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Abstract
Aim: High-risk pedigrees (HRPs) are a powerful design to map highly penetrant risk genes. We previously described 
Shared Genomic Segment (SGS) analysis, a mapping method for single large extended pedigrees that also 
addresses genetic heterogeneity inherent in complex diseases. SGS identifies shared segregating chromosomal 
regions that may inherit in only a subset of cases. However, single large pedigrees that are individually powerful 
(at least 15 meioses between studied cases) are scarce. Here, we expand the SGS strategy to incorporate evidence 
from two extended HRPs by identifying the same segregating risk locus in both pedigrees and allowing for some 
relaxation in the size of each HRP.

Methods: Duo-SGS is a procedure to combine single-pedigree SGS evidence. It implements statistically rigorous 
duo-pedigree thresholding to determine genome-wide significance levels that account for optimization across 
pedigree pairs. Single-pedigree SGS identifies optimal segments shared by case subsets at each locus across 
the genome, with nominal significance assessed empirically. Duo-SGS combines the statistical evidence for SGS 
segments at the same genomic location in two pedigrees using Fisher’s method. One pedigree is paired with all 
others and the best duo-SGS evidence at each locus across the genome is established. Genome-wide significance 
thresholds are determined through distribution-fitting and the Theory of Large Deviations. We applied the duo-
SGS strategy to eleven extended, myeloma HRPs.
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Results: We identified one genome-wide significant region at 18q21.33 (0.85 Mb, P = 7.3 × 10-9) which contains 
one gene, CDH20. Thirteen regions were genome-wide suggestive: 1q42.2, 2p16.1, 3p25.2, 5q21.3, 5q31.1, 6q16.1, 
6q26, 7q11.23, 12q24.31, 13q13.3, 18p11.22, 18q22.3 and 19p13.12.

Conclusion: Our results provide novel risk loci with segregating evidence from multiple HRPs and offer compelling 
targets and specific segment carriers to focus a future search for functional variants involved in inherited risk 
formyeloma.

Keywords: High-risk pedigrees, gene mapping, multiple myeloma, disease susceptibility

INTRODUCTION
Multiple myeloma (MM) is the second most common adult-onset lymphoid neoplasm and has the 
worst 5-year survival[1]. Inherited germline susceptibility for MM is consistently supported[2]: excess MM 
risk among relatives has been observed in family aggregation [3,4], epidemiologic case-control[5-9], and 
registry-based[10,11] studies. Disease rarity, short survival, clinical and locus heterogeneity challenge study 
ascertainment and genetic discovery[12]. Genome-wide association studies have identified 23 loci harboring 
common-risk single nucleotide polymorphisms (SNPs) for MM[13-19]. Family-based studies have identified 
rare germline variants in ARID1A and USP45[20], KDM1A[21], and DIS3[22] in exome sequencing. However, 
considerable missing heritability remains. Additional approaches are needed to aid the detection of the 
remaining risk loci and genes.

We recently described a novel strategy to map genes involved in complex disease risk using extremely large 
high-risk pedigrees and allowing for intra-familial heterogeneity, called Shared Genomic Segment (SGS)[20]. 
Cases sharing genomic segments from a common ancestor through 15 meioses or more are unexpected at a 
genome-wide level[23], and hence a single large high-risk pedigree (HRP) can provide the power to identify 
novel loci with genome-wide significance[24]. Our resource of eleven large myeloma pedigrees included 
several with 3-4 cases and meioses in the 8-14 range[20]. While these remain extremely large families, they 
may lack sufficient power individually for genome-wide significance. Also, a multi-pedigree strategy is 
attractive. Evidence for the same risk locus in two extended pedigrees adds confidence to the locus and 
can build on the power of both. The remaining challenge for any multi-pedigree approach, however, is to 
adequately address heterogeneity between pedigrees[25].

Here, we expand the SGS method based on combining evidence from pairs of HRPs, while still allowing 
for intra-familial heterogeneity within each pedigree. In our approach, duo-SGS, we fix one pedigree and 
optimize over all pedigree pairs to balance discovery with multiple testing. Both pedigrees must have 
a segregating genomic segment at the same risk locus. The method is robust to allelic heterogeneity as 
different alleles at the same locus may be shared within each pedigree. We apply the duo-SGS approach to 
eleven MM HRPs to identify novel loci involved in myeloma risk.

METHODS
Duo-SGS method
An overview of the duo-SGS approach can be found in Figure 1. After identifying HRPs and genotyping 
cases, the observed shared genomic segments in single pedigrees are established and compared between 
pedigrees, and genome-wide thresholds are determined.

Observed duo-SGS sharing
The single pedigree SGS approach has been described previously[20]. Briefly, the single SGS approach 
identifies shared observed genomic segments by defining consecutive runs of SNPs that are identity-by-
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state in a group of cases (Figure 1, Step 2). If the length of an observed segment is significantly longer than 
it would be by chance, inherited sharing (identity-by-descent) is implied. The nominal significance of each 
segment is assessed empirically. Expected length sharing under the null hypothesis is generated using a 
gene-dropping algorithm (Figure 1, Step 3). Chromosomes are assigned to the pedigree founders (those 
with no parents in the pedigree) randomly and according to a population linkage disequilibrium model. 
These simulated chromosomes are “dropped” through the pedigree structure using Mendelian inheritance 
expectations according to a genetic map for recombination. All members of the pedigree receive genotypes 
under the null hypothesis, and simulated genomic segments from this null configuration are established. 
These simulations are repeated at least one million times. The empirical P-value for an observed segment is 
the proportion of simulated segments that are identical or encompass the observed segment to the number 
of simulations. All subsets of at least two cases within a pedigree are assessed for observed segments. Then, 

Figure 1. Overview of the duo-SGS method. SGS: Shared genomic segment; SNP: single nucleotide polymorphism.
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at every position across the genome, the best evidence (lowest empirical P-value) for an excessive length 
of sharing is established (Figure 1, Step 4). This process results in a final optimized set of shared segments 
for a single pedigree. Each optimal segment corresponds to a specific subset of cases and has a nominal 
empirical P-value.

For two pedigrees, the duo-SGS evidence is the combination of the nominal empirical P-values for the 
optimal segments at the same genome position in the two pedigrees. Specifically, the Fisher method to 
combine P-values was used. All possible pedigree pairs could be considered as separate analyses, but there 
are  pedigree pairs (ways to select 2 pedigrees from n total pedigrees), and hence multiple testing can 
rapidly become an issue. Alternatively, a single analysis comprising optimization across all pedigree pairs 
could be considered, but this global approach may cloud individual pedigree-pair findings. To balance these 
two extremes, we propose a fixed-pedigree duo-SGS strategy (Figure 1, Step 5). The procedure is as follows: 
(1) fix a pedigree of interest; (2) calculate genome-wide duo-SGS evidence for the fixed pedigree with each 
of the other pedigrees; and (3) optimize across the duo-SGS findings to identify the most significant duo-
SGS result at each point across the genome. The optimized findings over pedigree pairs are the duo-SGS 
results for the fixed pedigree. In this approach, we identify the best two-pedigree results that include the 
fixed pedigree. The procedure is then repeated for each pedigree, thus producing duo-SGS results for each 
pedigree.

Genome-wide thresholds for duo-SGS
Critical to interpreting the observed duo-SGS results are genome-wide significance duo-SGS thresholds 
for each pedigree (Figure 1, Step 6). To establish these, we echo the same optimization process in null data. 
Establishing these thresholds is similar to the calculation described for the single pedigree SGS method[20]. 
Under the reasonable assumption that the vast majority of the genome represents chance sharing (i.e., 
most of the genome does not contain a disease risk gene) we model the distribution for null sharing on the 
distribution of the empirical P-values for each pedigree. To avoid comparing the findings to themselves 
or skewing to possible true-positives, the empirical-P-values are perturbed, and the distribution-fitting 
is performed at 1 million simulations. The latter is to avoid inappropriate distribution-fitting to extreme 
outliers, the few results from the alternate hypothesis if included at their final resolution. To perturb an 
empirical P-value we determine its Wilson score 95% confidence interval (CI) (Equation 1) and randomly 
sample a value from within it.

                                                                                                                                                      Equation 1 

where  is the empirical P-value, z is 1.96 (for the 95%CI), and n is the number of simulations (here, 
1,000,000). The Wilson interval was selected because it always produces non-negative confidence bounds 
for the P-values. The genome-wide set of perturbed empirical P-values for a pedigree are considered the 
“null” P-values for that single pedigree. The duo-SGS procedure (described above) is performed using 
the single pedigree genome-wide null P-values. The result of this process is a set of optimal duo-SGS null 
P-values.

Genome-wide significant and suggestive thresholds are determined following our previously described 
method for single pedigree SGS[20]. Briefly, the null duo-SGS P-values are log-transformed and fitted to a 
gamma distribution. The shape (k) and rate (σ) parameters of the fitted distribution are applied using the 
Theory of Large Deviations to calculate the significance thresholds by solving: 

µ(X) = [C + 2GX]α(X)                                                                                                              Equation 2 
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where µ(X) is the genome-wide false positive rate, C is the number of chromosomes, α(X) is the probability 
of exceeding , and G is the genome length in Morgans[26]. The false-positive rate is set to 0.05 for 
the genome-wide significant threshold and 1.0 for the genome-wide suggestive threshold. After solving for 
X, the threshold, T is determined by . Thresholds are specific to each fixed pedigree to assess 
their duo-SGS results.

MM high-risk pedigrees
The statewide Utah Cancer Registry (UCR) has been an NCI-supported Surveillance, Epidemiology, 
and End Results (SEER) Program registry since its inception in 1966. The UCR was utilized to invite all 
individuals with myeloma in the state to participate. Peripheral blood was collected for DNA extraction 
from individuals who completed informed consent.

The Utah Population Database (UPDB) is a unique resource[27]. It includes a 16-generation genealogy of 
approximately 5 million people with at least one event in Utah that is record-linked to the UCR and state 
vital records. Using the UPDB, ancestors whose descendants have an excess of disease based on internal 
cancer rates and years at risk can be identified and studied as HRPs. The UPDB was used to identify 
ancestors whose descendants showed a statistical excess of MM (P < 0.05). The expectation was based 
on internal disease rates based on birth cohort, sex, birthplace (in/outside Utah), and years at risk. The 
total number of myeloma cases in each HRP identified ranged from 4 to 37 cases. After annotating the 
pedigrees with those with DNA, 11 pedigrees were identified to contain 3 or 4 myeloma cases with DNA 
(28 individuals; 8 individuals were in more than one pedigree). In each pedigree, the cases were separated 
by 8 to 23 meioses.

DNA from the 28 cases was genotyped on the Illumina Omni Express high-density SNP array at the 
University of Utah. Only high-quality bi-allelic SNPs and individuals with adequate call rates across 
the genome were included. The PLINK software[28] was used for quality control. SNPs with < 95% call 
rate across the 28 individuals were removed. After filtering, 678,447 SNPs remained. These SNPs were 
transformed to match 1000Genomes strand orientation.

Individuals were removed if < 90% of the filtered SNPs are called. One myeloma case had a < 90% call rate 
and was eliminated from the study. We also checked for sex inconsistency based on the genotypes - all 
cases passed. PLINK relationship estimates were compared with the UPDB pedigree structures - no issues 
were found.

The duo-SGS method was applied to the MM pedigrees to identify regions with genome-wide suggestive or 
significant evidence. Post-hoc, some duo-SGS regions were removed from consideration. Duplicate regions 
occur when the same pair of pedigrees identify the same region in both their fixed-pedigree results. In 
these situations, duo-SGS P-values are identical, but thresholds vary by which pedigree is fixed, potentially 
leading to different significance levels. The most significant result was reported, and the lesser removed. 
If an individual resided in two pedigrees and also shared the region in both pedigrees, the region was 
removed. If the region spanned a centromere, it was removed. Forty-two suggestive regions were removed 
as duplicates, involving an overlap individual or at the centromere.

RESULTS
Duo-SGS findings were identified for each of the eleven MM HRPs. The significance thresholds for each 
fixed pedigree are in Table 1. One region at 18q21.33 reached genome-wide significance and 13 regions 
were genome-wide suggestive. Table 2 shows the details of the significant or suggestive regions identified, 
including the duo-SGS P-value, expected rate per genome µ(t), the two pedigrees involved, each segregating 
shared region in the pedigrees, and the overlapping region.
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The genome-wide significant region at 18q21.33 [duo-SGS P = 7.3 × 10-9, µ(t) = 0.029] was found in 
pedigree pair UT-549917/UT-48833. A 1.2 Mb chromosomal segment (chromosome 18 57,945,602-
59,167,836 bp) segregated to three MM cases separated by 17 meioses in pedigree UT-549917 (single 
pedigree P = 2.8 × 10-5). A nested 0.8 Mb chromosomal segment (58,208,260-59,059,262 bp) was observed 
in four MM cases separated by 23 meioses in pedigree UT-48833 (single pedigree P = 1.1 × 10-5). The 
intersecting 0.8 Mb region overlaps one gene: Cadherin 20 (CDH20). Figure 2 shows the two regions and 
the overlap.

Thirteen loci were found with genome-wide suggestive evidence [Table 2]. In four of these loci, several 
pedigree pairs provide duo-SGS evidence beyond genome-wide suggestive. The locus at 6q16.1 was 
previously identified as significant in single pedigree SGS in UT-571744, with risk variants in USP45 
implicated[20]. Here, we find five pedigree pairs, all including UT-571744, and provide suggestive evidence, 
including one pair which achieves the second-highest duo-SGS significance in the study [µ(t) = 0.121, P = 7.8 × 
10-8]. The 6q26 region achieves suggestive evidence in four pedigree pairs and harbors the PARK2 gene. At 
5q21.3 four pedigree pairs show suggestive evidence and the locus contains the gene FBXL17. The locus at 
7q11.23 is also supported by two genome-wide suggestive duo-SGS results. The remaining suggestive loci 
were supported by one pedigree pair: 1q42.2, 2p16.1, 3p25.2, 5q31.1, 12q24.31, 13q13.3, 18p11.22, 18q22.3 
and 19p13.12. Genes in each of the duo-SGS regions are shown in Table 3.

DISCUSSION
We expanded the shared genomic segment method to identify segregating chromosomal segments with 
overlapping statistical evidence from two HRPs. The strategy allows for genetic heterogeneity within each 
pedigree and provides formal significance thresholds for interpretation. The approach circumvents issues of 
intra-familial heterogeneity that can hinder mapping in large pedigrees. For complex diseases, large HRPs 
are likely enriched for multiple susceptibility variants[24] and sprinkled with sporadic cases; hence methods 
that require all cases to share to attain discovery power are not suitable. Here we optimize over subsets 
within pedigrees and consider pairing with all other pedigrees to provide the flexibility required. The 
method also specifically defines which pedigrees and cases share evidence at a locus, which is imperative 
for follow-up sequencing. Additional value may be gained by comparing demographic or clinical 
characteristics of the sharers in each pedigree to nuance the phenotype which may aid future gene mapping 
and provide insight into the nature of the mechanism of risk at a locus.

Application of the novel duo-SGS approach to eleven MM HRPs implicated a novel genome-wide 
significant region at 18q21.33 in MM risk, as well as 13 suggestive regions. Other than 6q16.1, which 
overlaps with our previous single pedigree SGS study, all loci identified in this study provide novel regions 
of interest in myeloma. None of the regions overlapped with existing genome-wide association study loci 

Table 1. Multiple myeloma high-risk pedigrees and duo-SGS thresholds

Pedigree
Multiple myeloma cases Duo-SGS thresholds

Total Genotyped Meioses Significant Suggestive
260 31 3 16 3.82 × 10-8 4.31 × 10-7

2122 5 3 18 3.10 × 10-8 3.66 × 10-7

4823 4 3 13 1.02 × 10-7 8.92 × 10-7

20245 4 3 13 8.56 × 10-8 7.71 × 10-7

34955 12 3 16 3.94 × 10-8 4.35 × 10-7

48833 20 4 23 1.01 × 10-8 1.21 × 10-7

546699 14 2 11 2.21 × 10-7 1.92 × 10-6

549917 18 4 21 1.11 × 10-8 1.29 × 10-7

571744 37 3 20 2.23 × 10-8 2.90 × 10-7

576834 9 4 16 2.80 × 10-8 2.61 × 10-7

651626 6 3 13 8.32 × 10-8 7.50 × 10-7
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or other prior rare risk variants implicated in MM. A next step would be to investigate the loci for rare and 
deleterious coding variants or regulatory variants. Pedigree segregation methods can provide statistically 
compelling regions to concentrate efforts to identify and characterize regulatory risk variants. Also, SGS 
results can be used as genomic annotations of prior evidence to layer with additional omic information or 
provide a focused region for interrogating regulatory risk variants.

The literature supports a role of some of the genes found in our duo-SGS regions in MM. The genome-
wide significant region at 18q21.33 contained CDH20, a gene that plays a role in intracellular adhesion by 
forming cadherin junctions. Cadherins have been suggested in solid tumor invasion, and metastasis as 
disruption to cell-cell junctions is a prerequisite[29]. Solid tumors co-aggregate in MM families suggesting 
a shared genetic background[10]. At 6q26, several pedigree pairs were genome-wide suggestive, and 
the overlapping segments fall in PARK2 which mediates proteasomal degradation. PARK2 is a tumor 
suppressor[30] and the gene harbors risk variants for lung cancer[31].

While the duo-SGS approach is useful for analyzing pedigrees smaller than those typically required for the 
single pedigree SGS approach, a large number of meioses are still required. The HRPs in this study are still 
substantially larger than those available in most family-based resources (8-23 meioses between sampled 
cases). Hence the method has practical limitations in other settings. Nonetheless, the interesting regions 
identified in large pedigrees provide evidence that can be used to narrow the search for risk variants in 
smaller families as well, as demonstrated in our prior study[20].

Figure 2. Duo-SGS genome-wide significant region. +/- indicates genotyped cases and SGS carrier status. Squares indicate male and 
circles female. Filled in shapes have a MM diagnosis. Pedigrees are trimmed to descendants with a MM case. SGS: Shared genomic 
segment; MM: multiple myeloma.
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Table 3. Protein coding genes in duo-SGS regions by locus

Locus Gene name Start End 
1q42.2 KCNK1 233,749,750 233,808,258 
3p25.2 TIMP4 12,194,551 12,200,851 

PPARG 12,328,867 12,475,855 
TSEN2 12,525,931 12,581,122 
C3orf83 12,556,433 12,602,558 
MKRN2 12,598,513 12,625,212 
RAF1 12,625,100 12,705,725 
TMEM40 12,775,024 12,810,956 
CAND2 12,837,971 12,913,415 
RPL32 12,875,984 12,883,087 
IQSEC1 12,938,719 13,114,617 

5q21.3 FBXL17 107,194,736 107,717,799 
5q31.1 C5orf15 133,291,201 133,304,478 

VDAC1 133,307,606 133,340,824 
TCF7 133,450,402 133,487,556 
SKP1 133,484,633 133,512,729 
CTD-2410N18.5 133,502,861 133,561,762 
PPP2CA 133,530,025 133,561,833 
CDKL3 133,541,305 133,706,738 

6q16.1 POU3F2 99,282,580 99,286,660 
FBXL4 99,316,420 99,395,849 
FAXC 99,719,045 99,797,938 
COQ3 99,817,276 99,842,080 
PNISR 99,845,927 99,873,207 
USP45 99,880,190 99,969,604 
CCNC 99,990,256 100,016,849 
PRDM13 100,054,606 100,063,454 

6q26 PARK2 161,768,452 163,148,803 
7q11.23 CCL24 75,440,983 75,452,674 

RHBDD2 75,471,920 75,518,244 
POR 75,528,518 75,616,173 
STYXL1 75,625,656 75,677,322 
MDH2 75,677,369 75,696,826 
SRRM3 75,831,216 75,916,605 
HSPB1 75,931,861 75,933,612 
YWHAG 75,956,116 75,988,348 
SRCRB4D 76,018,651 76,039,012 
ZP3 76,026,835 76,071,388 
DTX2 76,090,993 76,135,312 
UPK3B 76,139,745 76,648,340 
POMZP3 76,239,303 76,256,578 
CCDC146 76,751,751 76,958,850 
FGL2 76,822,688 76,829,143 
GSAP 76,940,068 77,045,717 

12q24.31 HNF1A 121,416,346 121,440,315 
C12orf43 121,440,225 121,454,305 
OASL 121,458,095 121,477,045 

13q13.3 DCLK1 36,345,478 36,705,443 
18p11.22 RAB31 9,708,162 9,862,548 
18q21.33 CDH20 59,000,815 59,223,006 
19p13.12 CYP4F3 15,751,707 15,773,635 

CYP4F12 15,783,567 15,807,984 
OR10H2 15,838,834 15,839,862 
OR10H3 15,852,203 15,853,153 
OR10H5 15,904,761 15,905,892 
OR10H1 15,917,817 15,918,936 
CYP4F2 15,988,833 16,008,930 
CYP4F11 16,023,177 16,045,677 
OR10H4 16,059,818 16,060,768 
TPM4 16,177,831 16,213,813 

Genomic coordinates in GRCh37.
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As in all family-based genetic studies, our results could be sensitive to inaccurate pedigree structures. 
However, relationship and ethnicity checks are standard protocols and mitigate the possibility of error. 
Another limitation to this study is the observational nature. Additional functional studies will be required 
to describe causation and characterize the mechanisms involved in these loci and myeloma risk.

We have identified several novel loci that segregate in at least two myeloma HRPs. These loci are likely to 
harbor genes and rare risk variants for MM and are compelling new targets for inherited risk to MM.

In conclusion, we developed a novel strategy for gene mapping in complex traits that uses multiple large 
high-risk pedigrees. The approach is robust to heterogeneity both within and between pedigrees and 
formally corrects for multiple testing to allow for statistically rigorous discovery. We applied this strategy to 
MM, a complex cancer of plasma cells, and identified one novel genome-wide significant locus at 18q21.33 
and 13 suggestive loci. Our study offers a new technique for gene mapping and demonstrates its utility to 
narrow the search for risk variants in complex traits.
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