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Abstract
The search for pulsars is an important area of study in modern astronomy. The amount of collected pulsar data is
increasing exponentially as the performance of modern radio telescopes improves, necessitating the improvement
of the original pulsar search methods. Artificial intelligence techniques are currently being used in pulsar candidate
identification tasks. However, improving the accuracy of pulsar candidate identification using artificial intelligence
techniques remains a challenge. Because the amount of collected data is so large, the number of real pulsar sam-
ples is very limited, which leads to a serious sample imbalance problem. Many existing methods ignore this issue,
making it difficult for the model to reach the optimal solution. A framework combining generative adversarial net-
works and residual networks is proposed to greatly alleviate the problem of sample inequality. The framework first
generates stable pulsar images using generative adversarial networks and then designs a deep neural network model
based on residual networks to identify pulsar candidates using intra-block and inter-block residual connectivity. The
ResNet approach has a better ability to fit the data than the CNN approach and can achieve the extraction of features
with more classification ability with a smaller dataset. Meanwhile, the data expanded by the high-quality simulated
samples generated by the generative adversarial network can provide richer identification features and improve the
identification accuracy for pulsar candidates.
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1. INTRODUCTION
The search for pulsars is of great importance in the study of astronomy, physics and other fields, including
gravitational waves, state equations of dense substances, stellar evolution, dark matter and dark energy, and
the formation and evolution of binary and multiple star systems. Therefore, the discovery of new pulsars and
the exploration of their substantial scientific research potential are of great value and importance.

At present, more than 2,700 pulsars have been discovered in the whole galaxy [1]. Most of the pulsars were
discovered by modern radio telescopes, which receive periodic radio signals, pre-process them and package
them into the data we need. The generation of pulsar candidates from the collected data is basically divided into
three procedures which are eliminating RFI, de-dispersion, and fast fourier transform (FFT) [2]. This strategy
is generally how the samples of pulsar candidates are generated. With the continuous improvement of modern
radio telescopes, samples of pulsar candidates have increased, but only a small fraction of these samples are
real pulsars due to the presence of RF interference and different noise sources. As a result, the real sample of
pulsar candidates is much smaller than the non-real sample. In traditional studies, manual experts review each
candidate in 1-300 s [3], and it takes more than 70,000 h to examine millions of pulsar candidates. Therefore, it
is crucial to investigate an automatic, efficient and accurate method for pulsar candidate identification.

In recent years, a large number of object detection methods based on neural networks have been proposed [4],
many of which have been selected for pulsar candidate detection. Pulsar candidate identification methods
based on neural networks have been proposed to handle the huge amount of pulsar data. Bates et al. [5] used
artificial neural networks to automatically identify plausible pulsar candidates from pulsar measurements.
Morello et al. [6] proposed a method called SPINN (Straightforward Pulsar Identification using Neural Net-
works), which designed a pulsar candidate classifier that tended to maximize the recall of identification. Zhu
et al. [7] developed a pulsar image-based classification system (PICS) that used image pattern recognition and
deep neural networks to identify pulsars in recent measurements, and Lyon et al. [8] proposed the decision
tree-based recognition model Very Fast Decision Tree (VFDT), a method that found 20 new pulsars using the
LOTAAS dataset.

Although the above neural network-based methods have achieved good identification results on the corre-
sponding datasets and helped astronomers discover new pulsars, there are still some problems. Among the
currently available pulsar candidate data, the number of positive samples (real pulsars) among the labelled pul-
sar candidates is extremely limited, and the number of negative samples (non-real pulsars) is much higher than
the number of positive samples. In this case, when some deep learning models are directly used for training,
the imbalance between the number of positive and negative samples leads to poor classification, overfitting,
and even possible training failure. To address this issue, Lyon et al. [9] confirmed that the imbalance prob-
lem of pulsar candidate samples reduces the recall of pulsars by executing different classifiers on the HTRU
dataset [10]. Then Lyon et al. [11] proposed using the Hellinger distance (HDT) as a splitting criterion for VFDT,
thus alleviating the sample imbalance problem. In addition, GAN methods have recently been widely used
in pulsar candidate identification [12]. For example, Guo et al. [13] proposed using Generative Adversarial Net-
works (GAN) [14] to generate some positive pulsar sample data to alleviate the problem of low recall for pulsar
candidate identification models on unbalanced datasets.

Although the above methods can alleviate the sample imbalance problem to a certain extent, the traditional
GAN model suffers from the pattern collapse problem while generating positive samples [15]. Therefore,
WGAN [16], a Wasserstein distance-based generative adversarial network, is recommended in the proposed
method to alleviate the pattern collapse problem and enlarge the present pulsar dataset. WGAN was first uti-
lized to generate some images that approximate the real pulsar as positive samples and then fuse the generated
positive sample images into an unbalanced dataset to train the pulsar recognition model. Experiments proved
that training the deep neural network model on the balanced dataset could further improve the model’s recog-

http://dx.doi.org/10.20517/ces.2022.30


Bao et al. Complex Eng Syst 2022;2:16 I http://dx.doi.org/10.20517/ces.2022.30 Page 3 of 10

nition accuracy. In addition, since the residual network [17–19] is able to overcome the gradient disappearance
problem in the deep neural network model, a deep neural network model containing intra-block residual
connections and inter-block residual connections was included in the proposed model during the pulsar can-
didate identification stage. Experiments proved that the module achieved optimal recognition accuracy in all
scenarios compared to the shallow deep neural network model.

In this paper, two basic methods utilized in the proposed model are first introduced with detailed figures
and illustrations. These basic methods are the generative adversarial network-based pulsar image generation
method and the residual network-based pulsar candidate identification method. Then, the HTRU-Medlat
dataset is used in the proposed model and the experimental results are obtained; these results indicate that the
proposed model achieves the best performance in the experiment without any other complicated data genera-
tionmethod, which is whyHTRU-Medlat was chosen as the dataset for the experiment. In the proposedmodel,
a time-versus-phase plot and a frequency-versus-phase plot are used to implement the screening of pulsar can-
didates and describe their characteristics of pulsar candidates so that samples can be better evaluated. As a
result, positive samples can be identified more accurately, which is essential because positive samples represent
the essential information of pulsar candidates. After collecting the experimental results, several evaluation in-
dicators, including Precision, Recall and F1-score, are selected to assess our experimental results. Finally, the
results of the proposed models are compared with other existing models. The experimental results show that
ResNet exhibits a better ability to fit data and extract features on small datasets and large datasets containing
images generated by generative adversarial networks compared to CNN methods. In the comparison experi-
ments between the small dataset and the extended large dataset, the improved F1 values and accuracy metrics
of the CNN method indicate that the simulated sample-extended data generated by the generative adversarial
network can improve the model’s accuracy to some extent. Through experimental validation, better results
are obtained: the quality of the large dataset extended with simulated samples is improved, providing richer
recognition features, and the recognition accuracy is further improved [4].

2. METHODS
In this paper, a framework combining generative adversarial networks and residual networks is proposed for
pulsar candidate identification. First, the generative adversarial networks module is used to tackle the imbal-
ance problem in the dataset, and it is able to generate a series of pulsar candidate images that approximate
positive samples to expand the existing pulsar dataset. Then, based on the idea of residual connectivity, this
paper designs a deep neural network for pulsar candidate identification utilizing intra- and inter-block residual
connectivity, which can effectively improve the recognition accuracy.

2.1. Generative adversarial network-based pulsar image generation method
In this paper, the Wasserstein distance [19] is used to replace the Jensen-Shannon (JS) divergence of the tra-
ditional GAN [20,21] because it can more explicitly measure the difference between two different distributions.
Wasserstein GAN (WGAN) based on the Wasserstein distance can overcome problems such as the gradient
vanishing and mode collapse experienced by the traditional GAN training, and it can generate more stable
pulsar images.

The architecture of the generator is illustrated in Figure 1. The generator produces 1 × 48 × 48 grey images by
accepting 1 × 1024-dimensional Gaussian noise as inputs. First, the Gaussian noise is transformed into a 1 ×
18432 tensor with a 1024 × 18432 fully connected layer. Then, it is projected and reshaped into a 128 × 12 × 12
tensor with 128 channels. In the next two convolutions, kernels of size 4 × 4 are adopted and the numbers of
channels are 64 and 1. The LeakyReLU activation function with a slope of 0.1 is used for all of the convolutions
except the last one, and the sigmoid activation function is used in the last convolutional layer to ensure that
the pixel values of the final output are in the range [0, 1] to generate appropriate grey images.
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Figure 1. Generator architecture. The input is 1 × 1024-dimensional Gaussian noise; that input is first transformed into a 1 × 18432
tensor with a 1024 × 18432 fully connected layer. Then the tensor is projected and reshaped into a 128 × 12 × 12 tensor. There are two
convolution layers. The output is a generated 1 × 48 × 48-dimensional grey image.

Figure 2. Discriminator architecture. The input samples are 1 × 48 × 48 grey images, and here are three convolution layers. After
the convolution, the images are reshaped into 1 × 1024-dimensional tensors.

The structure of the discriminator is illustrated in Figure 2. The discriminator designed in this paper accepts
1 × 48 × 48-dimensional grey images as inputs and then obtains the scoring of the corresponding image and
calculates the Wasserstein distance between the real data and the simulated data. The first two convolutions
use a 4 × 4 convolution kernel, and the last convolution uses a 3 × 3 convolution kernel. There are 64, 128
and 32 channels for these three convolutional layers. After the convolution, the image is reshaped into a two-
dimensional tensor, and the image score is calculated with a fully connected layer. The LeakyReLU activation
function with a slope of 0.1 is used for all layers except the last fully connected layer. However, the sigmoid
activation function is not used in the last layer because the Wasserstein distance is used instead of the original
JS distance. It is empirically shown [16] that this model can significantly alleviate the mode collapse problem of
the generative adversarial network.

The generator and discriminator are trained iteratively throughout the training process. The Wasserstein dis-
tance between the simulated pulsar sample and the real pulsar sample is optimised iteratively, and the simulated
pulsar sample produced by the generator is finally able to accurately characterize the real sample.
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Figure 3. An illustration of the pulsar identification model. The blue colour indicates the convolution process, and the orange colour
indicates the hidden state. The green dashed line indicates the intra-module residual connections, and the red dashed line indicates the
inter-module residual connections. The inputs are the 1 × 48 × 48 grey images. There are four modules, and the outputs are 1 × 9216
features.

Table 1. Confusion matrix of the dichotomous problem

Predicted class: Predicted class:
Negative (N) Positive (P)

Actual class: True (T) TN TP
Actual class: False (F) FN FP

2.2. Residual network-based pulsar candidate identification method
In this paper, a residual network with 24 CNN layers [Figure 3] is designed for pulsar candidate identification.
Unlike the original residual network, the proposed residual network has both intra-module residual connec-
tions (Figure 3, green dashed line) and inter-module residual connections (Figure 3, red dashed line). The blue
colour indicates the convolution process and the orange colour indicates the hidden state. There are four mod-
ules in the convolution process, each of which has a stacking number of 2, 2, 3, and 3 layers. A pulsar candidate
image of size 1×48×48 is first generated as a 16 × 48 × 48 tensor by the first convolutional layer, which has a
convolution kernel size of 3 × 3 and a channel number of 16. The image is then input into the first module; this
module first reduces the number of channels to 8, which is then raised to 16 to output a 16×48×48 tensor. That
tensor is then input into the same module again with non-shared parameters. At the end of the first module,
the final output is added to the input tensor of the same dimension before the first module to obtain a 16 × 48
× 48 orange tensor as the input to the next module [Figure 3]. Therefore, repeatedly, after four modules that
employ the convolution operation, the final output feature map is a 1 × 9216 tensor, which is used for future
identifications.

3. RESULTS
3.1. Datasets and evaluation indicators
Thepulsar candidate dataset used for the experiments is HTRU-Medlat, which is first publicly available labelled
pulsar dataset published by Morello et al [6]. The dataset is a collection of labelled pulsar candidates from the
intermediate galactic latitude part of the HTRU survey, and it contains exactly 1,196 positive samples from 521
distinct sources and 89,996 negative candidates. In addition, theHTRU-Medlat dataset contains both temporal
phase (ints) images and frequency phase (bands) images. The evaluation indicators used in the pulsar candidate
identification problem are: Precision, Recall and F1-score. Table 1 shows the confusion matrix for the binary
classification problem, which classifies all possible predictions in that problem.

The assessment indicators used in this paper can be obtained by using a dichotomous confusion matrix.

(1) Accuracy rate: the proportion of samples with positive predictions that are correctly predicted, i.e.,:
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Figure 4. Simulation samples generated based on the generative adoration network (time-phase images of the HTRU-Medlat dataset).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

(2) Recall: the proportion of all samples with positive true labels that are correctly predicted to be positive, i.e.,:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

(3) F1-score: the combined accuracy and recall is the F1-score, i.e.,:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3)

3.2. Model comparison experiment
The proposed model uses a CNN [7] model for comparison, which has a similar structure to the LeNet network
structure [22], but with some adaptations for the pulsar candidate identification task. For the hyperparameter
settings of the residual network model, this paper uses a mini-batch size of 128, a learning rate of 0.001, a
size of 0.00001 for the L2 regularisation term, and a standard Gaussian to initialise the model parameters. In
addition, the model employs the ReLU [23] activation function for all layers except the last layer of the model,
which uses a sigmoid activation function. The objective function for optimisation is cross-entropy, and the
Adam [24] optimiser is used.

For the generative adversarial network’s hyperparameter settings, the learning rate is 0.001, the L2 regulariza-
tion weight is 0.0005, the number of training rounds is 200, the optimiser is Adam, the size of the minibatch is
128, the parameters are initialized using Kaiming initialization [25], the discriminator is trained with 5 rounds
for each batch, the discriminator weights range from [-0.005, 0.005], and LeakyReLU employed a slope of 0.1.

The simulated positive samples generated by the trained generator in this paper are shown in Figure 4, where
the ten images in the first row are the real pulsar samples and the ten images in the second row are the simulated
samples produced by the generator in this paper. It can be seen that the simulated samples generated by the
model can retain the features of the real pulsar samples to a certain extent.The training loss on the HTRU-
Medlat dataset is demonstrated in Figure 5, which reveals the optimised training performance of the proposed
method in the experiment. The training loss curve declines sharply when the quantity of training samples
is relatively small, and the simulated and real pulsar image loss remains fairly low at 4% when the dataset is
expanded. The training loss of the proposed method is significantly lower than that of other existing models,
thus guaranteeing better performance in pulsar sample identification.
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Figure 5. Training loss curve on the HTRU-Medlat dataset.

Table 2. HTRU-Medlat dataset partitioning after expansion

Sample size of real samples of fake samples

Total number of samples in the original dataset 1,196 89,996
IDS training set size 696 10,000
BDS training set size 10,000 10,000
Test set size 500 500

To verify that the generative model can alleviate the problem of sample imbalance, we divide the dataset into
two cases, one is an imbalanced data scenario (IDS) with 696 real samples and 10,000 fake samples, and the
other is a balanced data scenario (BDS) with 10,000 real samples and 10,000 fake samples. For the HTRU-
Medlat dataset, the detailed partitioning scenarios are shown in Table 2.

This paper uses a CNN [7] model for comparison, which has a similar structure to the LeNet network struc-
ture [22], but with some adaptations for the pulsar candidate identification task. For the hyperparameter settings
of the residual network model, this paper uses a mini-batch size of 128, a learning rate of 0.001, and a size of
0.00001 for the L2 regularisation term used. We also used a standardGaussian to initialise the parameters of the
model and a ReLU [23] activation function for all layers except the last layer of the model, which uses a sigmoid
activation function. The objective function for optimisation is cross-entropy, and the Adam [24] optimiser is
used.

For the hyperparameter settings of the generative adversarial network, the learning rate is 0.001, the L2 regular-
ization weight is 0.0005, the number of training rounds is 200, the optimizer is Adam, the size of the minibatch
is 128, the parameters are initialized using Kaiming initialization [25], the discriminator is trained with 5 rounds
for each batch, the discriminator weights range from [-0.005, 0.005], and LeakyReLU employed a slope of 0.1.

The simulated samples are generated using the generative model based on the generative adversarial networks
designed in this paper. During the training process, real samples from the IDS training set are used for training.
The trained model is then used to generate a series of simulated samples that are used to augment the real
sample data. In addition, the simulated samples are filtered, i.e., the generated simulated samples need to
be identified as positive by the corresponding residual network model proposed in this paper. The filtered
simulated samples are used to expand the IDS training set to obtain the BDS training set.

The results of the automatic identification of pulsar candidates for each method on the HTRU-Medlat dataset
are shown in Table 3. ”Subints” indicates that the temporal phase images were input, and ”Subbands” indicates
that the frequency phase images were input. The method with ”IDS” indicates that the experiment was tested
with small data, while ”BDS” indicates that a large dataset consisting of images generated by a generative
adversarial network was incorporated. In the IDS data set scenario, the F1 value of the CNN model method
reached approximately 95%, while the F1 value of the ResNet method proposed in this paper reached 97.3%

http://dx.doi.org/10.20517/ces.2022.30


Page 8 of 10 Bao et al. Complex Eng Syst 2022;2:16 I http://dx.doi.org/10.20517/ces.2022.30

Table 3. Results of GAN-based generated images on the HTRU-Medlat dataset

Model & Dataset F1-score Recall Precision

CNN
Subints (IDS) 95.6% 94.8% 96.3%
Subints (BDS) 96.9% 94.0% 99.9%
Subbands (IDS) 95.8% 95.4% 96.2%
Subbands (BDS) 97.3% 94.8% 99.9%
ResNet
Subints (IDS) 97.3% 96.4% 98.3%
Subints (BDS) 98.2% 98.0% 98.4%
Subbands (IDS) 97.5% 95.7% 99.3%
Subbands (BDS) 98.3% 97.4% 99.3%

Table 4. Comparison of the effects of different pulsar candidate identification methods

Model Literature Disadvantage/Advantage

Traditional

Eatough RP, Molkenthin N, Kramer M, Noutsos A, Keith M, et al. Selection
of radio pulsar candidates using artificial neural networks. Monthly
Notices of the Royal Astronomical Society 2010;407:2443–50.
[DOI: 10.1111/j.1365-2966.2010.17082.x]

Time-consuming

ANN/CNN

Bates S, Bailes M, Barsdell B, Bhat N, Burgay M, et al. The high time resolution
universe pulsar survey—VI. An artificial neural network and timing of 75
pulsars. Monthly Notices of the Royal Astronomical Society 2012;427:1052–65.
[DOI: 10.1111/j.1365-2966.2012.22042.x]

Sample imbalance,
poor classification

Morello V, Barr E, Bailes M, Flynn C, Keane E, et al. SPINN: a straightforward
machine learning solution to the pulsar candidate selection problem. Monthly
Notices of the Royal Astronomical Society 2014;443:1651–62. [DOI: 10.1093/
mnras/stu1188]
ZhuW, Berndsen A, Madsen E, Tan M, Stairs I, et al. Searching for pulsars
using image pattern recognition. The Astrophysical Journal 2014;781:117.
[DOI: 10.1088/0004-637x/781/2/117]
Lyon RJ, Stappers B, Cooper S, Brooke JM, Knowles JD. Fifty years of pulsar
candidate selection: from simple filters to a new principled real-time
classification approach. Monthly Notices of the Royal
Astronomical Society 2016;459:1104–23. [DOI: 10.1093/mnras/stw656]

GAN
Guo P, Duan F, Wang P, Yao Y, Yin Q, et al. Pulsar candidate classification
using generative adversary networks. Monthly Notices of the Royal
Astronomical Society 2019;490:5424–39. [DOI: 10.1093/mnras/stz2975]

Pattern collapse

The proposed model Alleviates sample imbalance problem,
improves the accuracy of recognition

and 97.5% in the ints and bands scenarios respectively, which indicates that the ResNet method is able to fit the
data better than the CNNmethod , and can extract features withmore classification ability on a smaller dataset.
In addition, when using the BDS method, both models incorporate the simulated samples generated by the
generative adversarial network. It can be seen that for the ints and bands images, the CNN method improves
the F1 value by 1.3% and 1.5% on the BDS scenarios compared to the IDS scenarios, and the precision metric
improves by 3.6% and 3.7% compared to the IDS scenario. In addition, it can be seen that for the ints and
bands images, the ResNet method improves Recall by 1.6% and 1.7% for the BDS scenario compared to the
IDS scenario, and the F1 values improve by 0.9% and 0.8% compared to the IDS scenario. These results indicate
that the data expanded by the simulated samples generated by the generative adversarial network are of higher
quality and can provide richer recognition features, which causes the model’s recognition to be more accurate
to a certain extent.

Different pulsar candidate identification methods are contrasted respectively, as shown in Table 4. For the
traditional methods, manual experts review the pulsar candidates slowly, and thus, the models are evidently
time-consuming. Neural network-based methods have better identification results but suffer from the sample
imbalance problem. The traditional GAN model alleviates the sample imbalance problem to a certain extent
but suffers from the pattern collapse problem in the process of generating positive samples. Compared with
the previous methods, the proposed method alleviates the sample imbalance and pattern collapse problems,
and has a faster identification speed and higher identification accuracy.
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4. CONCLUSIONS
In this paper, a generative adversarial network-based pulsar positive sample generation method is proposed
for high-quality sample generation in light of the sample imbalance problem in pulsar candidate identification
tasks. Training is performed on a dataset containing only positive samples, and the converged model is used
to generate a series of high-quality samples to expand the dataset. A residual network-based pulsar candidate
identification method is proposed, and it has a better fitting ability compared to shallow neural network mod-
els. Comparison experiments have been conducted with recent pulsar identification methods on the HTRU
dataset [26], and the experimental results demonstrated that the proposed method achieved optimal results on
the dataset compared to the CNN method.
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