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Abstract
Virtual sample generation (VSG), as a cutting-edge technique, has been successfully applied in machine learning-
assisted materials design and discovery. A virtual sample without experimental validation is defined as an unknown 
sample, which is either expanded from the original data distribution for modeling or designed via algorithms for 
predicting. This review aims to discuss the applications of VSG techniques in machine learning-assisted materials 
design and discovery based on the research progress in recent years. First, we summarize the commonly used VSG 
algorithms in materials design and discovery for data expansion of the training set, including Bootstrap, Monte 
Carlo, particle swarm optimization, mega trend diffusion, Gaussian mixture model, random forest, and generative 
adversarial networks. Next, frequently employed searching algorithms for materials discovery are introduced, 
including particle swarm optimization, efficient global optimization, and proactive searching progress. Then, 
universally adopted inverse design methods are presented, including genetic algorithm, Bayesian optimization, and 
pattern recognition inverse projection. Finally, the future directions of VSG in the design and discovery of materials 
are proposed.
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INTRODUCTION
Machine learning, as a branch of artificial intelligence, is an interdisciplinary field that encompasses 
statistics, computer science, and engineering. It enables automatic learning, pattern recognition, and 
decision-making based on data analysis to facilitate the discovery of hidden patterns and regularities[1-5]. In 
materials science, machine learning has become widely applied to accelerate the design and discovery of 
new materials in recent decades[6-9]. For instance, machine learning can construct models to predict the 
physical properties, chemical reactivity, and structural stability of new materials[10-14]. By combining 
experimental data with advanced machine learning algorithms, researchers can develop a powerful 
predictive and generalizable model to optimize materials design and reduce the trial-and-error costs. 
Furthermore, machine learning can aid in materials structure classification and prediction and the 
optimization of materials preparation and processing. Currently, machine learning-assisted acceleration of 
materials design and discovery has been widely applied to various materials systems, including alloys, 
perovskites, organic molecules, and polymers[15-19].

However, the development of new materials requires the characterization of the properties and structures 
through experiments. Due to the high cost of acquiring experimental data, even with the first-principle 
calculations, a significant amount of resources can be consumed for the complex material systems. As a 
result, the small number of samples would make it difficult to construct accurate models with ideal 
performance, leading to the small sample dilemma in materials machine learning[20]. Moreover, samples 
prepared through experiments tend to have uncertain and unstable performance. The quality and stability 
of data could be influenced by various factors of preparation processes and testing conditions, which makes 
data processing rather challenging as the same materials may produce different data results under different 
experimental conditions. Additionally, searching for target materials from the vast materials space, whether 
through experiments or first-principle calculations, is a significant burden for researchers.

Many researchers have developed various methods to tackle the small sample dilemma in materials machine 
learning, including data extraction from publications, materials database construction, high-throughput 
experiments and computations, transfer learning, and active learning[21-25]. However, these methods usually 
have limited effectiveness for a given small dataset. Nevertheless, after collecting a small dataset, virtual 
sample generation (VSG) technology can be used to increase the data size. A virtual sample without 
experimental validation is defined as an unknown sample, which is either expanded from the original data 
distribution for modeling or designed via algorithms for predicting. VSG technology can generate effective 
virtual samples by utilizing the distribution information or prior knowledge of the original data to improve 
the accuracy and generalization ability of the model. In addition, VSG technology can also be used in 
materials machine learning to screen out the target materials in a large number of virtual samples generated 
by machine learning models for prediction, search for target materials in the materials space, and inverse 
design the target materials.

This review aims to discuss the applications of VSG technology in materials, covering its progress, 
prospects, challenges, and controversies. Firstly, we introduce VSG methods to be applied to expand the 
training data size based on statistical analysis and modeling algorithms. Secondly, we summarize searching 
algorithms that have been successfully applied in materials science. Then, we introduce materials inverse 
design methods. Finally, we propose several development directions for VSG technology in materials 
science.
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STATISTICS AND MODELING ALGORITHMS BASED VSG
In this section, we will introduce the commonly used statistics and modeling algorithm-based VSG methods 
for data expansion, including Bootstrap, Monte Carlo, particle swarm optimization (PSO) algorithm, mega 
trend diffusion (MTD), Gaussian mixture model (GMM), random forest (RF), and generative adversarial 
networks (GANs).

Bootstrap
Bootstrap is a resampling-based technique in statistical learning to estimate standard errors, confidence 
intervals, and biases[26]. As shown in Figure 1, the core of Bootstrap is to calculate the confidence interval of 
an estimator by repeated sampling from the original data. A new dataset formed from the original data by 
repeated sampling with replacement is called Bootstrap data, with the true values of the unknown 
information estimated by calculating the statistical parameters of these Bootstrap samples[27,28]. In Bootstrap, 
there exist columns of independently and identically distributed samples X = [x1, x2, … xm] with the 
distribution function of Fm. By sampling X* = [x1

*, x2
*, …, xm

*] from X, and the distribution function Fm of the 
X* could be obtained. If Fm is a good estimate of Fm, then the relationship between X and Fm can be fully 
reflected in the relationship between X* and Fm, and the statistical distribution of the overall samples can be 
estimated by repeated sampling. The Bootstrap method can be used to generate virtual samples when the 
data size cannot meet the modeling needs. The detailed steps of using Bootstrap to generate virtual samples 
from small original data are described as follows:

Arrange the original dataset X = [x1, x2, … xm] in ascending order to obtain ascending statistics and 
randomly generate integers i1, i2, … im ∈ [1, m].

According to the subscripts corresponding to the generated integers i1, i2, … im ∈ [1, m], perform the 
repeated sampling with replacement on the original small-sample dataset X = [x1, x2, … xm] to obtain a new 
Bootstrap dataset X* = [xi1, xi2, …, xim].

Repeat step (2) n times to obtain a virtual dataset X* = [x1
*, x2

*, …, xm
*] that can reflect the overall 

characteristics, and the generated virtual sample data volume is m*n.

The advantage of Bootstrap lies in the fact that it does not require the assumptions about the distribution of 
samples in advance. In general, accurately determining the distribution of samples can be challenging. 
When analyzing the distribution of a dataset, if the assumptions made deviate significantly from the true 
distribution, substantial errors may occur. Furthermore, results obtained based on assumptions about the 
sample distribution often necessitate hypothesis testing to assess the reasonableness of those assumptions. 
Bootstrap is a non-parametric method by repeated sampling only with replacement, where the population 
estimators can be derived from sample estimators. In addition, Bootstrap has obvious advantages over other 
statistical methods under the conditions of complex or unknown data distribution. As long as there exist the 
original samples, plenty of virtual samples could be generated by simply repeated sampling with Bootstrap 
for modeling. However, it is also important to acknowledge the limitations of the Bootstrap method. Since 
Bootstrap relies heavily on repeated sampling, the accuracy and reliability of the virtual samples can be 
significantly compromised when the dataset is extremely small or not representative of the overall 
population. Moreover, Bootstrap could not analyze and extract potentially valuable information from the 
samples. Consequently, the generated virtual samples may not effectively bridge the information gap arising 
from the limited size of the original sample set. This limitation may lead to significant errors when 
employing the model to predict unknown datasets beyond the scope of the original data. Furthermore, the 
characteristic of random repeated sampling could result in substantial variability in the distribution of the 

Fm

F
Fm
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Figure 1. The scheme of Bootstrap.

generated samples. Particularly when dealing with sparse sample sizes, the probability density distribution 
of the virtual samples may deviate significantly from the assumed Gaussian distribution. This deviation can 
affect the accuracy and reliability of statistical analysis and predictions based on the generated samples. 
Rubin et al. proposed an enhanced version of the Bootstrap method named Bayesian Bootstrap, which 
combines Bootstrap with Bayesian algorithms to sample the original data[29]. Different from the traditional 
Bootstrap approach, which randomly samples with replacement from the data, Bayesian Bootstrap treats the 
weight vector in the empirical distribution function as an unknown parameter and simulates its posterior 
distribution. This integration of Bayesian principles enables a more refined sampling process. Notably, the 
samples generated by Bayesian Bootstrap tend to exhibit a probability density distribution that closely 
approximates a Gaussian distribution. This improvement enhances the reliability and accuracy of statistical 
analyses and predictions based on the generated samples.

The VSG method based on Bootstrap has been applied to materials machine learning with small data. Zhu 
et al. used Bootstrap-VSG combined with an extreme learning machine (ELM) to construct a prediction 
model of acetic acid consumption in a purified terephthalic acid (PTA) process[27]. The results show that 
compared with the original 30 samples, the ELM model constructed with 90 samples improves the 
prediction accuracy of the model with 30 samples by 27.48% after Bootstrap generates 60 virtual samples. 
Based on Bayesian Bootstrap, Han et al. proposed a Bootstrap-Bayesian dynamic modification model for the 
small sample size[28]. Firstly, Bootstrap confidence interval estimation was used to obtain the interval range 
at the mean 95% confidence level and generate Bootstrap samples that are uniformly distributed over the 
interval. Secondly, Bayesian parameter estimation was used to achieve Bayesian posterior estimates of the 
Bootstrap-based mean as virtual samples to extend the training sample set. The advantage of the Bootstrap-
Bayesian dynamic modification model lies in that the virtual samples generated based on Bootstrap 
confidence intervals can provide more valid sample information. The Bootstrap-Bayesian dynamic 
modification model has been successfully applied to the underwater target classification, but few relevant 
applications have been found in the materials field, indicating the great potential for applications in 
materials research.

Monte Carlo
The basic principle of Monte Carlo is to use random sampling techniques to approximate the simulation 
probability, obtaining the simulation results on the basis of random repeated sampling and statistical 
analysis[30]. In terms of calculating the probability of an event occurrence, the Monte Carlo method can 
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estimate the corresponding probability by repeated sampling and calculating the frequency of the event. 
Monte Carlo is based on a probability model. Different from Bootstrap, which samples from the original 
sample, Monte Carlo analyzes the data distribution of the samples and then conducts random repeated 
sampling according to the data distribution. Consequently, the virtual samples generated by Monte Carlo 
align more closely with the probability distribution of the original data. According to the process described 
by the probability model, the results are simulated as an approximate solution to the problem, which 
includes three main steps:

The construction of the probability distribution model: Select an appropriate probability distribution to 
create a probability model to convert a non-random problem into a random problem.

Sampling according to the probability distribution: The core of the Monte Carlo method is sampling, which 
can make the obtained random numbers conform to the constructed probability distribution model to 
obtain samples that satisfy a certain probability distribution. Commonly used Monte Carlo sampling 
methods include rejection sampling, inverse sampling, acceptance-rejection sampling, importance 
sampling, Markov Monte Carlo sampling, and Latin Hypercube sampling.

The calculation of the estimator: After obtaining the samples that conform to the probability distribution 
model, it is required to calculate the statistical parameters of each sample as the estimator of the overall 
samples to investigate the simulation results and obtain the solution to the problem.

The VSG could be achieved with the Monte Carlo method by treating each input variable as a random 
variable, constructing the probability model based on the statistical characteristics[31]. Then the virtual 
samples reflecting the spatial characteristics of the probability distribution could be generated by sampling. 
The advantage of Monte Carlo lies in the principle of only repeated sampling, leading to a simpler 
calculation method and procedure. For stochastic tasks, Monte Carlo methods excel in the ability to directly 
simulate solutions that closely approximate the real solution. However, Monte Carlo relies on random 
sampling, while computers can only generate pseudo-random numbers instead of true random numbers. 
Moreover, unlike traditional methods that can precisely estimate the error, Monte Carlo is based on a 
probabilistic model that can only guarantee the error meets the accuracy requirement with a certain 
probability. The sampling technique in Monte Carlo is completely random, indicating that the samples can 
be located anywhere within the range of the input data distribution. Samples are more likely to be drawn 
from regions of the distribution with a high probability of occurrence. However, if the number of samples is 
small, samples with low probability may not be drawn in sufficient numbers. As a result, the samples tend to 
cluster in areas with a high probability of occurrence and may not accurately represent the distribution of 
the original sample.

Particle swarm optimization
PSO originates from the study of predation behavior of birds to seek the optimal solution through 
cooperation and information sharing among individuals in the group[32]. It is assumed that a flock of birds is 
randomly searching for a piece of food in an area. All the birds do not know the exact location of the food, 
but they know how far the current location is from the food. The flocks let other birds know their location 
by passing the respective information to each other during the searching process to figure out whether they 
have found the optimal solution for the food location. At the same time, the information of the optimal 
solution could also be transmitted to the whole group. Eventually, the entire flock of birds can gather 
around the food to find the optimal solution. In PSO, every solution to the optimization problem is a bird in 
the search space, which could also be called a “particle”. All the particles have the respective fitness value 



Page 6 of Xu et al. J Mater Inf 2023;3:16 https://dx.doi.org/10.20517/jmi.2023.1830

determined by the optimized function and a velocity to determine the searching direction and distance. PSO 
is initialized as a group of random particles to iterate to find the optimal solution. In the iteration, each 
particle is characterized by its position and velocity, which use their individual historical optimal positions 
(pbest) and the group historical optimal positions of all other members (gbest) to find the searching direction 
and update their positions and velocities until the convergence conditions are met. The virtual sample 
generated by PSO is to obtain the optimal virtual sample by searching in the sample space. The particle 
swarm algorithm aims to minimize the error between the actual value and the expected value in the 
generation of virtual samples[33-34]. In order to reduce the error between the actual value and the predicted 
value, PSO searches for a better combination in the input data to ensure the validity of the virtual samples, 
where the process is transformed into a nonlinear constrained optimization problem:

Where f(x) is the objective function; xiL and xiU are the lower and upper limits of the search area of the input 
variable x; xi is the input variable; a is the number of input attribute variables; c is the number of constraints; 
Gk(x) is a nonlinear constraint. The solutions to the problem obtained by PSO are the optimal virtual 
samples. The advantages of PSO include its minimal number of adjustable parameters, the ability to 
generate virtual samples that closely approximate real values, and the absence of a requirement to know the 
distribution of samples in advance. However, there are also limitations to consider. Due to the limited 
number of adjustable parameters, the selection of parameter settings can greatly affect the model 
performance. Furthermore, the particle swarm tends to exhibit “convergence” as it approaches the optimal 
solution, causing the particle speeds to decrease and potentially resulting in a local optimal solution. 
Currently, PSO has been successfully applied to multi-objective optimization tasks, and this PSO-based 
VSG technique offers valuable insights for the multi-objective optimization of materials.

Gong et al. proposed the VSG technique of MC-PSO, which efficiently combines Monte Carlo and PSO 
algorithms[31]. Firstly, the ELM is combined with the original training set of small data to construct a model 
for prediction. Then the probability distribution of the original dataset is evaluated and sampled using the 
Monte Carlo method, with the sampled data used as the initial points for the PSO searching. The feature 
values of the virtual samples could be obtained by PSO searching. The process of PSO searching is 
terminated when the expected value of the fitness function or the maximum number of iterations is 
satisfied. The target variable of the virtual samples is calculated by the constructed ELM model. Finally, the 
virtual samples would be added back to the original dataset to train the new ELM model to evaluate the 
performance with the test set. MC-PSO has been successfully applied to the ethylene industry capacity 
prediction. Compared with the initial 30 samples, the root mean square error (RMSE) of the ELM model 
decreased from 0.0387 to 0.0220 after 60 virtual samples were generated and added to the dataset by 
MC-PSO.

Mega trend diffusion
The theoretical basis of the MTD technology is diffusion neural networks, which combine information 
diffusion with neural networks and regard data points as a data center with a fuzzy normal distribution in a 
certain interval[35]. Two new sample points are spread symmetrically on both sides of these data points using 
a symmetric spread function. Therefore, each sample can obtain two virtual samples after the diffusion to 
expand the data size of the original small data and fill the information gap caused by small data. Li et al. 
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took the integrity of the sample data distribution into consideration and proposed the method of MTD 
based on diffusion neural networks[36]. Different from diffusion neural networks, MTD considers the 
integrity of the data and generalizes the single-point diffusion to the overall diffusion, which could 
asymmetrically expand the attribute domain of the sample with the possibility of the occurrence of the 
sample reflected by the triangular membership function value[37]. The scheme of MTD is shown in Figure 2, 
and the steps to generate virtual samples with MTD technology are as follows:

In the dataset X = {x1, x2, …xn}, max and min represent the maximum and minimum values of a certain 
property of the sample; CL is the center point of the sample property to be calculated by the formula of 
(max+min)/2; NL and NU are the sample sizes smaller and larger than CL, respectively.

The lower bound LB and upper bound UB of the acceptable domain can be calculated by the following 
formulas:

Where SkewL and SkewU represent the left and right skewness of sample diffusion, respectively; Sx is the 
sample variance; n is the total number of samples.

Randomly draw nv virtual samples according to a uniform distribution.

Calculate the membership function value MF of the observation point xi to express the importance of the 
sample and the possibility of occurrence.

MTD is a VSG technique developed and proposed based on information diffusion. The value of the 
triangular membership function is used to represent the likelihood of occurrence of sample points. The 
advantage of MTD to generate virtual samples lies in considering the integrity of the samples, taking the 
whole samples as the object of diffusion, making full use of the distribution trend of the samples, and deeply 

S
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Figure 2. The scheme of MTD. MTD: mega trend diffusion.

exploring the useful information between the samples. However, the virtual samples generated by MTD are 
randomly drawn according to a uniform distribution, which may cause the obtained virtual samples to not 
conform to the distribution of the original samples. Due to the non-uniformity of realistic sampling, the 
values of NL and NU can be very different, resulting in unreasonable diffusion areas due to large left and 
right offsets, SkewL and SkewU. Zhu et al. proposed a novel multi-distribution MTD technique by adding a 
correction quantity factor Sp on the calculation of SkewL and SkewU to prevent excessive SkewL and SkewU 
due to the non-uniformity of sampling[38]. The improved SkewL and SkewU formulas are shown below:

Yu et al. combined the advantages of both the MTD technique and the Monte Carlo method to develop the 
VSG technique of MC-MTD for generating effective, high-quality virtual samples to expand the original 
sample set to improve the learning ability and generalization ability of the model[39]. First, the MTD is used 
to estimate the acceptable range of each dimensional attribute of the sample, calculate the relevant data, and 
model the probability distribution of the sample according to the triangular affiliation function. Then, the 
Monte Carlo method is used for sampling to generate virtual samples. MC-MTD has been successfully 
applied to the multilayer ceramic capacitor (MLCC) dataset and the PTA dataset. The mean absolute 
percentage error of ten independent tests was reduced from 5.3% to 3.7% after adding 100 virtual samples 
using MC-MTD to the 25 initial samples of MLCC. The mean absolute percentage error of ten independent 
tests was reduced from 1.25% to 0.94% after adding 250 virtual samples using MC-MTD to the 25 initial 
samples of PTA.

Gaussian mixture model
As shown in Figure 3, a GMM is a probabilistic model that assumes that all data points are generated from a 
mixture of a finite number of Gaussian distributions[40,41]. If n observations X = {X1, …, Xn} are generated by 
a mixture distribution P, where each vector Xi is p-dimensional, and the distribution P is composed of G 
components. Then the maximum mixture likelihood function of the distribution is shown in the formula:
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Where fk(xi|θk) represents that Xi is the k-th density function; θk is the corresponding parameter; πk is the 
weight parameter. If fk(xi|θk) is a multivariate normal distribution, then P is the Gaussian mixture 
distribution, where θk consists of the mean value µk and the covariance matrix ∑k. The density function 
fk(xi|θk is shown in the formula:

The Gaussian mixture distribution P can be described by the probability density function represented by the 
weighted average of G Gaussian density functions, and the specific description is shown in the following 
formula:

A GMM is a density estimation algorithm that can be used to construct a probability model for small data. 
After calculating the parameters with the EM algorithm, the virtual samples that meet expectations could be 
generated through the model of the probability density distribution. Virtual samples generated by GMMs 
have been used for materials process optimization and industrial optimization. While GMM-based VSG 
techniques have shown success in material design and discovery, there is still potential for improvement in 
the GMM approach. One limitation is the potential presence of outliers in the virtual samples generated by 
GMM that may not accurately represent actual materials. Additionally, materials data often exhibit a range 
of eigenvalues, making it challenging to ensure that the generated data align with the characteristics of real 
materials. Currently, the analysis of anomalies in GMM-generated virtual samples relies heavily on 
empirical domain knowledge. However, in the future, objective analysis tools can be developed to better 
identify and analyze anomalies in these virtual samples.

In 2022, Shen et al. used a GMM combined with XGBoost to construct a machine learning model for 
predicting the wear resistance of rubber materials through mechanical properties[40]. The authors collected 
24 rubber Acrolon abrasion test data as target property and corresponding six mechanical properties as 
descriptors from the publications and applied the algorithms of XGBoost, LASSO, support vector regression 
(SVR), and RF to construct the model. The results show that after generating 295 virtual samples with a 
GMM, the model constructed by XGBoost has the best prediction accuracy, with the R2 of the test set 
reaching 0.95, which has been improved by 41% compared with the prediction accuracy before the original 
24 samples. Our team also successfully designed the yttria-stabilized zirconia (YSZ) thermal barrier coating 
materials with high bonding strength using GMMs combined with machine learning[42]. First, eight 
experimental bonding strengths of YSZ thermal barrier coatings under four different atmospheric plasma 
spraying (APS) parameters were collected as the target property, and the corresponding APS parameters 
were taken as descriptors. Then, after expanding the data size from 8 to 400 with the GMM-VSG, the 
models were constructed and compared with various algorithms, including the ordinary least square (OLS), 
linear regression (LR), RF regression (RFR), decision tree regression (DTR), partial least squares (PLS), 
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Figure 3. Flowchart of the proposed GMM-VSG. Reproduced with permission from ref.[40] Copyright 2022, Elsevier. GMM: Gaussian 
mixture model; VSG: virtual sample generation.

multiple LR (MLR), artificial neural network (ANN), and SVR with different kernel functions. The R and 
RMSE of leaving-one-out cross-validation (LOOCV) before and after data expansion by GMM are shown 
in Figure 4A and B. The results indicate that the SVR with polynomial kernel has the highest accuracy after 
a GMM generates virtual samples, and the R of LOOCV is as high as 0.989, while the R of LOOCV of the 
optimal ANN constructed by the original eight datasets could only reach 0.758. After sensitivity analysis and 
virtual sample analysis, we broke through the limit of the maximum bonding strength of 46.6 MPa in the 
original eight data and designed a sample with a predicted bonding strength of 53.137 MPa. After 
experimental validation, the experimental value of bonding strength has reached up to 55.5 MPa, and the 
absolute error with the model predicted value is only 2.363 MPa.

Random forest
RF primarily learns the distribution and features of samples by constructing multiple decision trees to 
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Figure 4. Experimental bonding strength vs. predicted bonding strength of LOOCV with corresponding R and RMSE based on (A) original 
data and (B) after data expansion by a GMM. Reproduced with permission from ref[42]. Copyright 2022, American Chemical Society. 
GMM: Gaussian mixture model. LOOCV: leaving-one-out cross-validation.

generate a new set of virtual samples[43,44]. In RF, multiple decision trees are combined for prediction and 
classification, with each decision tree constructed based on different random samples and features. Virtual 
samples are generated through the Bagging process in RF, where different random samples and feature sets 
are used to train models in each decision tree, resulting in the generation of diverse virtual samples[45]. The 
basic process of RF includes: (1) Using the RF model to train the original data; (2) Generating a specified 
number of virtual samples, where the target variable of each virtual sample is predicted by the RF model, 
and the feature is obtained by random extraction from the original data. The RF model is used to predict the 
target variable of virtual samples as it can effectively deal with high-dimensional features and nonlinear 
relationships. Generating features by random sampling of the original data can increase the diversity of 
virtual samples and improve the generalization ability of the model. However, the RF-based VSG may lead 
to a concentration of generated samples and a lack of diversity. More randomness can be introduced when 
generating virtual samples, such as introducing noise, random perturbation, or other data enhancement 
techniques to increase the diversity of the generated samples.

Generative adversarial networks
The VSG technology based on GANs is a deep learning technique that generates virtual samples similar to 
the original data through adversarial training[46]. A GAN comprises two neural networks: a generator and a 
discriminator. The generator generates virtual samples from random noise vectors, while the discriminator 
distinguishes between real and virtual data by detecting differences between them[46,47]. During the training 
process, the generator network continuously generates more realistic virtual samples, and the discriminator 
network continuously identifies differences between real and virtual data. This competitive process 
gradually leads to the generation of more realistic virtual samples by the generator network and improved 
accuracy of the discriminator network. Once both networks are optimally trained, the generator network 
can produce high-quality and diverse virtual samples, while the discriminator network can accurately 
differentiate real and virtual data. GAN technology has been widely applied in various fields, such as image, 
video, and audio generation[48,49]. In cases of insufficient data, GAN-based VSG technology can expand the 
dataset and enhance the performance and generalization ability of the model. However, the training process 
of GANs may not be stable enough, and the balance between the generator and discriminator is difficult to 
achieve, resulting in the generator generating low-quality samples or the discriminator not being able to 
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effectively distinguish between real and virtual samples. In order to improve the stability of training and the
quality of generated virtual samples, different generator and discriminator architectures can be applied, such
as deep convolutional generative adversarial networks (DCGAN), Wasserstein generative adversarial
networks (WGAN), and conditional generative adversarial networks (CGAN), 

Zhu et al. proposed a CGAN-based VSG method (CGAN-VSG) to identify sparse regions of the data and
generate the output of new virtual samples[50]. First, the local anomaly factor algorithm is used to identify
discrete points in the dataset, which are also the potentially sparse regions. Then, the k-means++ is used to
collect the discrete points to obtain the clustering centers[51]. Intermediate interpolation is performed
between the centroids to generate target values for the virtual samples. The eigenvalues of the virtual
samples are then generated using a CGAN. The datasets of two-dimensional criterion functions and three-
dimensional (3D) criterion functions are used to verify the validity of the CGAN-VSG method. In addition,
CGAN-VSG was used to predict the melt index (MI) for practical industrial applications in the production
of high-density polyethylene (HDPE). After generating 120 virtual samples using five methods, including

networks. The comparison shows that the RMSE of the model trained by CGAN-VSG is the lowest at
0.4995, while the RMSE of the model without the VSG technique is as high as 0.5630.

SEARCHING ALGORITHMS FOR MATERIALS DISCOVERY
Searching algorithms for materials discovery essentially construct a virtual materials space combined with 
machine learning models to search for target materials. The process of constructing the virtual materials is 
the process of VSG. After encoding the materials into the combinations of segments or elements, a lot of 
virtual samples could be generated artificially. After obtaining the descriptors of the virtual samples, the 
target materials could be searched out by machine learning models. Commonly used searching algorithms 
for material discovery are presented, including particle swarm algorithms, efficient global optimization 
(EGO), and proactive searching progress.

Particle swarm optimization
The PSO algorithm is a population-based optimization algorithm to be used not only for generating virtual 
samples but also for materials searching[52-54]. The basic idea of PSO is to transform the optimization 
problem into a searching problem in a multidimensional space, where each materials sample is treated as a 
particle and the properties or structures to be searched are regarded as the objective function. The algorithm 
updates the position and velocity of each particle continuously to search for the optimal solution. The 
choice of the objective function should take into account the practical application requirements of the 
materials.

In the PSO algorithm, the particle swarm is composed of multiple particles, where each particle represents a 
material sample. Each particle has an initial randomly generated position vector and velocity vector, where 
the position represents the structural parameters of the materials and the velocity represents the change of 
the position. Based on the current position and velocity, the particle position is updated with the value of 
the objective function calculated using machine learning models. The fitness of each particle is then 
obtained based on the objective function, where higher fitness represents a performance indicator closer to 
the desired materials properties. The PSO algorithm is then used to update the position and velocity of each 
particle, taking into account the historical best solution of each particle and the entire particle swarm. The 
algorithm continuously calculates fitness to update the position and velocity, ultimately outputting the 
properties of the materials corresponding to the optimal solution in the particle swarm, which is the desired 
virtual material.

etc.

Bootstrap, MTD, etc., the MI prediction model for HDPE was developed by combining back-propagation 
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In materials searching, the PSO algorithm can be used to search for the optimal materials structure and 
virtual materials with target properties by continuously adjusting the particle position and velocity. 
Additionally, a multi-objective PSO algorithm can be used to transform multiple objective function 
optimization problems into a multidimensional space, thus searching for the structure of the optimal 
materials more comprehensively. With the PSO algorithm, we can quickly and efficiently search for the 
target structure and property of the virtual samples, providing more reliable theoretical support for 
materials design. Zheng et al. used the PSO algorithm to optimize the reflectivity band of absorptive 
materials and compared the bandwidth under different reflectivity conditions between the PSO algorithm 
and the genetic algorithm (GA)[55]. The study mainly aimed to optimize the bandwidth of materials with 
reflectivity less than -15 dB in the range of 2-18 GHz. It was found that the PSO algorithm had good 
frequency bandwidth under the conditions of reflectivity less than -10 dB and -20 dB, and corresponding 
dielectric constants, isolation layer thicknesses, and impedance values could be obtained. After three 
consecutive optimization searches, the bandwidths of two-layer absorptive materials with reflectivity less 
than -15 dB were compared. It was found that the PSO algorithm had a bandwidth of about 2 GHz larger 
than the GA and had better stability. Under the condition of reflectivity less than -20 dB, the bandwidths of 
two optimization algorithms were compared. The results showed that the bandwidth of the PSO algorithm 
was 3 GHz larger than that of the GA, and wider bandwidths could be obtained. Finally, under the 
constraint condition that the reflectivity of three-layer absorptive materials was less than -15 dB, the 
bandwidths of two optimization algorithms were compared to reveal that the PSO algorithm had a wider 
bandwidth and the sum of reflectivity was 2 dB less than that of GA. Overall, using the PSO algorithm to 
optimize the reflectivity band of absorptive materials has a good optimization effect.

Efficient global optimization
The EGO algorithm is a Bayesian optimization method that uses a Kriging surrogate model to predict the 
unknown objective function values and select the best parameter combination to optimize the objective 
function[56,57]. The Kriging surrogate model can be used to map the relationship between material properties 
and parameters[58]. By fitting the given data to the Kriging surrogate model, the EGO algorithm can predict 
the material properties of unknown virtual samples. In each iteration, the EGO algorithm would select the 
optimal parameter combination and generates new sample points near the combination to update the 
surrogate model. This strategy can help the algorithm converge quickly to the global optimal solution. The 
EGO algorithm has wide application potential in materials design and material searching fields[59]. By 
modeling and optimizing the objective function, the EGO algorithm can quickly search for materials with 
excellent performance with fewer computational resources.

After the target properties and features of material design are determined, the EGO algorithm initializes a 
search space for materials composition and structure based on these features. Next, sampling points would 
be selected in the search space of virtual samples with their corresponding objective function values 
calculated by the surrogate model. Then, based on the objective function values of the sampling points, a 
surrogate model is fit, and the next sampling point is selected. Common selection strategies include 
confidence intervals and the expected improvement (EI) strategy. Through iterations of selecting sample 
points and fitting the Kriging surrogate model, the algorithm would keep operating until it reaches a preset 
stopping criterion, such as the maximum number of sampling points or convergence of the objective 
function value. Finally, by analyzing the relationship between the objective function values of the sampling 
points and the material parameters, the EGO algorithm finds the optimal material parameter combination 
and carries out material preparation and property testing validation.
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The EGO algorithm uses the Kriging surrogate model to fit and predict the objective function, enabling it to 
quickly search for materials with excellent performance with fewer computational resources, and has the 
advantages of high efficiency and high accuracy. It can also improve search efficiency by introducing 
multiple surrogate models and has good scalability. However, if the sample dimension in the search space is 
too high, the search efficiency of the EGO algorithm may be limited, and the optimization results of the 
EGO algorithm may be affected by the initial sampling points.

In addition to being used for target materials searching, the EGO algorithm can also be combined with an 
active learning framework. In the active learning process, the core step is to sample important samples from 
the unlabeled sample pool, and the EGO algorithm can accomplish this task. Zhao et al. combined the EGO 
algorithm as a representative sampling strategy with an active learning strategy to develop an effective 
machine learning model for predicting the hardness of 6061-aluminum alloy elements[60]. First, they used a 
full-process high-throughput alloy preparation and characterization system to prepare 32 different 
composition ratios of 6061-aluminum alloys and characterized their hardness. The initial 309 descriptors 
were constructed by the composition of elements and the knowledge of the alloy field. After feature 
selection, the remaining five important features were used for modeling. After comparing multiple 
algorithms, the SVR algorithm with a radial basis kernel function was used to construct the aluminum alloy 
hardness prediction model. Artificial experience sampling and Bayesian optimization sampling were used to 
select samples from candidate materials for labeling and subsequent experiments. The Bayesian sampling 
strategy used four methods, the EGO algorithm, the knowledge gradient (KG) algorithm, the maximum 
hardness point method, and the maximum error point method, with four data points for each method and a 
total of 16 experimental alloy compositions were designed for the next round of experiments. Before 
reaching the convergence condition, the experimental data was returned to the initial dataset for further 
feature selection and model construction. After three iterations, the results indicated that the adaptive 
sampling strategy based on Bayesian optimization can more effectively guide experiments than artificial 
experience sampling, with a 63.03% decrease in an average absolute error (MAE) and a 53.85% decrease in 
RMSE. The RMSE was 4.49 HV, which was close to the experimental error of 4.05 HV for the test samples. 
Xue et al. collected 22 Ni-Ti-based shape memory alloys and used atomic parameters as descriptors and 
thermal hysteresis as the target variable to establish a hysteresis prediction model using the SVR 
algorithm[61]. The EGO algorithm was used to search for four samples with low hysteresis from a search 
space of 800,000 samples, which were then synthesized and characterized through experiments. After 
experimental validation, the four samples were put back into the training set for iterative modeling, 
searching, and experimentation. After nine iterations, a total of 36 samples were searched, of which 14 had 
lower hysteresis than any of the 22 samples in the original dataset. The Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 sample had 
the lowest hysteresis, which was only 1.84K.

Proactive searching progress
The proactive searching progress (PSP) is a materials search method developed based on the Sequential 
Model-Based Optimization (SMBO) method[62,63]. Its core idea is to treat the materials composition to be 
optimized as parameters and use a lower-cost proxy model to learn the relationship between the existing 
parameters and properties, and quickly search for the approximate trend of the optimized composition in 
the chemical space. The PSP method uses a pre-constructed high-precision machine learning model to 
predict the precise performance of the optimized composition, and after repeated iterations, it can gradually 
approach the optimized composition o* with the desired performance[64].

Assuming that a materials composition space is constructed as {γi | γi = (γi1, γi2, …γα)T, i, d ∈ R}, where i and 
d are positive integers, T represents transpose, and γi is any materials composition represented by a vector. 
γi1, γi2, … γid are the specific components of the materials composition γi. Based on this materials composition 
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space {γi | i ∈ R}, the pre-constructed high-precision machine learning model can be used to predict the
performance values {oi | i ∈ R} of each composition in this space, forming a set of compositions and
performance {(γi, oi) | i ∈ R}. In this process, the pre-constructed high-precision machine learning model
actually plays the role of a function mapping between the composition and the performance, that is, o = f(γ),
which can be used to describe the distribution of materials performance samples in the global materials
composition space.

Combining the idea of SMBO in machine learning model parameter optimization, a proxy model can be
constructed to search for optimized compositions with desired properties. In order to shift the materials
composition exploration approach from traversal to search, the function mapping relationship between the
composition and the performance o' = g(γ) constructed by the proxy model requires continuity and
differentiability so that its derivative g'(γ) can be used to determine the direction of the predicted
performance o', in order to meet the necessary conditions for search. Since the GPR algorithm has the
characteristics of a simple algorithm, parameter-free modeling, and high accuracy, it can be used to
construct the proxy model.

The process flowchart for the PSP method is shown in Figure 5. In the first step, several materials
components {γi | i ≥ 2} are randomly generated from the existing performance distribution in the materials
composition space. The number of materials components should be greater than or equal to 2, and their
performance is predicted using a high-precision machine learning model to form the dataset
{(γi EEi) | i ∈ R} for fitting the surrogate model. In the second step, a GPR model is built based on the
existing dataset {(γi, EEi) | i ∈ R}. In the third step, the materials composition that minimizes EEGP is found
in the GPR model and predicted using a high-precision machine learning model. If the prediction error is
less than a pre-defined threshold, the sample is outputted. Otherwise, it is added to the existing dataset
{(γi, EEi) | i ∈ R}, and a new GPR model is constructed for the next round of search.

Lu et al. of our team used integrated machine learning techniques and the PSP method to predict the band
gaps of hybrid organic-inorganic perovskites (HOIPs)[64]. The author collected 1,201 samples from
publications with 129 atomic descriptors, including atomic radius, electronegativity, tolerance factor, tao
factor, and octahedral factor. Then, various ML algorithms were used to construct models. The top 4
models (including CatBoost, XGBoost, LightGBM, and Gradient Boosting Machine) were selected and
integrated using weighted voting regression to achieve better performance. The weighted voting regressor
(WVR) model achieved R2 and RMSE of 0.95 and 0.079 in LOOCV and 0.91 and 0.106 in the test set. Based
on the ions collected from the formulas in the dataset, the author constructed a vast material space,
including over 8.20*1018 possible combinations, to explore new HOIP structures with suitable band gaps. As
shown in Figure 5, the PSP method effectively searched for material combinations with expected band gap
values from the generalized chemical space. As a result of the PSP method, 20,242, 733,848, 764,883, and
746,190 lead-free candidates were designed for HOIPs with band gaps of 1.20, 1.34, 1.70, and 1.75 eV,
respectively. To validate the PSP searching results and the prediction ability of the WVR model, the author
synthesized new HOIP compositions MASnxGe1-xI3 (x = 0.85, 0.74, 0.66) and conducted experimental
validation, with an average error between the experiment and prediction of only 0.07 eV. Although the PSP
method enables rapid exploration of a vast space of material components to identify target materials with
desirable properties, the SMBO search method employed in PSP can be substituted with alternative search
methods. By utilizing different search techniques, not only can diverse search requirements be fulfilled, but
also the search efficiency can be further enhanced. Some commonly employed search methods include
gradient descent and Newton-like methods.
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Figure 5. General principle of the PSP method applied for searching HOIPs with targeted band gaps. Reproduced with permission from 
ref[64]. Copyright 2022, American Chemical Society. HOIPs: Hybrid organic-inorganic perovskites; PSP: proactive searching progress; 
WVR: weighted voting regressor.

MATERIALS INVERSE DESIGN ALGORITHMS
Machine learning models for the prediction of material properties mainly focus on the mapping from the 
features to the properties of the materials. In contrast, the inverse design of materials requires a mapping 
from properties to features, which aims to generate the virtual samples by the requirement of the target 
properties and the machine learning model. Different from searching algorithms for materials discovery, 
inverse design does not require the design of a large number of virtual samples for searching. The inverse 
design is oriented to the target property of the materials to generate virtual samples that satisfy the target 
properties directly through the principle of algorithms. Commonly used algorithms for materials inverse 
design include GA, Bayesian optimization, and pattern recognition inverse projection.

Genetic algorithm
GA is a computational method that simulates the process of biological evolution, following the principle of 
natural selection described in Darwin’s theory of evolution[65,66]. By simulating basic genetic operations, GA 
can seek optimal or near-optimal solutions to problems. Material inverse design based on GA uses 
computer simulation and optimization to design virtual materials, with a focus on the materials encoding 
and evolutionary mutation[67,68]. In GA, material structures are encoded as a string, such as a binary string or 
a string of characters. For each structural parameter of the materials, such as lattice constants or atomic 
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positions, a binary digit or character is used for encoding. Materials encoding is more focused on digitizing 
and compiling the composition and structural information of materials, which is different from material 
descriptors. For example, organic structures can be encoded using a simplified molecular input line entry 
system (SMILES)[69]. Encoding molecules in the SMILES format can effectively save storage space and has 
been widely used in chemical databases and data-driven molecular design. The evolution process of GA 
mainly includes selection, mutation, and crossover to generate virtual samples. Through the evaluation and 
screening of newly generated virtual samples using fitness functions, the virtual samples with high fitness 
could be left behind and put into the next generation for evolution. The materials inverse design strategy 
based on GA includes the following steps:

Design of initial population: The initial population is the starting point in the materials inverse design 
process. It can be generated by random generation or by mutation and recombination based on existing 
materials.

Definition of fitness function: The fitness function is the criterion for evaluating the quality of each 
individual. Depending on the characteristics of the materials, goals, and constraints of the inverse design, a 
fitness function can be constructed. The fitness function is usually the error between the expectation and 
prediction via the machine learning model.

Execution of genetic operations: Selection, crossover, and mutation are the three basic operations of GAs. 
These operations can produce new individuals, and selection is performed based on the fitness function in 
each iteration to evolve more suitable individuals.

Setting the end condition: The inverse design process can be iterated multiple times until the set end 
condition is reached, such as reaching the maximum number of iterations or the fitness reaching a certain 
threshold. Materials structures that meet the fitness function are decompiled and outputted.

The GA has been successful in the applications of materials inverse design. For example, the highly efficient 
mechanical performance of minimal surface structures has drawn widespread attention from scholars due 
to their lightweight and high strength. However, the existing research has mainly focused on the mechanical 
properties of different minimal surface configurations. Therefore, the inverse design of surface-like 
metamaterial configurations that meet the requirements based on mechanical properties is still a research 
gap. Wang et al. proposed a GA-based algorithm that combines efficient machine learning methods and 
globally optimal solutions to achieve the inverse design of mechanical metamaterials based on load 
curves[70]. To generate a dataset for constructing the machine learning model, a numerical model with 
different mechanical metamaterial configurations was constructed through the finite element method 
(FEM) to predict the load curve of the shell-based mechanical metamaterials (SMMs). A total of 7,000 SMM 
configurations were generated, with 5,500 used for the training set and 1,500 used for the test set. ANNs 
were used to map the relationship between the load curve and the geometric configuration to achieve 
forward prediction of the load curve through geometric configuration. The GA was used to search for the 
SMM configuration that most closely matched the target load curve. The flowchart of the GA-based 
algorithm for the inverse design of SMMs is shown in Figure 6. The individuals and the chromosomes in a 
GA are SMM configurations and geometric parameters, respectively. A total of 10,000 random samples were 
generated as the initial population. 10,000 and 1,000 samples were generated through crossover and 
mutation, respectively. Finally, 21,000 samples were selected, with 10,000 samples selected as the next 
population based on the load curve calculated by the previously trained ANN model. The results showed 
that regardless of considering strain hardening or softening, SMM configurations that closely match the 
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Figure 6. The flowchart of the genetic algorithm for the inverse design of SMM. Reproduced with permission from ref[70]. Copyright 
2022, Elsevier. SMM: Shell-based mechanical metamaterial.

target load curve can always be obtained through GA inverse design. To explore the relationship between 
the load curve and the deformation mode, the authors designed several SMM configurations based on 
different types of load curves and then simulated the deformation mode under 4*4*4 unit compression 
using the FEM. The results showed that single cells with a “hardening” load curve tend to undergo overall 
deformation during the macroscopic overall structural deformation process, while those with a “softening” 
load curve tend to undergo layer-by-layer deformation during the macroscopic overall deformation mode. 
This work has filled the gap in the inverse design of SMMs and can be used to design SMM materials with 
specific load curves. It also contributes to the structural design concept that combines machine learning and 
traditional optimization methods.

Maurizi et al. combined machine learning methods with GAs to construct a composite model for the 
inverse design of non-uniformly assembled lattice materials, with flexural strength as the target variable[71]. 
Deep neural networks (DNNs) were used to construct the model to predict the yield strength to optimize 
the desired lattice architecture. Then, the GA was used to combine simple and diverse basic building blocks 
into various architectural itineraries to design spaces with DNNs to explore the design space to find the 
optimal architecture. For the GA-based inverse design, the fitness function is set to consider the average 
flexural strength and flexural isotropy in different load directions. Given the random nature of the GA 
algorithm, 100 iterations of optimization rounds were conducted until 12 different candidate designs were 
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obtained. The best performing six design candidates were selected after ranking the 12 candidates based on 
their fitness values. Three-dimensional printing was used to obtain samples of the designed lattice 
architectures for mechanical testing, and the test results were consistent with the simulation results, with 
flexural properties 30%-90% and 10%-30% higher than those of conventional reinforced lattice-like lattices 
and bionic lattices, respectively. The composite model proposed in this work for the inverse design of 
material structures can autonomously select basic components to construct more complex primitives to 
arrange into periodic structures, fully exploiting the periodic and local properties. Based on this composite 
model, truss grids with better buckling resistance than conventional reinforced lattices or bionic sponge 
constructions are obtained.

Nigam et al. proposed JANUS, a GA based on the SELFIES representation of molecules[72]. JANUS consists 
of iterations triggered by random structures or provided molecules. In each iteration, two fixed-size 
molecular populations are maintained. Members of each population compete with each other to enter the 
next generation. In a mutation and crossover design, JANUS relies on the STONED algorithm for the 
efficient generation of molecules. In terms of selection pressure, JANUS trains a DNN model for each 
generation to accurately predict the fitness function and uses a classifier to classify high-fitness samples 
from low-fitness samples. The trained DNN model evaluates the generated offspring samples and adds the 
highest fitness samples to the population. Inspired by parallel tempering, JANUS maintains two populations 
that use different genetic manipulations. One population performs a local search of the chemical space, 
using molecular similarity as a selection pressure. The other performs a global exploration using DNNs as 
selection pressure. JANUS has been successfully applied to maximize the performance of penalty logarithms 
for octanol-water partition coefficient scoring, protein inhibitor design, and docking scores of protein 
targets in molecular docking. The successful application of JANUS in the above molecular design cases also 
demonstrates the great potential in materials inverse design.

Bayesian optimization
Bayesian optimization is an optimization method based on the Bayes theorem. By combining prior 
knowledge and new observations and continuously updating the posterior distribution, it finds the global 
optimal or approximate optimal solution[73]. Compared to traditional optimization algorithms such as 
gradient descent, the Bayesian optimization algorithm has better performance in finding global optimal or 
approximate optimal solutions, especially in high-dimensional, noisy, or non-differentiable situations[74]. 
Therefore, it has been widely used in many application fields, such as materials inverse design and 
hyperparameter optimization.

In the field of materials inverse design, Bayesian optimization follows the following Bayesian theorem[75]:

Y, U, and S represent material properties, target material properties, and material structure encoding, 
respectively. S can also be encoded as a SMILE file. p(Y ∈ U | S) represents the probability of target 
properties given a known structure, which can be obtained by training a machine learning model with 
structure-property relationship data. The prior distribution p(S) is the probability of constructing a 
structure, which is used to reduce the occurrence of invalid or unstable chemical structures by setting zero 
or lower probability mass for them. According to the above Bayesian law, as long as p(Y ∈ U | S) and p(S) 
are obtained, the probability of structure appearance under the target property p(S | Y ∈ U) can be 
obtained, thereby achieving the inverse design of the materials.
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The core of Bayesian optimization can be divided into a generator and an evaluator. The generator refers to 
the posterior distribution p(S) generated by the algorithm, where p(S) is the most critical factor that affects 
the structural features of the generated samples, and its calculation formula is as follows:

Where si represents the ith block that forms the materials. The probability of the ith letter appearing depends 
on the previous si-1,…s1. As mentioned above, the probability of unstable chemical structures can be 
effectively reduced by observing the records of subsequent characters given a given substring. The generator 
could be constructed with the extended n-gram model consisting of a table to record the probability of 
observing a subsequent character given a substring and a function to modify a given SMILES string based 
on the stored n-gram probability table. The evaluator refers to the likelihood function that evaluates the 
fitting degree of S with the attributes, which is the process of obtaining p(Y ∈ U | S) by constructing 
machine learning models, defined as follows:

The term φ(S) refers to the material descriptor. The property of the ith sample Yi is a function of the 
descriptor φ(S). The σi (φ(S)) and μi(φ(S)) are the mean value and standard deviation of property Yi, 
respectively, predicted by the forward machine learning model. With known p(S) and p(Y ∈ U | S), the 
posterior model p(S | Y ∈ U) can be obtained, thus enabling the design of material structures with ideal 
performance.

As shown in Figure 7, Wu et al. developed a Bayesian-based inverse molecular design algorithm called 
iQSPR-X, which has been integrated into the materials informatics platform XenonPy, and successfully used 
to design polymers with specific band gaps and dielectric constants[75]. First, the authors collected 854 
polymer structures composed of nine types of atoms from the Polymer Genome (PG) database and used the 
hybrid Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation functional to calculate their band gaps and 
the density functional perturbation theory (DFPT) to calculate the sum of electronic and ionic dielectric 
constants. Two strategies were considered for training the generator: one was to use the 854 samples 
collected from PG as the training set, and the other was to add samples collected from PubChem to the PG 
samples as the training set. Since polymers containing F atoms generally have high band gaps and dielectric 
constants, 2,485 samples were collected from PubChem, with at least six F atoms in one molecule. The 
results showed that the generator trained on PubChem data would contain more structures with F 
fragments during the molecule modification process. In the training of the estimator, a well-trained neural 
network was first used to evaluate ten descriptors. The results showed that the atomic pair fingerprint with 
MACCS keys exhibited high performance in predicting band gaps and dielectric constants and was, 
therefore, selected for Bayesian molecular design. Gradient boosting, RF, and Bayesian LR were used to 
establish prediction models for band gaps and dielectric constants by combining the optimal descriptors 
selected by the estimator. The results showed that the gradient boosting model had the best overall 
performance, with MAEs of 0.320 and 0.142 for band gaps and dielectric constants, respectively, in 5-fold 
cross-validation, and was, therefore, selected as the optimal algorithm for inverse design. The goal of this 
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Figure 7. Computational workflow in iQSPR-X. Reproduced with permission from ref[75]. Copyright 2020, John Wiley and Sons.

work was to design polymers that simultaneously satisfy high band gaps and high dielectric constants, and 
three different strategies were used for inverse design. Strategy (1) trained the generator using the samples 
in PG and randomly selected 100 samples as initial samples for inverse design. Strategy (2) trained the 
generator using the samples in PG and selected 100 initial samples with low band gaps and dielectric 
constants (ε < 4 or Eg < 4.5 eV) for inverse design. Strategy (3) trained the generator using the samples from 
PG and PubChem and randomly selected 100 samples from the 854 samples as initial samples for inverse 
design. The results showed that different strategies led to the design of different polymers. Strategy (2) had 
difficulty converging to candidate molecules similar to those of strategy (1) and showed difficulties in 
capturing trends in complex ring structures. Strategy (3) showed a clear trend of attaching F fragments to 
the chemical structure.

This team also used transfer learning and Bayesian molecular design algorithms to develop a highly accurate 
prediction model for polymer thermal conductivity and screened thousands of polymer materials with high 
thermal conductivity[76]. After screening and experimental validation, three candidate samples successfully 
passed the experimental evaluation. The authors collected a large number of polymer samples from the 
PolyInfo and QM9 databases, including melting point Tm, glass transition temperature Tg, density ρ, and 
heat capacity Cp and Cv data, for pre-training model construction. After model comparison, the pre-training 
model constructed with heat capacity Cv performed the highest prediction accuracy. Next, the parameters of 
the pre-training model were optimized using 28 samples with thermal conductivity data to be transferred to 
the prediction of thermal conductivity. The results showed that the transferred model had an MAE of 
0.0204W (m·k)-1, which was 40% lower than the direct training model using 28 data points with RF. 
Combining with the Bayesian algorithm to design a large number of polymers repeating unit structures, the 
screening was based on whether the repeating unit contained a liquid crystal structure, experimental 
feasibility evaluation, glass transition temperature, and the predicted thermal conductivity from the 
transferred model. Finally, 24 molecular structures were selected, three of which were successfully validated 
through synthesis and characterization experiments. The experimental results showed that the thermal 
conductivity of the polymers screened with the assistance of transfer learning and Bayesian molecular 
design was higher than that of polymer materials published in previous papers. This research also confirms 
the successful application of transfer learning and Bayesian molecular design in the design and discovery of 
polymer materials.
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Pattern recognition inverse projection
Pattern recognition is a technique used to analyze and process data or signals to identify or classify different 
patterns or features. With the applications of computer technology, pattern recognition can extend features 
to a mathematical model of the distribution range of various samples in multidimensional space. Common 
pattern recognition methods include principal component analysis (PCA) and linear discriminant analysis 
(LDA).

PCA is a widely used linear dimensionality reduction technique that maps high-dimensional datasets into 
low-dimensional space while preserving the maximum variance information of the original data[77]. The 
basic idea of PCA is to project the original dataset onto a new coordinate system through a linear 
transformation so that the projected data has the maximum variance to extract the most representative 
principal components. LDA is a classic pattern recognition method used to divide datasets into different 
categories and perform classification[78]. The basic idea is to reduce the dimensionality of the data while 
maximizing the differences between different categories and minimizing the differences within the same 
category, thereby achieving effective data classification.

Pattern recognition techniques represented by PCA could compute two principal components linearly 
combined by descriptors, projecting the material samples onto a plane composed of different principal 
components for visualization to draw an optimization area according to the projection of samples and 
obtain the boundary equation of the optimization area. Sampling is performed in the optimization area, and 
the descriptor values could be calculated according to the PCA equation and deduced to obtain the chemical 
formula of the materials.

Pattern recognition inverse projection tends to be used in conjunction with machine learning to achieve 
performance breakthroughs in alloy materials. Yang et al. proposed a machine learning-based alloy design 
system that integrates database construction, model construction, composition optimization, and 
experimental validation to guide the rational design of high-entropy alloys with high hardness[79]. Using 
pattern recognition inverse projection technology, they successfully designed samples with hardness beyond 
the original dataset and verified them with experiments. First, they collected 370 samples of high-entropy 
alloy compositions and Vickers hardness information from the publications. After screening using the 
Pearson correlation coefficient, RF feature importance ranking, forward feature selection, and best subset 
method, a high-entropy alloy hardness prediction model was constructed using five important descriptors 
combined with SVR. The R values of the independent test and LOOCV both reached 0.94. Based on the 
model, the pattern recognition inverse projection method was adopted to explore the optimized 
composition of high-hardness high-entropy alloys, as shown in Figure 8A. The inverse projection method 
can obtain the features of the design samples in the original space, thus obtaining the corresponding 
compositions of the two designed samples, which are Co18Cr7Fe35Ni5V35 and Al20Cr5Cu15Fe15Ni5Ti10V30. Using 
the constructed SVR model to predict the hardness of the design samples, the predicted results were 1,002 
HV and 1,028 HV, respectively. The predicted hardness of both optimized samples exceeded the hardness of 
the highest alloy in the original dataset. These optimized samples have the potential to be high-hardness 
high-entropy alloy compositions. They synthesized these high-entropy alloy samples using vacuum arc 
melting to measure the experimental hardness. The results showed that the Co18Cr7Fe35Ni5V35 alloy has 
ultra-high Vickers hardness, reaching 1,148 HV, which is 24.8% higher than the highest hardness alloy in 
the original dataset.
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Figure 8. Materials pattern recognition of different samples by (A) Fisher and (B) PCA. Reproduced with permission from ref[79]. 
Copyright 2021, Elsevier. Reproduced with permission from ref[80]. Copyright 2021, Chinese Materials Research Society. PCA: principal 
component analysis.

Gold and its alloys, especially ternary gold alloys, have been widely used in the field of electrical contact 
materials. Due to the complexity of the composition and proportion of ternary gold alloys, designing 
ternary gold alloy electrical contact materials with low electrical resistance is still a challenge. Wang et al. 
proposed an inverse design method for low electrical resistance ternary gold alloys, which combines pattern 
recognition inverse projection with XGBoost to design new materials with lower resistivity than existing 
ternary gold alloys[80]. First, the authors collected 51 ternary gold alloy samples at room temperature and 
pressure from the Materials Platform for Data Science (MPDS) database, including 62 atomic parameters 
and two-component features. After screening variables using Pearson correlation coefficients and 
maximum relevance minimum redundancy, five important variables were used for subsequent modeling 
and inverse design. Using the PCA method to establish an optimization area for low resistivity in Figure 8B, 
three points were selected as virtual samples in the best pattern recognition projection. Then, the pattern 
recognition inverse projection method was used to calculate the feature variables of the three virtual 
samples. Finally, by calculating the Euclidean distance, candidate samples closest to the virtual sample 
points were obtained, which were AuZr1.95Cu0.52, AuZr1.12Cu4, and AuSc1.86Cu2.75. XGBoost, SVR, multiple LR, 
and ridge regression were used to construct a prediction model for the electrical resistivity of gold alloys. 
The results showed that the XGBoost model had the highest R value and the lowest RMSE value, which 
were 0.850 and 0.331, respectively. The XGBoost predicted resistivity values for the three candidate 
materials were 6.718, 6.707, and 6.701, respectively, all of which were higher than the maximum value of 
6.68 in the original dataset. Therefore, pattern recognition and its inverse projection algorithm can be used 
for the inverse design of low electrical resistance ternary gold alloy materials.

DISCUSSION
It can be found that although there are many VSG algorithms for data expansion, not every algorithm has 
been successfully applied in the materials field. Based on our previous work, we utilized eight datasets along 
with VSG techniques of RF, MTD, and Bootstrap to increase eight samples to 400. These 400 virtual samples 
were then divided into a 4:1 ratio for training and testing, with 320 samples in the training set and 80 
samples in the test set. To ensure comparability, we used a support vector machine with a polynomial kernel 
function that was previously described in the reference as the modeling algorithm. The evaluation functions 
were R and RMSE of LOOCV, 10-fold CV, and the test set. The modeling results, as presented in Table 1, 
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Table 1. R and RMSE of LOOCV, 10-fold CV, and the test set with different VSG methods

RF MTD Bootstrap GMM

RLOOCV -0.235 0.493 0.989 0.990

RMSELOOCV 4.884 6.596 1.164 1.278

R10-fold CV -0.154 0.482 0.989 0.990

RMSE10-fold CV 4.871 6.644 1.164 1.280

Rtest 0.114 0.613 0.987 0.986

RMSEtest 4.553 5.710 1.164 1.416

CV: Cross validation; GMM: gaussian mixture model; LOOCV: leaving-one-out cross-validation; MTD: mega trend diffusion; RF: random forest; 
RMSE: root mean square error; VSG: virtual sample generation.

indicate that Bootstrap yielded similar results to GMM with much better evaluation parameters than RF and 
MTD. Consequently, our modeling results have confirmed that Bootstrap is the superior method. 
Nevertheless, Bootstrap relies on repeating sampling, resulting in numerous duplicate samples in the 
generated virtual samples. Additionally, Bootstrap did not explore the distribution information of the data 
or make up for information deficiencies. Although our modeling result was optimal, its practical value was 
less than GMM. There is currently a debate over the use of VSG to increase the number of training set 
samples, as it contradicts empirical knowledge that VSG can significantly enhance prediction accuracy. 
While the published papers have proven that VSG technology has been partially successful in materials 
machine learning, some VSG methods, such as GMM, still lack sufficient theoretical support in practical 
applications. Assigning a Gaussian distribution to data and generating virtual samples on the Gaussian 
distribution is rather controversial. This contradiction between machine learning results and domain 
knowledge is one of the three contradictions in materials machine learning[81]. Presently, although VSG 
technology has shown some success in materials design and discovery, more rigorous theoretical support is 
still necessary, such as evaluating different VSG methods using the same data, exploring the number of 
virtual samples generated, and investigating the influence of the VSG method parameters.

The most challenging aspect of using searching algorithms to discover materials with target properties is the 
construction of the materials space. In the PSP searching, materials components are set as a combination of 
elements and doping ratios. The chemical formula of the sample is unified into “element-doping ratio-
element-doping ratio-...” to eliminate the interference of samples with identical elements and doping ratios 
but only in different element order, which limits the scale of descriptors to the component descriptors. For 
organic materials, the applications of the searching algorithms for materials discovery are very limited 
because the influence of the 3D structure on the properties should be taken into account; structural 
optimization is often required, and the descriptors may contain much more information. In addition, the 
simple setting of material components as a combination of elements and doping ratios is very beneficial to 
the construction of materials space, but the huge materials space constituted by the diversity of element 
types and doping ratios also contains a lot of redundant information, such as structures that would not exist 
or be unstable. Therefore, it is necessary to filter out the redundant information and search for the target 
materials by using domain knowledge to restrict the materials space before construction or by using other 
criteria after construction. For example, in the case of doped ABO3 perovskites, there are various choices of 
doping elements and ratios for A- or B-sites, but not all dopants can form perovskite structures. Therefore, 
after constructing the materials space, the tolerance factor or octahedral factor can be used to eliminate the 
combinations that cannot form perovskites before searching.

For the inverse design of materials, the most challenging aspect is the correspondence of the materials 
encoding-descriptor-property relationship. If the improvement of material properties is only through the 
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optimization of experimental parameters, the research task could be simplified with only experiments 
conducted according to the optimized parameters. However, if the optimization of material components is 
used to improve material properties, the relationship between materials encoding, properties, and 
descriptors must be matched one by one. Different encoding rules for the same materials combined with 
descriptor generators and algorithms can lead to models with different accuracy to achieve forward 
prediction from materials encoding to descriptors and properties. The difficulty of inverse design is to 
invert the descriptors from the properties to the materials encoding. Moreover, in the process of machine 
learning, feature selection is often performed to improve model accuracy by removing redundant 
descriptors and filtering important descriptors for modeling. The removal of the descriptors will lose 
important materials information, making it extremely challenging to back-propagate from the descriptors to 
the materials encoding. The design of the descriptors is easy by forward computation but difficult by the 
inverse computation. For example, for doped ABO3-type perovskites, the description of the A-site elements 
can be described by a weighted average of the atomic properties of all elements in the A-site, but 
backpropagation of the A-site elements and their doping ratios for a given value could be a very complex 
task.

In fact, the VSG techniques can be divided into two groups according to the purposes of the generated 
virtual samples: model construction and model application. The VSG techniques for model construction 
mainly use sampling or data distribution to expand the training data size to improve the prediction accuracy 
of the model, including Bootstrap, Monte Carlo, PSO, MTD, GMM, RF, and GAN. The VSG techniques for 
model application mainly use machine learning models to discover or design virtual samples from a wide 
materials space that satisfy the target properties to reduce experimental costs for experimenters, including 
search algorithms for materials discovery and inverse design algorithms for materials design.

CONCLUSION AND OUTLOOKS
This review discusses the applications of VSG techniques in materials science in the context of cutting-edge 
research achievements. This review summarizes the commonly used VSG algorithms for data expansion, 
searching algorithms for materials discovery, and materials inverse design algorithms in materials design 
and discovery and briefly introduces the research cases of virtual samples in materials design and discovery 
in recent years. VSG is a very promising technology with both opportunities and challenges. Here, we 
propose the following possible future directions in materials science:

(1) Theoretical support and algorithmic details: As mentioned above, the VSG techniques for expanding the 
sample size of the training set have been successful in applications, but their theoretical support needs to be 
improved. For small data with very limited sample size, the improvement of model accuracy by increasing 
the data size to model is a probable event, but the principle and algorithmic details of VSG still need to be 
highlighted. For example, GMM assumes that all data points are generated from a mixture of a finite 
number of Gaussian distributions. However, further hypothesis testing is necessary to determine the 
consistency of the true data distribution with the assumption of a Gaussian distribution. The study cases in 
the publications mentioned above do not evaluate different VSG techniques with the same data. To evaluate 
the performance of the algorithm, it is essential to assess it using a standard benchmark dataset before 
applying it to the material dataset. However, considering that the material dataset can exhibit significant 
variations depending on the specific material system and its corresponding encoding, it is crucial to select 
the optimal method after evaluating multiple VSG techniques. Furthermore, it is vital to validate the validity 
of the virtual samples, which involves confirming their existence and ensuring the reasonableness of their 
descriptor values. This verification process requires conducting experiments and calculations to evaluate the 
generated virtual samples. Rationality and adaptability could be adopted as evaluation criteria for VSG 
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techniques. Rationality assesses the proximity of generated virtual samples to the real data space, while 
adaptability measures the generalizability of the VSG method across different domains. Additionally, the 
investigation of the optimal number of virtual samples generated represents a future direction for 
development. Insufficient generation of virtual samples may lead to a lack of information, which cannot 
adequately compensate for small sample sizes, thus limiting the generalization ability. Conversely, an 
excessive number of virtual samples can disrupt the information of the original data, and errors within the 
virtual samples may negatively impact the prediction accuracy of the model.

(2) Inclusiveness to material systems: The VSG techniques for expanding the sample size could generate 
virtual samples from the data perspective, independent of the complexity of the material system. However, 
materials searching algorithms and materials inverse design algorithms are not very inclusive to the material 
systems because of the involved materials encoding. For example, organic materials can be encoded using 
2D chemical formulae for SMILES or after structure optimization using 3D information, but the structure 
optimization of organic materials is a tedious process. Performing structure optimization for all samples in 
the constructed materials space can indeed impose a significant computational burden. Similarly, inorganic 
crystalline materials can be encoded using only the components or by adding crystal structure information. 
Currently, the searching algorithms and inverse design algorithms are successfully applied in materials 
discovery and design. The materials have all adopted simpler encoding methods, such as the combination of 

frequently employed for the inverse design of polymers, as the repeating units in polymers can be viewed as 
combinations of organic fragments. However, the application of these algorithms in the context of inorganic 
materials is less common. The choice of materials systems plays a pivotal role in determining the usefulness 
and effectiveness of such algorithms. In future research, the algorithms can be improved to have stronger 
compatibility for materials encoding and be able to use different encodings to improve prediction accuracy 
and search accuracy. Alternatively, the gap between organic and inorganic materials can be bridged through 
the utilization of transfer learning techniques.

(3) Experimental validation of virtual samples: Virtual samples are samples without any experimental 
validation, so the experimental validation of virtual samples is very important. Experimental validation not 
only evaluates the value of the algorithm but also breaks the barrier between virtual and real scenarios, 
enabling the evaluation of the practical application value of the virtual samples. The experimentally 
validated virtual samples can also be returned to the training set through the active learning framework to 
achieve a two-way virtuous cycle of machine learning model and material performance optimization 
through continuous iteration. The experimental validation of virtual samples still faces certain challenges, 
including the evaluation of the feasibility and the correspondence between descriptors and chemical 
formulas. To assess the feasibility of organic molecules, the synthetic accessibility score (SA score) can be 
employed. By utilizing SA scores, researchers can gauge the practicality of synthesizing organic molecules. 
In materials searching, researchers often rely on directly searching for the chemical formula of the target 
materials in order to design experimental protocols. However, in scenarios involving data expansion and 
inverse design, as previously discussed, inferring the chemical formula of the target sample from descriptor 
values becomes challenging, especially when the descriptors represent the material components. 
Experiments can be conducted by generating a substantial number of virtual chemical formulas and 
subsequently calculating the Euclidean distance between the descriptors of these virtual formulas and the 
target sample. This approach allows for the identification of the closest chemical formula to the target 
sample, aiding in the exploration and selection of potential candidates for further investigation and 
experimental validation.

doping elements and ratios, SMILES encoding in 2D, etc.  Bayesian molecular design algorithms are
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(4) Statistical analysis of the virtual samples: In materials machine learning, researchers often tend to 
perform statistical analysis of the modeling dataset to explore patterns to guide materials design and 
discovery. However, when the sample size of the dataset is very limited, the explored patterns need to be 
used with especial caution, as the patterns are more applicable to the modeling dataset. After reasonable 
virtual samples are generated, more generalized patterns can be obtained by statistical analysis of the virtual 
samples. In addition, the effect of a specific feature on the target variable can be visualized by constructing 
reasonable virtual samples. For example, sensitivity analysis is performed by constructing reasonable virtual 
samples with fixed values of other features and set steps of the feature values to be explored, combined with 
model prediction to visualize the impact of the feature. In our work on the design of high bonding strength 
YSZ materials using GMM in combination with SVR, sensitivity analysis was used to explore the specific 
effect of APS parameters on bonding strength and to match the domain knowledge. The patterns derived 
from the statistical analysis of virtual samples tend to exhibit greater generalizability compared to the 
original small dataset. However, it is crucial to acknowledge that the plausibility of the virtual samples will 
significantly impact the statistically obtained patterns. Additionally, it is necessary to validate the patterns 
identified through statistical analysis with experimental samples.
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