes and promotes the regenerative potential of adult tissues such as skeletal muscle[2]. In an effort to 
illustrate the myocardial therapeutic significance of PR, Chen et al.[3], demonstrated that short-term 
myocardial introduction of OSKM reprograms cardiomyocytes to a fetal phenotype evidenced by (1) 
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transcriptome resembling neonatal and embryonic developmental stages; (2) expression of α-SMA; and (3) 
morphological rearrangement and cell cycle re-entry in vitro. Regardless of the time of induction, in vivo 
OSKM expression promoted structural recovery of the heart following myocardial infarction; however, 
functional results varied among induction regimens.

Driving cell cycle progression to achieve true proliferation in adult mammalian cardiomyocytes represents a 
longstanding goal in the ongoing effort to repair damaged myocardium[4]. From cardiomyocyte-specific 
overexpression of cyclins to transdifferentiation of fibroblasts into myocytes, to differentiating induced 
pluripotent stem cells (iPSCs) into cardiomyocytes, time and again, the results indicate that such 
approaches are unlikely to translate directly into clinically relevant therapies. And yet, each new insight into 
cardiomyocyte biology increases the knowledge base necessary to design better informed regenerative 
therapies. The current findings by Chen et al.[3] reveal a threshold of cardiomyocyte dedifferentiation in 
adult mice, after which cardiac function declines and cardiac tumors form, in contrast to lower vertebrates 
and neonatal mammals, which tolerate greater cardiac plasticity.

Creating pre-clinical models of cardiac repair that reflect clinically therapeutic scenarios remains an 
ongoing challenge in cardiac research. Differentiation of cardiac progenitor cells, iPSCs, or reprogrammed 
cardiomyocytes into functional, mature myocytes remains a major roadblock for translational applications. 
Experimental treatments that coincide with myocardial injury tend to represent cardioprotective salvage 
models rather than therapies that replace damaged myocardium post-injury. Functional outcomes may be 
improved; however, cardiac patients are unlikely to receive regenerative treatment at the time of a cardiac 
event. Interestingly, the infarction injury results presented by Chen et al.[3] highlight the challenge of 
associating clinically relevant cardiac repair with endogenous cardiomyocyte cell cycle progression. All of 
the partial reprogramming regimens result in reduced scar size in infarcted hearts, and post-injury 
therapeutic treatment yields the most 5-Ethynyl-2′-deoxyuridine (EdU) + cardiomyocytes. However, the 
best functional outcomes are observed in the pre-injury treatment group, whereas no functional 
improvement is observed in the post-injury therapeutic treatment cohort. Salvage, cell cycle progression, 
and function appear disconnected in this repair model.

Identifying true cardiomyocyte replication represents another point of contention among researchers. 
Mature cardiomyocytes are generally post-mitotic; however, their nuclei can undergo changes that appear 
to reflect proliferation, such as DNA synthesis in response to stress, binucleation or karyokinesis without 
cytokinesis, or increases in ploidy during aging. Measures of cell cycle re-entry such as EdU, phospho-
histone H3, even aurora B kinase, are insufficient to definitively prove full cardiomyocyte cellular 
division[5]. Reagents that track cell cycle in real-time, such as various transgenic fluorescence ubiquitination 
cell cycle indicator reporter animal models, can provide dynamic readouts of cell cycle status in vitro and in 
vivo. Perhaps the most convincing data demonstrating cardiomyocyte proliferation in the current 
publication are live imaging videos tracking tagged cells going through karyo and cytokinesis. Of course, the 
next crucial step in the regenerative process is to convert these dedifferentiated reprogrammed proliferating 
cardiomyocytes into functional adult cells that contribute to cardiac function. Whether comparable division 
and re-differentiation occur in damaged reprogrammed hearts remains to be demonstrated.

Systemic context plays a crucial role in myocardial regenerative potential. Metabolic and paracrine factors, 
and the state of the extracellular matrix all have an enormous impact on cardiomyocyte cell cycle 
activity[6-8]. Reprogrammed cardiomyocytes in an adult heart are not equivalent to developing 
cardiomyocytes maturing in concert with associated systemic postnatal hormonal changes[9]. Studies have 
shown that the paracrine, metabolic and structural milieu of an adult mammalian heart favor cellular 
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hypertrophy or senescence over cardiomyocyte proliferation[10]. The myocardial environment in most heart 
disease patients is probably even less conducive to proliferation and repair, underscoring the challenge of 
transforming reprogrammed cells into new functional new myocytes. Nonetheless, while the gap between 
basic research findings and clinically relevant cardiac therapies remains unbridged, cumulative research 
findings are essential to successful development of those therapies.

Many questions about cardiomyocyte proliferation remain unanswered from the basic and clinical 
perspectives, perhaps the most important being: can adult human cardiomyocytes be coaxed to divide in 
response to injury on a therapeutically relevant level, and is it possible to quantify this proliferation in 
recipient human patients? Experiments performed in young adult mice in no way reflect the systemic 
profile of human heart patients, many of whom are elderly or have underlying comorbidities such as 
hypertension, diabetes, or other metabolic dysregulation. Timing and dosage of a hypothetical 
reprogramming therapy, in light of the results presented by Chen et al.[3], represent substantial translational 
hurdles. How can cardiomyocyte reprogramming be administered safely and titrated to avoid the 
deleterious effects observed in over-reprogrammed hearts? Would this be possible given the enormous 
variability among human cardiac patients? Perhaps the real takeaway lesson from this and similar studies 
investigating cardiomyocyte proliferation lies in understanding what makes an adult cardiomyocyte healthy 
and capable of cell cycle re-entry to the point of replication. From a preventative medicine point of view, a 
more realistic approach may be to identify lifestyles and habits that support the more youthful and 
proliferative cardiomyocyte phenotypes identified in partial reprogramming models. Transcriptomic and 
proteomic profiling studies comparing youthful and diseased or senescent cardiac phenotypes may provide 
therapeutically relevant targets for suppressing senescence-associated secretory phenotype, inflammation, or 
oxidative stress in a time and a dose-dependent way to encourage myocardial healing. Evaluating signaling 
pathways associated with youthful or proliferative phenotypes could also reveal safer, more reliable targets. 
Ultimately, combinatorial therapies incorporating multiple restorative strategies probably hold the most 
promise for improving cardiac patient outcomes.

In summary, the holy grail of physically mending damaged human hearts remains elusive. Considerable 
time, resources, and effort have gone toward understanding myocardial injury, repair, aging, and possible 
regeneration in vertebrate animal models. Approaches including cell therapy, tissue engineering, and 
driving adult mammalian cardiomyocytes to proliferate in response to damage as documented in neonatal 
hearts, or adult fish and reptile systems, have yielded valuable new insights into cardiac biology. Moreover, 
although a marketable therapy to repair pathologically challenged human hearts has not yet materialized, 
this goal has inspired incredible scientific creativity and a deeper understanding of cardiac cellular and 
molecular biology. Put another way, research findings cannot be valued solely on their immediate 
translational relevance, or unduly influenced by increasing pressure to produce therapies and cures. 
However, clinically driven studies that build on collective basic and translational research findings bring 
cardiac medicine closer to curing or even preventing heart disease altogether.
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