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Abstract
Adirect data-driven approach for computing the robust positively invariant sets of a discrete-time system is presented
in this study. By transforming the invariance conditions into a set of tractable linear matrix inequality problems and
combining them with a semidefinite programming problem, we maximize the volume of invariant sets without vio-
lating state constraints. Based on two equivalence conditions of invariance, we investigate two algorithms using the
one-step method to maximize the volume of the invariant sets. Ultimately, we opted for Algorithm 1, which is more
succinct and effective. To further reduce conservatism, we propose an iterative algorithm based on Algorithm 1. The
effectiveness of the proposed algorithm is verified through numerical examples.

Keywords: Direct data-driven, robust positively invariant set, linear discrete-time system, semidefinite programming

1. INTRODUCTION
A set is defined as a robust positively invariant (RPI) set, if every initial state contained within it, the trajectory
of the system’s state remains confined to that set, regardless of any disturbances or uncertainties in its param-
eters [1]. In the domain of automatic control, the significance of RPI sets is self-evident. The theories and
computational approaches of RPI sets have not only attracted significant interest in the academic community
but also demonstrated extensive application values in multiple practical fields such as system stability analysis,
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controller design, and nonlinear system theory [1–6]. Moreover, RPI sets offer us a powerful tool for evaluating
and resolving a series of issues closely related to external unknown disturbances.

For linear discrete systems, several approaches have been proposed to compute the RPI sets [7–10]. These are
model-based approaches that assume the system is usable. However, achieving precise and dependable models
in practical applications is challenging, and imprecise models can result in a loss of system invariance and
breach associated constraints [11,12], potentially leading to unstable system operation or suboptimal controller
performance. To address these limitations, direct data-driven approaches have emerged as a viable alternative,
eliminating the need for model identification [12]. As we all know, the two important forms of invariant sets
are polyhedral and ellipsoidal sets [4]. Ellipsoidal sets may be more conservative than polyhedral sets. Since
polyhedral sets offer more flexible and complex representations, they have an advantage over ellipsoidal sets
both in theory and practice [1]. Additionally, polyhedral representations naturally capture physical constraints
on state and control variables [3]. Due to these factors, this paper emphasizes the study of polyhedral sets.

In this paper, we propose a direct data-driven method [11,13] for computing polyhedral RPI sets. We assume
that the RPI set is a 0-symmetric convex polyhedron of predetermined complexity. The method presented
in [14] involves a relatively high number of algorithm optimization variables and linearized matrix inequality
constraints, resulting in slow running speeds. Our method expands upon and optimizes the approach re-
cently developed by Mejari 𝑒𝑡 𝑎𝑙 [14]. We have derived a new invariance condition and developed an iterative
algorithm based on this condition. In addressing the nonlinear problem of the invariance condition, we in-
geniously utilize relevant variable transformations and appropriate scaling techniques. Subsequently, a series
of LMIs [15] are employed to precisely represent the constraints and invariance requirements of the system. Fi-
nally, we resort to the semidefinite programming (SDP) problem for solution, aiming to maximize the volume
of the RPI sets. Notably, our method does not require an accurate systemmodel or system identification steps;
it merely requires a state trajectory composed of a finite number of data samples as input. Furthermore, the
number of optimization variables and LMIs in this iterative algorithm is less than that in [14], thereby reducing
running time and operating costs to some extent.

The primary contribution of this paper lies in the introduction of a novel data-driven methodology tailored
for computing systems equipped with RPI sets. This approach holds significant relevance, particularly within
the realms of control system design and analysis. A standout feature of our method is its reliance on a limited
dataset, bypassing the need for comprehensive mathematical model knowledge-a pivotal advantage in numer-
ous practical applications where precise mathematical models are elusive or challenging to derive. Our work
commences by establishing two fundamental equivalence criteria pertaining to invariance properties. Build-
ing upon these, we devise two single-step algorithms grounded in LMI frameworks for the computation of
RPI sets, denominated as Algorithm 1 and Algorithm 2. A comparative assessment between these algorithms
is subsequently undertaken.

Experimental evaluations disclose that although both algorithms converge upon identical RPI sets, Algorithm 1
distinguishes itself through reduced optimization variable requirements and exhibits superior computational
efficiency relative to Algorithm 2. This distinction carries substantial weight in practical implementations,
as augmented computational speed directly contributes to enhanced real-time system performance and cost
efficiency.

Capitalizing on the merits of Algorithm 1, we further propose an iterative refinement strategy aimed at in-
crementally approximating the target volume of RPI sets over successive iterations. This iterative algorithm
ingeniously retains the computational efficiency hallmark of Algorithm 1 while simultaneously alleviating re-
sultant conservatism, thereby striking a balance between precision and performance.
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The structure of this paper is as follows: Preliminaries and problem formulation are given in Section 2.1. Sec-
tion 2.2 presents data-based invariances and constraints. Section 2.3 gives the relevant algorithms tomaximize
the RPI sets. Numerical examples are given in Section 3. Section 4 provides the discussion. Section 5 gives a
summary of this article.

Notations: The following notations are made in this paper. The set of positive real numbers is denoted by
𝑅+; a diagonal matrix with positive members is denoted by 𝐷𝑛

+; the matrix 𝐴’s transpose is 𝐴𝑇 . 𝑅𝑛 denotes 𝑛-
dimensional Euclidean space, and 𝑅𝑛×𝑚 denotes a set of 𝑛×𝑚-dimensionalmatrices. Amatrix containing zeros
in the relevant dimension is written as 0. 1𝑚 represents the vector of ones of dimension 𝑚. The identity matrix
in𝑚 dimensions is written as 𝐼𝑚 , and the 𝑖-th column of the identity matrix is denoted by the symbol 𝑒𝑖 . ∗’s rep-
resents the matrix element that is uniquely identifiable by symmetry. For the symmetry matrix 𝑋 , 𝑋 � 0 (� 0)
indicates that the matrix 𝑋 is a semi-positive definite matrix (positive definite matrix). Let 𝐴 ∈ 𝑅𝑚×𝑛 be a ma-
trix of 𝑛 vectors 𝐴 = [𝑎1 . . . 𝑎𝑛], we define the vectorization of 𝐴 as ®𝐴 = [𝑎𝑇1 . . . 𝑎𝑇𝑛 ]𝑇 ∈ 𝑅𝑚𝑛. For the finite setΘ𝑣

=
{
𝜃1, . . . , 𝜃𝑡

}
with 𝜃 𝑗 ∈ 𝑅𝑛 for 𝑗 = 1, . . . 𝑡, 𝑐𝑜𝑛𝑣(Θ𝑣) =

{
𝜃 ∈ 𝑅𝑛 : 𝜃 =

∑𝑡
𝑗=1 𝛼 𝑗𝜃

𝑗 , 𝑠.𝑡
∑𝑡

𝑗=1 𝛼 𝑗 = 1, 𝛼 𝑗 ∈ [0, 1]
}

denotes the convex-hull of a Θ𝑣 , and 𝐴 ⊗ 𝐵 denotes the Kronecker product between 𝐴 and 𝐵.

2. METHODS
2.1. Preliminaries and problem formulation
2.1.1 Preliminaries
Lemma 1 ( [16]): (Vectorization) For matrices 𝐴 ∈ 𝑅𝑚×𝑛, 𝐵 ∈ 𝑅𝑛×𝑙 , 𝐶 ∈ 𝑅𝑙×𝑘 and 𝐷 ∈ 𝑅𝑚×𝑘 , the matrix
equation 𝐴𝐵𝐶 = 𝐷 is equivalent to (

𝐶𝑇 ⊗ 𝐴
)
®𝐵 =

−−−→
𝐴𝐵𝐶, (1a)

−−−→
𝐴𝐵𝐶 =

(
𝐶𝑇𝐵𝑇 ⊗ 𝐼𝑘

)
®𝐴. (1b)

Lemma 2 ( [17]): (Schur complement): Given the matrix 𝑆 =

[
𝑆1 𝑆2
𝑆3 𝑆4

]
, where 𝑆1 is a positive definite matrix,

and define the Schur complement matrix of 𝑆1 as 𝑀 = 𝑆4 − 𝑆3𝑆
−1
1 𝑆2, then 𝑆 � 0(� 0) ⇔ 𝑀 � 0(� 0).

Definition 1 ( [1]): (Polyhedral set) A convex polyhedral set is a set of the form P(𝐹, 𝑔) = {𝑥 : 𝐹𝑥 ≤ 𝑔}. A
polyhedral set includes the origin if and only if 𝑔 ≥ 0 and includes the origin as an interior point if and only if
𝑔 > 0.

Definition 2 ( [1]): (0–Symmetric convex polyhedral set) A 0–symmetric convex polyhedral set can always
be represented in the form P̄ (𝐹, 𝑔) = {𝑥 : −𝑔 ≤ 𝐹𝑥 ≤ 𝑔}. If P̄ (𝐹, 𝑔) includes 0 as an interior point, up to a
normalization, it can be represented as P̄ (𝐹, 1̄) =

{
𝑥 : −1̄ ≤ 𝐹𝑥 ≤ 1̄

}
, where 1̄𝑇 = [1 1 . . . 1].

The properties of 0-symmetric convex polyhedral are as follows:

(i) If 𝑥 ∈ P, then −𝑥 ∈ P.

(ii) If 𝑥, 𝑦 ∈ P, then for any 𝜆 ∈ [0,1], 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ P.

2.1.2 Problem formulation
The following linear discrete-time system with no control inputs

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝑤(𝑘) (2)

http://dx.doi.org/10.20517/ces.2024.76
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is considered in this paper, where 𝑥(𝑘) ∈ 𝑅𝑛 and 𝑤(𝑘) ∈ 𝑅𝑛 are the system state and the external disturbance
at time 𝑘 , respectively. The matrix 𝐴 is unknown. A state trajectory of 𝑇 + 1 samples {𝑥(𝑘)}𝑇+1

𝑘=1 is generated
from the system (2). The generated data is denoted by:

𝑋+ ≜ [𝑥(2) 𝑥(3) . . . 𝑥(𝑇 + 1)] ∈ 𝑅𝑛×𝑇 , (3a)
𝑋 ≜ [𝑥(1) 𝑥(2) . . . 𝑥(𝑇)] ∈ 𝑅𝑛×𝑇 . (3b)

The constraints of the system state and disturbances are as follows

X ≜
{
𝑥 ∈ 𝑅𝑛 : 𝐹𝑥 ≤ 1𝑛𝑥

}
, (4a)

W ≜
{
𝑤 ∈ 𝑅𝑛 :| 𝐷𝑤 |≤ 1𝑛𝑤

}
, (4b)

where 𝐹 ∈ 𝑅𝑛𝑥×𝑛 and 𝐷 ∈ 𝑅𝑛𝑤×𝑛 are known. Note that the external disturbances of the system are bounded.

Define a set of feasible models as follows:

A ≜
{
𝐴 ∈ 𝑅𝑛×𝑛 : 𝑥(𝑘 + 1) − 𝐴𝑥(𝑘) ∈ W, 𝑘 = 1, . . . , 𝑇

}
(5)

By using the matrices defined in (3) and the disturbance setW in (4), (5) can be expressed as follows:

A ≜
{
𝐴 ∈ 𝑅𝑛×𝑛 : −1̄ ≤ 𝐷𝑋+ − 𝐷𝐴𝑋 ≤ 1̄ ∈ W

}
, (6)

where 1̄ ≜
[
1𝑛𝑤 1𝑛𝑤 . . . 1𝑛𝑤

]
∈ 𝑅𝑛𝑤×𝑇 . By using Lemma 1, (6) is rewritten as follows,

A ≜
{
𝐴 ∈ 𝑅𝑛×𝑛 : −1̄𝑇𝑛𝑤 + 𝑑 ≤ 𝑍 ®𝐴 ≤ 1̄𝑇𝑛𝑤 + 𝑑 ∈ W

}
, (7)

where

𝑍 ≜
(
𝑋𝑇 ⊗ 𝐷

)
∈ 𝑅𝑇𝑛𝑤×𝑛2

, (8a)

𝑑 ≜


𝐷𝑥(2)
𝐷𝑥(3)

...

𝐷𝑥(𝑇 + 1)


∈ 𝑅𝑇𝑛𝑤 . (8b)

Proposition 1 [12,18]: The set A in (6) is a bounded polyhedron if and only if 𝑟𝑎𝑛𝑘 (𝑋) = 𝑛 and 𝐷 has a full
column rank.

Remark 1: If the condition is not met, then set A is unbounded, making it difficult to find a feasible RPI set.

To enhance clarity, denote 𝑥(𝑘 + 1) as 𝑥+, then system (2) can be represented by:

𝑥+ = 𝐴𝑥 + 𝑤. (9)

Consider the following set of 0–symmetric convex polyhedral set with predefined complexity 𝑛𝑝 , which is
given as follows:

P ≜
{
𝑥 ∈ 𝑅𝑛 : −1̄ ≤ 𝑃𝑊−1𝑥 ≤ 1̄

}
, (10)

where 𝑃 ∈ 𝑅𝑛𝑝×𝑛,𝑊 ∈ 𝑅𝑛×𝑛. Assuming that𝑊 is reversible, this will be ensured by the invariance conditions
in the form of LMIs.

http://dx.doi.org/10.20517/ces.2024.76
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The set P is the RPI set of system (9), if the following condition is satisfied:

𝑥 ∈ P ⇒ 𝑥+ ∈ P,∀𝑤 ∈ W,∀𝐴 ∈ A. (11)

The set P also must adhere to the state constraints, meaning that P ⊆ X, which leads to the following:

𝑥 ∈ P ⇒ 𝑥 ∈ X. (12)

From the above (3)-(4), (9)-(12), the problem addressed in this article is formulated as follows:

Problem: Given the data in (3), state constraints in (4) and matrix 𝑃, compute𝑊 in (10) such that:

(1) The invariance condition in (11) is satisfied;

(2) The set P satisfies state constraints in (4);

(3) Maximize the volume of the set P.

2.2. Invariance conditions and constraints based on data
To render the state constraints of the system and invariance conditions more manageable, consider the follow-
ing coordinate transformation [14]:

𝜃 = 𝑊−1𝑥 ⇔ 𝑥 = 𝑊𝜃. (13)

With the coordinate transformation, (10) can be expressed as:

P ≜ {𝑊𝜃 ∈ 𝑅𝑛 : 𝜃 ∈ Θ} , (14)

where Θ is a set of 0-symmetric convex polyhedra defined as follows:

Θ ≜
{
𝜃 ∈ 𝑅𝑛 : −1𝑛𝑝 ≤ 𝑃𝜃 ≤ 1𝑛𝑝

}
. (15)

For a fixed 𝑃, the vertices of Θ are known, so Θ can be written as a convex hull of these finite vertices [1].

Θ = 𝑐𝑜𝑛𝑣
({
𝜃1, . . . , 𝜃2𝜎}) , (16)

where 𝜃1, . . . , 𝜃2𝜎 are the vertices of the Θ, and 𝜎 is known and determined by matrix 𝑃.

Due to the symmetry of the setΘ, there is 𝜃 𝑗+𝜎 = −𝜃 𝑗 , for 𝑗 = 1, . . . , 𝜎. And by using (13), the state constraints
are rewritten in 𝜃 state-space as follows

𝐻𝑊𝜃 ≤ 1𝑛𝑥 ,∀𝜃 ∈ Θ ⇔
−1𝑛𝑥 ≤ 𝐻𝑊𝜃 𝑗 ≤ 1𝑛𝑥 , 𝑗 = 1, . . . , 𝜎.

(17)

With (13), system (9) can be expressed as:

𝑊𝜃+ = 𝐴𝑊𝜃 + 𝑤, (18)

http://dx.doi.org/10.20517/ces.2024.76
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where 𝐴 ∈ A, 𝑤 ∈ W.

Two equivalent invariance conditions for system (18) in the 𝜃 state space are shown below.

Lemma 3 ( [14]): For system (18), where the set Θ in (15) is RPI set, then the following two conditions are
equivalent:

(i) for all 𝜃 ∈ Θ, ∀𝑤 ∈ W and ∀𝐴 ∈ A,

𝜃+ =
(
𝑊−1𝐴𝑊𝜃 +𝑊−1𝑤

)
∈ Θ (19)

(ii) for each vertex 𝜃 𝑗 , 𝑗 = 1, . . . , 2𝜎 of the set Θ, ∀𝑤 ∈ W and ∀𝐴 ∈ A,(
𝜃 𝑗 )+ =

(
𝑊−1𝐴𝑊𝜃 𝑗 +𝑊−1𝑤

)
∈ Θ (20)

2.3. Maximize the volume of the RPI set
In this section, we propose data-driven sufficient LMI conditions for computing the matrix𝑊 , ensuring that
the set Θ remains invariant.

First, we will consider condition (19) for RPI of the set Θ. Applying (1b), system (18) can be further written
as follows:

𝑊𝜃+ = ((𝑊𝜃)𝑇 ⊗ 𝐼𝑛)︸           ︷︷           ︸
𝑔(𝑊,𝜃)

®𝐴 + 𝑤. (21)

To achieve fewer conservative LMI conditions, the variables𝑉𝑖 ∈ 𝑅𝑛×𝑛 are introduced and signals 𝜉𝑖 = 𝑉−1
𝑖 𝑊 (𝜃)+,

for 𝑖 = 1, . . . , 𝑛𝑝 . The dynamics (21) can then be expressed as follows

𝑔(𝑊, 𝜃) ®𝐴 + 𝑤 −𝑉𝑖𝜉𝑖 = 0. (22)

From (15), the invariance condition (19) is given as follows: for all 𝜃 ∈ Θ,

1 − (𝑒𝑇𝑖 𝑃𝜃+)2 ≥ 0,∀𝑤 ∈ W,∀𝐴 ∈ A, (23)

where 𝑒𝑖 is the identity matrix 𝐼𝑛𝑝 ’s 𝑖-th column vector. By using 𝜉𝑖 = 𝑉−1
𝑖 𝑊 (𝜃)+, (23) can be written as follows

1 − (𝑒𝑇𝑖 𝑃𝑊−1𝑉𝑖𝜉𝑖)2 ≥ 0,∀𝑤 ∈ W,∀𝐴 ∈ A. (24)

We multiply (24) by positive scalar variable 𝜙𝑖 > 0 and lower bound it by terms that are known to be non-
negative (S-procedure [15]). This gives

𝜙𝑖 (1 − (𝑒𝑇𝑖 𝑃𝑊−1𝑉𝑖𝜉𝑖)2) ≥ 2𝜉𝑇𝑖 (𝑔(𝑊, 𝜃) ®𝐴 + 𝑤 −𝑉𝑖𝜉𝑖)︸                            ︷︷                            ︸
0

+ ((1 + 𝑑) − 𝑍 ®𝐴)𝑇Λ𝑖 ((1 + 𝑑) + 𝑍 ®𝐴)︸                                       ︷︷                                       ︸
≥0

+ (1 + 𝐷𝑤)𝑇Γ𝑖 (1 − 𝐷𝑤)︸                       ︷︷                       ︸
≥0

(25)

http://dx.doi.org/10.20517/ces.2024.76
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where Λ𝑖 ∈ 𝐷𝑇𝑛𝑤
+ , Γ𝑖 ∈ 𝐷𝑛𝑤

+ . In this way, we get the sufficient condition of (23), i.e., (25).

Through (22), (4), and (7), it can be proved that the right side of (25) is non-negative for all 𝑤 ∈ W, for all
𝐴 ∈ A. After that, (25) can be rewritten as the following quadratic form:

y𝑇𝑇𝑖 (𝑊, 𝜙𝑖 , Γ𝑖 ,Λ𝑖 , 𝑉𝑖)y � 0,∀y, (26)

where y = [1 ®𝐴𝑇 𝑤𝑇 − 𝜉𝑇𝑖 ]𝑇 and matrix 𝑇𝑖 is symmetrical. The invariance condition holds, if 𝑇𝑖 � 0; i.e.,

𝑇𝑖 ≜


𝑟𝑖 −𝑑𝑇Λ𝑖𝑍 0 0
∗ 𝑍𝑇Λ𝑖𝑍 0 𝑔𝑇 (𝑊, 𝜃)
∗ ∗ 𝐷𝑇Γ𝑖𝐷 𝐼𝑛
∗ ∗ ∗ 𝑉𝑖 +𝑉𝑇

𝑖 −𝑉𝑇
𝑖 𝐿𝑖𝑉𝑖

 � 0, (27)

where 𝐿𝑖 ≜ 𝜙𝑖𝑊
−𝑇𝑃𝑇 𝑒𝑖𝑒

𝑇
𝑖 𝑃𝑊

−1, 𝑟𝑖 ≜ 𝜙𝑖 − 1𝑇Λ𝑖1 − 1𝑇𝑛𝑤Γ𝑖1𝑛𝑤 + 𝑑𝑇Λ𝑖𝑑 and 𝑔(𝑊, 𝜃) is as defined in (21). Take
note of the nonlinearity of the block(2,4) in (27) and the nonlinear dependence of the block(4,4) on 𝜙𝑖 , 𝑉𝑖 and
𝑊 in (27), which will be resolved by introducing new matrix variables and appropriate scaling.

Theorem 1: Given the matrices 𝑋 , 𝑋+ and 𝑃, if there exists 𝑊 ∈ 𝑅𝑛×𝑛, 𝑊1 ∈ 𝑅𝑛 and variables 𝜙𝑖 ∈ 𝑅+,
Λ𝑖 ∈ 𝐷𝑇𝑛𝑤

+ , Γ𝑖 ∈ 𝐷𝑛𝑤
+ , 𝑋𝑖 , 𝑉𝑖 ∈ 𝑅𝑛×𝑛 that satisfy LMIs for 𝑖 = 1, . . . 𝑛𝑝 ,

[
𝑊 +𝑊𝑇 − 𝑋𝑖 𝑟𝑖𝑃

𝑇 𝑒𝑖
𝑟𝑖𝑒

𝑇
𝑖 𝑃 𝑟𝑖

]
� 0, (28)



𝑟𝑖 −𝑑𝑇Λ𝑖𝑍 0 0 0
∗ 𝑍𝑇Λ𝑖𝑍 0 𝑔𝑇 (𝑊1) 0
∗ ∗ 𝐷𝑇Γ𝑖𝐷 𝐼𝑛 0
∗ ∗ ∗ 𝑉𝑖 +𝑉𝑇

𝑖 𝑉𝑇
𝑖

∗ ∗ ∗ ∗ 𝑋𝑖


� 0, (29)

where

𝑔(𝑊1) ≜ (𝑊1)𝑇 ⊗ 𝐼𝑛 ∈ 𝑅𝑛×𝑛2
, (30a)

𝑊1 ≜ 𝑊𝜃, (30b)
𝑟𝑖 ≜ 𝜙𝑖 − 1𝑇Λ𝑖1 − 1𝑇𝑛𝑤Γ𝑖1𝑛𝑤 + 𝑑𝑇Γ𝑖𝑑 ∈ 𝑅, (30c)

then the set P in (14) is RPI.

proof:

In order to resolve the nonlinearity in the block (2,4) of (27), let us introduce a new matrix variable𝑊1 = 𝑊𝜃

such that 𝑔(𝑊1) is linear.

First, let us prove the LMI condition (28) stated in Theorem 1. Introduce the positive-definite matrix variable
𝑋𝑖 that satisfies

𝑋−1
𝑖 − 𝐿𝑖 � 0 ⇔ 𝑋−1

𝑖 − 𝜙𝑖𝑊
−𝑇𝑃𝑇 𝑒𝑖𝑒

𝑇
𝑖 𝑃𝑊

−1 � 0. (31)

Applying Lemma 2 to (31), we obtain [
𝑋−1
𝑖 𝜙𝑖𝑊

−𝑇𝑃𝑇 𝑒𝑖
𝜙𝑖𝑒

𝑇
𝑖 𝑃𝑊

−1 𝜙𝑖

]
� 0, (32)
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By applying congruence transformation to (32) using the congruence transformation matrix 𝑑𝑖𝑎𝑔 {𝑊, 𝐼𝑛}
which is full rank real matrix, then we get[

𝑊𝑇𝑋−1
𝑖 𝑊 𝜙𝑖𝑃

𝑇 𝑒𝑖
𝜙𝑖𝑒

𝑇
𝑖 𝑃 𝜙𝑖

]
� 0. (33)

To address the nonlinearity in the block (1,1) of (33), we perform the following steps:

𝑊𝑇𝑋−1
𝑖 𝑊 = (𝑊 − 𝑋𝑖)𝑇𝑋−1

𝑖 (𝑊 − 𝑋𝑖)
+𝑊 +𝑊𝑇 − 𝑋𝑖

� 𝑊 +𝑊𝑇 − 𝑋𝑖 ,

(34)

then the𝑊𝑇𝑋−1
𝑖 𝑊 in (33) can be replaced by𝑊 +𝑊𝑇 − 𝑋𝑖 , and we obtain a sufficient LMI condition for (33)

as given in (28).

Next, let us prove the LMI condition (29) stated inTheorem 1. From (31), the condition (27) can be rewritten
as


𝑟𝑖 −𝑑𝑇Λ𝑖𝑍 0 0
∗ 𝑍𝑇Λ𝑖𝑍 0 𝑔𝑇 (𝑊1)
∗ ∗ 𝐷𝑇Γ𝑖𝐷 𝐼𝑛
∗ ∗ ∗ 𝑉𝑖 +𝑉𝑇

𝑖 −𝑉𝑇
𝑖 𝑋−1

𝑖 𝑉𝑖

 � 0, (35)

then using the Schur complement, we obtain (29).

Considering the condition (20) of the robust invariance of the set Θ, the followingTheorem 2 can be obtained.

Theorem 2 ( [14]): Given the matrices 𝑋 , 𝑋+ and 𝑃, if there exists 𝑊 ∈ 𝑅𝑛×𝑛 and variables 𝜙𝑖 𝑗 ∈ 𝑅+, Λ𝑖 𝑗 ∈
𝐷𝑇𝑛𝑤

+ , Γ𝑖 𝑗 ∈ 𝐷𝑛𝑤
+ , 𝑋𝑖 𝑗 , 𝑉𝑖 𝑗 ∈ 𝑅𝑛×𝑛 that satisfy LMIs for 𝑖 = 1, . . . 𝑛𝑝 and 𝑗 = 1, . . . 2𝜎,[

𝑊 +𝑊𝑇 − 𝑋𝑖 𝑗 𝑟𝑖 𝑗𝑃
𝑇 𝑒𝑖

𝑟𝑖 𝑗𝑒
𝑇
𝑖 𝑃 𝑟𝑖 𝑗

]
� 0, (36)



𝑟𝑖 𝑗 −𝑑𝑇Λ𝑖 𝑗𝑍 0 0 0
∗ 𝑍𝑇Λ𝑖 𝑗𝑍 0 𝑔𝑇

(
𝑊, 𝜃 𝑗

)
0

∗ ∗ 𝐷𝑇Γ𝑖 𝑗𝐷 𝐼𝑛 0
∗ ∗ ∗ 𝑉𝑖 𝑗 +𝑉𝑇

𝑖 𝑗 𝑉𝑇
𝑖 𝑗

∗ ∗ ∗ ∗ 𝑋𝑖 𝑗


� 0, (37)

where,

𝑔(𝑊, 𝜃 𝑗 ) ≜
(
𝑊𝜃 𝑗 )𝑇 ⊗ 𝐼𝑛 ∈ 𝑅𝑛×𝑛2

, (38a)
𝑟𝑖 𝑗 ≜ 𝜙𝑖 𝑗 − 1𝑇Λ𝑖 𝑗1 − 1𝑇𝑛𝑤Γ𝑖 𝑗1𝑛𝑤 + 𝑑𝑇Γ𝑖 𝑗𝑑 ∈ 𝑅, (38b)

then the set P in (14) is RPI.

We aim to identify the largest set Pin (14) that satisfies the state constraints outlined in (4a) and the sufficient
conditions for invariance specified in (28) and (29) (or alternatively, (36) and (37)). Given a matrix 𝑃, it is
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Algorithm 1 Computing 𝑅𝑃𝐼 set.
Input: 𝐹,𝐷,𝑃;
Output: Optimal values for W,Xi;

Objective function 𝑚𝑎𝑥
𝑍𝑆𝐷𝑃

𝑙𝑜𝑔 𝑑𝑒𝑡 (𝑊)
Optimization variables 𝑍𝑆𝐷𝑃 ≜ (𝑊,𝑊1, 𝑋𝑖 , 𝑉𝑖 , 𝜙𝑖 ,Λ𝑖 , Γ𝑖)
Symmetry constraint𝑊 = 𝑊′ (in order for the objective function to be concave)
State constraints (17)
Invariance conditions (28), (29)

Algorithm 2 Computing 𝑅𝑃𝐼 set.
Input: 𝐹,𝐷,𝑃;
Output: Optimal values for W,Xij;

Objective function 𝑚𝑎𝑥
𝑍𝑆𝐷𝑃

𝑙𝑜𝑔 𝑑𝑒𝑡 (𝑊)
Optimization variables 𝑍𝑆𝐷𝑃 ≜

(
𝑊, 𝑋𝑖 𝑗 , 𝑉𝑖 𝑗 , 𝜙𝑖 𝑗 ,Λ𝑖 𝑗 , Γ𝑖 𝑗

)
Symmetry constraint𝑊 = 𝑊′ (in order for the objective function to be concave)
State constraints (17)
Invariance conditions (36), (37)

known that the volume of 𝑃 is proportional to its determinant, denoted as |𝑑𝑒𝑡 (𝑊) | [19]. Consequently, we can
determine the largest set 𝑃 by formulating a SDP problem. Algorithms 1 and 2 based on the one-step method
are given below.
Therefore, in order to obtain the desired large volume of RPI sets, we need to solve the determinant maximiza-
tion problem under LMI conditions. However, this problem is easy to solve only if 𝑊 is symmetric [20]. The
symmetry of 𝑊 would introduce conservatism [21]; thus, we introduce an iterative algorithm based on Algo-
rithm 1. In an iterative algorithm,𝑊 does not need to maintain symmetry, and the algorithm also reduces the
conservatism caused by the introduction of (34) [19]. At the 𝑘-th iteration, let𝑊𝑘 and 𝑋𝑖𝑘 be the values of the
variables𝑊 , 𝑋𝑖 . At each subsequent iteration, the volume of the RPI set increases, i.e., |𝑑𝑒𝑡 (𝑊𝑘+1) | ≥ |𝑑𝑒𝑡 (𝑊𝑘 ) |,
if the following LMI condition is imposed,

𝑊𝑇𝑊𝑘 +𝑊𝑇
𝑘𝑊 −𝑊𝑇

𝑘𝑊𝑘 � 𝑍 � 0, (39)

where 𝑍 = 𝑍𝑇 ∈ 𝑅𝑛×𝑛 is the new matrix variable.

From [22], we get

(𝑊 − 𝑋𝑖𝑍𝑖𝑘 )𝑇𝑋−1
𝑖 (𝑊 − 𝑋𝑖𝑍𝑖𝑘 ) = 𝑊𝑇𝑋−1

𝑖 𝑊

−𝑊𝑇𝑍𝑖𝑘 − 𝑍𝑇
𝑖𝑘𝑊 + 𝑍𝑇

𝑖𝑘𝑋𝑖𝑍𝑖𝑘 � 0,
(40)

thus we can obtain:
𝑊𝑇𝑋−1

𝑖 𝑊 � 𝑊𝑇𝑍𝑖𝑘 + 𝑍𝑇
𝑖𝑘𝑊 − 𝑍𝑇

𝑖𝑘𝑋𝑖𝑍𝑖𝑘 , (41)

where 𝑍𝑖𝑘 ≜ 𝑋−1
𝑖𝑘 𝑊𝑘 , and then the linear term to the right of (41) can be used to substitute for the nonlinear

term𝑊𝑇𝑋−1
𝑖 𝑊 in (29). From (41), the condition (28) can be rewritten as follows,[

𝑊𝑇𝑍𝑖𝑘 + 𝑍𝑇
𝑖𝑘𝑊 − 𝑍𝑇

𝑖𝑘𝑋𝑖𝑍𝑖𝑘 𝑟𝑖𝑃
𝑇 𝑒𝑖

𝑟𝑖𝑒
𝑇
𝑖 𝑃 𝜙𝑖

]
� 0. (42)

Therefore, we can obtain the following iterative algorithm based on Algorithm 1:
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iterative algorithm Computing 𝑅𝑃𝐼 set.

Input: 𝐹,𝐷,𝑃,𝑊𝑞 , 𝑋𝑞
𝑖 ;

Output: Optimal values for W;
Objective function 𝑚𝑎𝑥

𝑍𝑆𝐷𝑃

𝑙𝑜𝑔 𝑑𝑒𝑡 (𝑍)
Optimization variables 𝑍𝑆𝐷𝑃 ≜ (𝑊, 𝑋𝑖 , 𝑉𝑖 , 𝜙𝑖 ,Λ𝑖 , Γ𝑖 , 𝑍)
State constraints (17)
Invariance conditions (28), (42)

Figure 1. The data samples collected from the liner discrete-time system (43).

Remark 2: Algorithm 2 has 10𝜎𝑛𝑝 + 1 optimization variables, the invariance conditions (36), (37) consist of
2𝜎𝑛𝑝 linear matrix inequalities respectively. The iterative algorithm has 5𝑛𝑝 + 2 optimization variables; the
invariance conditions (28), (42) consist of 𝑛𝑝 linear matrix inequalities respectively. This suggests that both the
iterative algorithm has fewer optimization variables and fewer LMIs for invariant conditions than Algorithm
2. In addition, Algorithm 1 is more conservative than iterative algorithm (see Example 2).

3. RESULTS
The algorithms in the experiments are implemented in Matlab by using CVX [23] and solver SeDuMi. And the
MPT toolbox is used to manage polytopes [24]. The following liner discrete-time system is considered:

𝑥(𝑘 + 1) =
[

1 1
0 1

]
︸     ︷︷     ︸

𝐴

𝑥(𝑘) + 𝑤(𝑘). (43)

The matrice 𝐴 is unknown, but it is only used to gather data. 𝑇 = 20 samples of data are collected by system
(43), as shown in Figure 1. Assume the disturbance 𝑤 in system (43) ranges between -0.1 and 0.1, with the
state constraints being (𝑥1, 𝑥2) ∈ [−2, 2] × [−2, 2].

Example 1: By taking different matrices 𝑃, the complexity of the RPI set is denoted as 𝑛𝑝 = 2, 3, 4 respectively,
and the corresponding matrices are computed as follows

http://dx.doi.org/10.20517/ces.2024.76
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Table 1. |𝒅𝒆𝒕 (𝑾 ) | (Algorithm 1) 𝒗𝒔. complexity of the matrix 𝑃

complexity 𝒏𝒑 = 2 𝒏𝒑 = 3 𝒏𝒑 = 4

|𝑑𝑒𝑡 (𝑊 ) | 3.5 384.0 8001.2

𝑃2 =

[
1 0
0 1

]
, 𝑃3 =


10 10
10 0
1 11

 , 𝑃4 =


−18 −55
18 55
55 −18
55 18


.

The matrice𝑊 is computed by running Algorithms 1 and 2 as follows:

𝑊21 =

[
3.5 0
0 1

]
(Algorithm 1, 2.039 s),𝑊22 =

[
3.5 0
0 1

]
(Algorithm 2, 2.770 s),

𝑊31 =

[
35 1
1 11

]
(Algorithm 1, 2.418 s),𝑊32 =

[
35 1
1 11

]
(Algorithm 2, 4.552 s),

𝑊41 =

[
151.4106 18.1135
18.1135 55.0114

]
(Algorithm 1, 2.410 s),𝑊42 =

[
151.4106 18.1135
18.1135 55.0114

]
(Algorithm 2, 4.725 s),

where𝑊21 and𝑊22 are obtained from 𝑃2;𝑊31 and𝑊32 are obtained by taking 𝑃3;𝑊41 and𝑊42 are obtained
by taking 𝑃4.

It is discovered from experiment results that while Algorithm 2 yields the same results, Algorithm 1 runs faster
and requires fewer optimization variables (see Remark 2) than Algorithm 2.

Example 2: The RPI sets with complexities 𝑛𝑝 = 2, 3, 4 (i.e., 𝑃2, 𝑃3, 𝑃4 are selected respectively) which are
obtained by Algorithm 1 are as follows

𝑊2 =

[
3.5 0
0 1

]
,𝑊3 =

[
35 1
1 11

]
,𝑊4 =

[
151.4106 18.1135
18.1135 55.0114

]
.

The corresponding RPI sets obtained by Algorithm 1 are shown in Figure 2.

After five times iterations of the iterative algorithm, the RPI sets P with complexities 𝑛𝑝 = 2, 3, 4 are obtained
as

𝑊2 =

[
3.5 0
0 1

]
,𝑊3 =

[
35 1
1 11

]
,𝑊4 =

[
192.5402 −63.3969
18.1136 55.0115

]
.

The corresponding RPI sets obtained by iterative algorithm are shown in Figure 3.

We find that the volume of RPI sets obtained by the iterative algorithm is larger than that obtained by Algo-
rithm1 (see Table 1 andTable 2), which indicates thatAlgorithm 1 ismore conservative than the iterative algorithm.
For the given matrix 𝑃, the volume of P is proportional to the determinant |𝑑𝑒𝑡 (𝑊) | [19]. And as 𝑛𝑝 rises, the
absolute value of the determinant of 𝑊 grows; thus, the volume of the RPI set increases (see Table 1 and
Figure 4), so that an invariant set with a higher volume can be obtained by adding 𝑛𝑝 as a parameter.
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Figure 2. Maximum volume RPI sets P with different complexities: 𝑛𝑝 = 2 (left), 𝑛𝑝 = 3 (right), 𝑛𝑝 = 4 (bottom).

Figure 3. Maximum volume RPI sets P with different complexities: 𝑛𝑝 = 3 (left), 𝑛𝑝 = 4 (right).

Table 2. |𝒅𝒆𝒕 (𝑾 ) | (iterative algorithm) 𝒗𝒔. complexity of the matrix 𝑃

complexity 𝒏𝒑 = 2 𝒏𝒑 = 3 𝒏𝒑 = 4

|𝑑𝑒𝑡 (𝑊 ) | 3.5 385.0 11740.3
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Figure 4. |𝑑𝑒𝑡 (𝑊 ) | 𝑣𝑠. iterations of iterative algorithm.

4. DISCUSSION
A direct data-driven method is proposed to calculate the robust positive invariant (RPI) sets for discrete-time
systems. To further reduce conservatism, an iterative algorithm based on Algorithm 1 is introduced. This
approach does not require prior knowledge of themodel or system identification. Future research could extend
this methodology to nonlinear systems. Additionally, while the RPI sets discussed here are symmetric, the
exploration of asymmetric RPI sets is another potential area for investigation.

5. CONCLUSIONS
This paper proposes a direct data-driven method to calculate RPI sets for discrete-time systems by deriving
a set of invariance conditions expressed as linear matrix inequalities (LMIs). Subsequently, we maximize the
volume of the invariant set using a SDP problem. We have developed two one-step algorithms based on LMIs
to compute the RPI sets; experimental results indicate that Algorithm 1 requires fewer optimization variables
compared to Algorithm 2 and demonstrates superior computational efficiency. Additionally, we have intro-
duced an iterative approach based on Algorithm 1 to further reduce conservatism. Numerical examples have
verified the effectiveness of the proposed algorithm.
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