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Abstract
Severe systemic inflammation in COVID-19 patients can lead to dysfunction of multiple organs, including the heart. 
Using an ex vivo cardiac organoid system, Mills et al discovered that inhibitors of the chromatin reader protein, 
bromodomain-containing protein 4, protect cardiomyocytes from COVID-associated “cytokine storm”. We briefly 
review these important findings and highlight the translational significance of the work.
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COVID-19 disease, caused by the severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-
2), affects multiple organs with an unusual degree of heterogeneity in the form and severity of acute 
symptoms between infected individuals. To date, SARS-CoV-2 infection is estimated to have been 
responsible for nearly 4.5 million deaths, with at least 213 million individuals infected, 100-fold more than 
the annual mortality rate from the common influenza virus. Moreover, given the sudden recent onset of this 
destructive and highly contagious infectious agent, long-term implications on human health post-infection 
are still being unveiled.
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Cardiac involvement in COVID-19 was recognized early in the pandemic, with elevated circulating markers 
of heart damage found in many patients. COVID-19 patients most commonly present with right ventricular 
dilation and dysfunction, although defects in left ventricular (LV) performance are also observed; LV 
diastolic dysfunction (DD) outweighs systolic dysfunction in these individuals[1]. Cardiomyocytes express 
the receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), which is upregulated in heart 
failure[2]. While the ability of SARS-CoV-2 to directly infect cardiomyocytes has been demonstrated by 
evaluation of a small set of autopsy and endomyocardial biopsy specimens[3,4], indirect, secondary effects of 
infection likely serve a more significant role in eliciting cardiac complications. In particular, the pro-
inflammatory state-the so-called cytokine storm (CS)-associated with COVID-19 is thought to be a major 
cause of multi-organ morbidity and failure and poor prognosis of severe infection.

In a tour de force study recently published in Cell, Mills et al.[5] tackled the problem of CS-induced cardiac 
damage. The authors initially employed human pluripotent stem cell-derived cardiac organoids (hCOs) in 
culture to screen different combinations of cytokines and other factors for effects on contractile force or 
relaxation. Tumor necrosis factor (TNF) treatment led to impaired systolic function of hCOs, whereas the 
combination of IFN-γ, IL-1β, and dsDNA [poly(I:C)] induced the most severe DD phenotype, causing a 
~50% increase in hCO relaxation time. This DD-inducing mixture was selected to advance into further in 
vitro studies to mimic CS in COVID-19 patients.

To address the mechanism of CS-mediated cardiac damage, high sensitivity phosphoproteomics analysis 
was performed, which revealed a novel and major shift with CS in hCOs, with induction of phosphorylation 
of many proteins that are critical for the regulation of cardiac function, including signaling effectors (e.g., 
GRK2 and PKA), as well as transcriptional regulators [e.g., MEF2A, STAT1 and bromodomain-containing 
protein 4 (BRD4)]. A chemical biology approach with inhibitors of top candidates from the phospho-screen 
was employed to test for compounds that can counteract TNF and CS-induced systolic dysfunction and 
DD, respectively. The most promising relaxation-inducing “hit” from this mini-screen was INCB054329, 
which inhibits BRD4, as well as the three other members of the bromodomain and extra-terminal (BET) 
acetyl-lysine reader protein family, BRD2, BRD3, and the testis-specific BRDT, all of which have two 
tandem N-terminal acetyl-lysine recognition motifs, or bromodomains (BD1 and BD2). INCB054329 also 
improved the relaxation of hCOs treated with serum from a COVID-19 patient as the source of CS. 
INCB054329 binds to BD1 and BD2 of BET proteins, thereby functioning as a competitive inhibitor that 
displaces the readers from acetyl-histones on chromatin. Prior studies showed that a related BET inhibitor, 
JQ1, improves systolic function, with associated reductions in cardiac hypertrophy, fibrosis, and 
inflammation, in mouse models of heart failure[6]. However, the Mills paper is the first to reveal the potential 
utility of BET inhibitors for the treatment of DD.

Since mice cannot be infected by SARS-CoV-2, follow-up in vivo studies were performed with “humanized” 
mice harboring a transgene for human ACE2[7]. Bulk RNA-seq of hearts of mice infected with SARS-CoV-2 
(96 h total) and treated with INCB054329 or vehicle control at 24, 48, and 72 h post-infection, showed that 
the BET inhibitor suppressed expression of > 20% of genes upregulated by the virus. Furthermore, SARS-
CoV-2 infection also resulted in the upregulation of genes involved in viral responses, with pathway analysis 
predicting BRD4 among the significant upstream regulators of these differentially expressed genes. Similar 
findings were made with CS-treated hCOs, supporting the translational validity of their ex vivo organoid 
model and the choice of components to emulate CS in the system. Interestingly, the author failed to detect 
the presence of SARS-CoV-2 in the hearts of the mice, suggesting that indirect effects, such as CS, resulted 
in transcriptome remodeling in the heart. In parallel studies, INCB054329 reduced cytokine expression and 
prevented mortality and systolic dysfunction in mice acutely treated with LPS to mimic CS.
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Figure 1. A model for BRD4-induced diastolic dysfunction in COVID-19 patients. A cytokine storm elicited by SARS-CoV-2 infection 
triggers phosphorylation and activation of BRD4, resulting in changes in gene expression that culminate in diastolic dysfunction. BET 
inhibitors prevent the binding of BRD4 to acetyl-histones in chromatin, thereby preventing cytokine storm-driven diastolic dysfunction. 
BRD4: Bromodomain-containing protein 4; BET: bromodomain and extra-terminal.

Finally, moving back to the hCO system, the authors show that multiple BET inhibitors can block CS-
induced relaxation impairment, including apabetalone, elevating the translational significance of the work. 
Indeed, apabetalone is the only BET inhibitor to be tested in a Phase 3 trial, being assessed for its ability to 
reduce major cardiovascular events in > 2400 individuals with combined acute coronary syndrome (ACS), 
type 2 diabetes (T2D), and low LDL levels. While apabetalone failed to diminish ischemic cardiovascular 
events in this patient population, the BET inhibitor was found to be well-tolerated, and secondary subgroup 
analyses revealed a reduction in hospitalizations for heart failure in patients with T2D and recent ACS[8], 
and fewer heart failure-related hospitalizations in patients with chronic kidney disease and T2D[9]. In 
addition, apabetalone and a related compound also reduced ACE2 expression and SARS-CoV-2 infection in 
the hCO model, highlighting another possible mechanism by which this approach could improve cardiac 
outcomes in COVID-19 patients.

As with any powerful study, the work of Mills et al.[5] raises new questions and avenues for future 
investigation. As pointed out by the authors, the inhibitors used in their study target all BET family 
members so, while BRD4 appears to be the culprit that drives CS-induced DD since its knockdown in the 
hCO model improved relaxation, the involvement of other BET family members cannot be ruled out. 
Parallel knockdown of BRD2, BRD3, and BRD4, alone or in combination, in the hCO model would address 
the importance of specific BET family members to the pathogenesis of CS-induced DD and could guide 
future efforts to target specific members of the family as a safer approach than pan-BET inhibition.

A strength of the work by Mills et al.[5] was the use of an advanced version of their in-house, self-organizing 
cardiac organoid system, which was created using human pluripotent stem cell (hPSC)-derived cells mixed 
in cell culture plates. Comparative single-cell RNA-sequencing of hCOs revealed significant overlap in cell-
type clustering relative to the healthy human heart. Furthermore, CS treatment of hCOs induced a 
consistent pathological transcriptome signature and increased relaxation time, emulating DD. Nonetheless, 
since this model was derived from in vitro differentiated cells, lacks comorbidities such as aging and 
diabetes, and is not influenced by distal organs, it is unlikely reflective of the extreme heterogeneity in 
phenotype and response to drugs seen in HFpEF patients. As large datasets emerge from analyses of cardiac 
samples from patients with DD and/or COVID-19, cell-type composition shifts and BRD4-regulated gene 
signatures seen in CS-treated hCOs can be cross-validated with patient samples to address further the 
translational value of the organoid model.
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The mechanism(s) by which BET inhibition ameliorates CS-induced DD remains a mystery, and we are left 
to assume that, in COVID-19 patients, BRD4 is activated upon phosphorylation to stimulate pathological 
gene expression that results in cardiac relaxation impairment [Figure 1]. Evidence is emerging for 
widespread transcriptional remodeling in the SARS-CoV-2 infected human heart, and BET proteins almost 
certainly contribute to this process. Nonetheless, how the BET inhibitor-mediated changes in gene 
expression observed in the current study culminate in improved cardiac relaxation is unclear, as the 
expression of markers of fibrosis, which is one driver of DD, were decreased hCOs treated with CS. Future 
studies should address whether BET inhibitor treatment improves myofibril relaxation, titin compliance 
and/or calcium handling in CS-treated hCOs to address further the mechanism(s) of the efficacy of the 
compounds in this model. Additionally, since DD was not observed in SARS-CoV-2-infected or LPS-treated 
mice, additional work is needed in true models of DD to determine whether BET inhibition is a viable 
approach for treating this cardiac abnormality. It will also be interesting to examine whether BRD4 
phosphorylation is altered in the hearts of humans suffering from DD and if so, to determine the 
responsible kinases and functional consequences.

Despite these open questions, Mills et al.[5] are commended for quickly attacking an enormous global health 
problem using a battery of state-of-the-art methods. Their findings suggest an intimate relationship between 
COVID-19 and BRD4 and demonstrate that BET bromodomain inhibition can reduce cardiac stress and 
improve relaxation of the heart in the face of a cytokine storm triggered by SARS-CoV-2 infection.
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