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Abstract
The application of machine learning methods for predicting potential energy surface and physical properties within
materials science has garnered significant attention. Among recent advancements, Kolmogorov-Arnold Networks
(KANs) have emerged as a promising alternative to traditional Multi-Layer Perceptrons. This study evaluates the
impact of substituting Multi-Layer Perceptrons with KANs within four established machine learning frameworks:
Allegro, Neural Equivariant Interatomic Potentials, Higher Order Equivariant Message Passing Neural Network
(MACE), and the Edge-Based Tensor Prediction Graph Neural Network. Our results demonstrate that the
integration of KANs enhances prediction accuracies, especially for complex datasets such as the HfO2 structures.
Notably, using KANs exclusively in the output block achieves the most significant improvements, improving
prediction accuracy and computational efficiency. Furthermore, employing KANs exclusively in the output block
facilitates faster inference and improved computational efficiency relative to utilizing KANs throughout the entire
model. The selection of optimal basis functions for KANs depends on the specific problem. Our results
demonstrate the strong potential of KANs in enhancing machine learning potentials and material property
predictions. Additionally, the proposed methodology offers a generalizable framework that can be applied to other
ML architectures.
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INTRODUCTION
The application of machine learning (ML) methods has become increasingly significant in materials science,
offering significant advantages over traditional approaches[1-7]. By leveraging large datasets and complex
algorithms, ML methods can uncover complex patterns and relationships[8,9].

ML potentials and physical property predictions are two key applications of ML in material science. ML
potentials, such as Allegro[10], NequIP[11] and Equivariant transformers[12], utilize ML methods to predict the
potential energy surfaces of atomic interactions within material systems[13,14]. Consequently, ML potentials
facilitate more efficient and precise molecular dynamics simulations over extended time scales[15-18],
significantly reducing computational costs while maintaining high accuracy. Their applications extend
across diverse fields, including magnetic systems[15,19], metal-organic frameworks[16], and many-body
systems[20], thus advancing innovation in materials research and design. Furthermore, ML techniques offer
broad applicability in predicting physical properties of materials, including tensor properties[21],
Hamiltonians[22-24], electron-phonon coupling strengths[25], and other properties[26-28] of solids and molecules.
Employing these methods to predict physical properties of materials facilitates high-throughput searches
and the design of novel materials with tailored properties for specific applications, such as
superconductors[29], high-piezoelectric materials[30], porous Materials[31], and direct-gap silicon materials[32].
The integration of ML in property prediction significantly accelerates the discovery and design of new
materials and also enhances our understanding of existing ones. However, existing ML potentials and
property prediction models often face limitations in accuracy or require extensive training times[13,33],
especially when dealing with complex systems, making it challenging to achieve precise and timely results.
Addressing these issues requires the development of new models capable of improving prediction accuracy
while minimizing training time.

Multi-layer perceptrons (MLPs)[34,35] are the foundational blocks of most modern ML models. Recently, Liu
et al. proposed Kolmogorov-Arnold Networks (KANs)[36] as an alternative to MLPs. KANs are inspired by
the Kolmogorov-Arnold representation theorem[37,38], which states that any continuous function can be
represented as a finite composition of continuous functions of one variable and addition. Both MLPs and
KANs have fully connected structures[36]. In MLPs, the nodes are connected by linear weight parameters,
and activation functions are placed on nodes to introduce non-linearity. In contrast, in KANs, the linear
weight parameters are replaced by learnable univariate functions parameterized as B-splines, and only
summations are performed on nodes. By utilizing the Kolmogorov-Arnold representation, KANs
demonstrate the capability to approximate complex functions with high accuracy, and may outperform
MLPs in both prediction accuracy and interpretability[36].

The univariate functions in KANs can be adapted using various basis functions to better address specific
problems. Since the introduction of KANs, numerous variations have been developed by replacing B-splines
with different basis functions. The operations of calculating the B-spline basis and rescaling the grids can
lead to severe efficiency bottlenecks in KANs[39]. Li et al. proposed FastKAN[39], which utilizes Gaussian
radial basis functions (RBFs) with Gaussian kernels instead of B-splines, offering a significantly faster
implementation of KANs without sacrificing accuracy. Bozorgasl et al. introduced Wavelet KANs[40] by
incorporating wavelet functions, enabling the network to capture both high- and low-frequency
components of the input data efficiently. Other variations include Fourier KAN for Graph Collaborative
Filtering[41], Fractional KAN[42] incorporating fractional-orthogonal Jacobi functions, and KANs
incorporating sinusoidal basis functions[43]. Additionally, KANs can be integrated into existing ML
frameworks and workflows with minimal modifications[36]. This compatibility ensures that current ML
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methods can leverage the advantages of KANs. Nagai et al. incorporated KANs into three ML potentials, 
and used KANs to redefine the descriptors of artificial neural network (ANN) potentials[44]. Other 
applications include Temporal KANs[45] for multi-step time series forecasting, Graph KANs[46] for graph-
structured data, and Signature-Weighted KANs[47] using learnable path signatures, among others[48,49].

KANs are particularly advantageous in scenarios where traditional neural networks face challenges, such as 
in high-dimensional spaces or when dealing with highly nonlinear functions[36]. Many ML potentials and 
property prediction models rely heavily on MLPs, which makes such models ideal candidates for integrating 
KANs to enhance prediction accuracy. Replacing MLPs with KANs allows these models to leverage the 
efficiency and accuracy of KANs without requiring the development of entirely new architectures, thereby 
saving time and resources in model development and training. Despite the potential benefits, there has been 
limited systematic testing in this area. In this study, we investigated the impact of replacing MLPs with 
KANs on various ML models in property prediction. Specifically, we substituted MLPs in different parts of 
the ML potential Allegro[10] with KANs employing various basis functions. Our results show that replacing 
the MLPs in the output block of the Allegro model not only enhances prediction accuracy but can also 
reduce training time in certain cases. Additionally, it improves inference speed and computation resource 
efficiency relative to using KANs without MLPs. We extended this approach to other models, including 
Neural Equivariant Interatomic Potentials (NequIP)[11], Higher Order Equivariant Message Passing Neural 
Network (MACE)[50] and the edge-based tensor prediction graph neural network (ETGNN)[24]. Consistently, 
replacing the MLPs in the output blocks of these models improved prediction accuracy and decreased 
training time. Overall, using KANs with different basis functions generally enhances prediction accuracy, 
and the optimal basis function depends on the specific problem. Our findings highlight the significant 
promise of KANs in enhancing ML models for material property prediction and ML potentials.

MATERIALS AND METHODS
In this study, we examined the effect of replacing MLPs with KANs in various ML models for property 
prediction. Figure 1A illustrates the differences between MLPs and KANs. In KANs, the linear weight 
parameters are substituted with learnable univariate functions[36], which enhance accuracy and 
interpretability. Figure 1B depicts the general framework of a property prediction model. In this work, we 
replaced MLPs with KANs in different parts of the models. We utilized KANs with three types of basis 
functions: B-spline, Gaussian, and Fourier functions. Table 1 summarizes the configurations utilized in this 
study and is included in the Supplementary Materials.

Machine learning potential Allegro using KAN
First, we utilized Allegro[10] to assess the impact of replacing MLPs in various parts of ML potentials with 
KAN networks employing different basis functions. Allegro[10] is an equivariant deep-learning interatomic 
potential. By integrating equivariant message-passing neural networks (MPNN)[51] with strict locality, 
Allegro achieves high prediction accuracy, generalizes well to out-of-distribution data, and scales effectively 
to large system sizes.

Replacing all MLPs with KANs with different basis functions
First, we tried replacing all MLPs in the Allegro model with KANs using different basis functions. We 
substituted MLPs in three parts of the Allegro model with KANs: the two-body latent embedding part, the 
latent MLP part, and the output block, as the second model shown in Figure 2. The function of the two-
body latent embedding part is to embed the initial scalar features into the latent features of atom pairs. The 
latent MLP passes information from the tensor products of the current features to the scalar latent space. 
The output block predicts pairwise energies using the output from the final layer. We did not replace the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4046-SupplementaryMaterials.pdf
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Table 1. Summary table of the configurations utilized in the study

Original model Notes Besides the output block Output block Basis functions of KANs

MLP MLP

KAN KAN B-splines

KAN KAN Gaussian functions

To identify the optimal basis functions

KAN KAN Fourier functions

MLP KAN Gaussian functions

Allegro

To identify the optimal configuration

KAN MLP Gaussian functions

MLP MLP

MLP KAN Gaussian functions

NequIP

MLP KAN B-splines

MLP MLPMACE Each model used three different random seeds

MLP KAN B-spline functions

MLP MLP

MLP KAN Gaussian functions

ETGNN

MLP KAN B-splines

MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold Networks; NequIP: Neural equivariant interatomic potentials; ETGNN: Edge-based 
tensor prediction graph neural network; MACE: Higher order equivariant message passing neural network.

Figure 1. Efficient prediction of potential energy surface and physical properties with KAN. (A) Comparison of MLP and KAN[36]. MLPs 
utilize learnable weights on the edges and fixed activation functions on nodes. In contrast, KANs employ learnable activation functions 
parameterized as various basis functions on edges with sum operations on nodes; (B) Replacing MLPs in ML potentials and property 
prediction models with KANs. The left side illustrates the general framework of ML potentials and property prediction models. In this 
study, MLPs in different parts of the ML potentials and property prediction models are replaced with KANs employing various basis 
functions. Our results demonstrate that replacing MLPs with KANs in the output blocks leads to higher prediction accuracy and 
reduced training times compared to using MLPs, and higher inference speed and computation resource efficiency compared to using 
KANs without MLPs. MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold Networks; ML: Machine learning.

MLPs in the environment embedding part, as it typically consists of a simple one-layer linear projection, 
making it trivial to substitute with KANs.

For the Allegro model utilizing KANs, we tested KANs with the original B-spline basis functions, Gaussian 
functions, and Fourier functions. B-spline basis functions were chosen due to their use in the original KAN 
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Figure 2. Replacing MLPs in different parts of the ML potential Allegro[10] with KANs employing various basis functions. Zi stands for the 
chemical species of atom i.       stands for the relative displacement vector from atom i to atom j. Substituting MLPs with KANs generally 
enhances prediction accuracy. Specifically, replacing MLPs in the output block of the Allegro model results in higher prediction accuracy 
and shorter training time than using MLP, and higher inference speed and higher computation resource efficiency than using KANs 
throughout the entire model. MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold Networks; ML: Machine learning.

study[36], and their ability to provide smooth and compact representations. For KANs with B-spline basis 
functions, we employed the efficient-kan package[52], a re-implementation of the original KAN with 
enhanced efficiency. Gaussian and Fourier functions were chosen due to their well-known properties of 
universal approximation and their compatibility with the existing implementation fastkan[39]. For KAN 
implementations with Gaussian and Fourier functions, we used the fastkan package[39]. The details of 
different models are included in Supplementary Materials.

We evaluated the accuracy and efficiency of various models using the Ag dataset[10]. This dataset was derived 
from ab-initio molecular dynamics simulations of a bulk face-centered-cubic structure with a vacancy, 
consisting of 71 atoms. The simulations were performed using the Vienna Ab-Initio Simulation Package 
(VASP)[53] with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional[54]. The dataset includes 
1,000 distinct structures, with 950 used for training and 50 for validation.

Replacing some of MLP in Allegro with KAN
We subsequently replaced MLPs in various parts of the Allegro model with KANs to identify the optimal 
configuration. We selected KANs with Gaussian basis functions based on the results in section 3.1.1, which 
provides higher prediction accuracy while maintaining relatively short training times. Specifically, we 
evaluated two configurations: incorporating KANs in the two-body latent embedding and latent MLP parts 
and incorporating KANs solely in the output block, as shown in Figure 2. The details of different models are 
included in Supplementary Materials.

We initially evaluated the performance of various models using the Ag dataset[10]. The Ag dataset is identical 
to the one described in the previous section. We also evaluated the inference speeds and GPU memory 
usage of various models by performing molecular dynamics simulations using the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS)[55]. The simulations employed the Allegro pair style 
implemented in the Allegro interface[42]. The initial structure was obtained from the Ag dataset[10]. The 
simulations were conducted under a canonical (NVT) ensemble at a temperature of 300K with a time step 
of 1 ps. For each model, we ran 5,000 time steps to measure the inference speed.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4046-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4046-SupplementaryMaterials.pdf
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In order to assess the impact of dataset complexity on the relative performance of KANs and MLPs, we 
proceeded to evaluate these models on the more complex HfO2 structures. HfO2 structures exhibit complex 
interatomic interactions, including mixed ionic-covalent character due to p-d hybridization, making it 
challenging to develop accurate ML potentials[56]. The HfO2 dataset[56] was generated using density functional 
theory calculations performed with the VASP package[53]. The structures were initially generated by 
perturbing ground-state HfO2 structures, followed by sampling through NPT simulations at various 
temperatures. We selected 10,000 structures from the dataset, with 9,000 used for training and 1,000 for 
validation.

Machine learning potential NequIP using KAN
We also investigated replacing MLPs with KANs in the NequIP model[11], a deep-learning interatomic 
potential. NequIP utilizes E(3)-equivariant convolutions to capture interactions between geometric tensors, 
resulting in exceptional prediction accuracy and remarkable data efficiency.

The NequIP architecture is based on an atomic embedding that generates initial features from atomic 
numbers. This embedding is followed by interaction blocks that integrate interactions between neighboring 
atoms through self-interactions, convolutions, and concatenations. The final output block converts the 
output features of the last convolution into atomic potential energy. As with the optimal model in section 
3.1.2, we only replaced the MLPs in the output blocks with KANs, as shown in Figure 3. We tested KANs 
with Gaussian and B-spline bases, utilizing the efficient-kan package[52] for the B-spline bases and the 
fastkan package[39] for the Gaussian bases. The details of different models are included in Supplementary 
Materials. We tested NequIP with MLPs and KANs on the Ag dataset identical to the one used in previous 
sections.

Machine learning potential MACE using KAN
We also investigated replacing MLPs with KANs in the MACE model[50], a MPNN[51] model designed for 
creating fast and accurate force fields. Unlike other MPNN models, MACE utilizes higher-body messages 
instead of two-body messages, significantly reducing the number of required message-passing iterations. 
This design makes MACE both computationally efficient and highly parallelizable while achieving state-of-
the-art accuracy[50].

The MACE architecture is based on the framework of MPNN[51]. A forward pass of the network consists of 
multiple message construction, update, and readout steps[50]. In the message construction, features are 
generated by embedding the edges and previous node features and pooling over neighbors. Then, 
higher-order features are constructed through tensor products and summarization. The update step applies 
a linear transformation to the message combined with a residual connection. In the readout step, the 
invariant components of the node features are mapped to the site energy contribution using linear 
combinations for all layers except the last layer. In the last layer, these node features are mapped to the site 
energy contribution using MLPs. The total site energy is represented as the sum of these contributions. 
Consistent with the optimal configuration described in Section 3.1.2, we replaced the MLPs in the final 
layer's readout section, analogous to the output blocks in the Allegro model, with KANs. Additionally, we 
introduced a KAN layer besides the linear combinations in other layers as illustrated in Figure 4. We tested 
KANs with the original B-spline bases, utilizing the pykan package[36] for the Gaussian bases. To evaluate the 
robustness of KAN-based models under varying input parameters, we tested each model using three 
different random seeds (1111, 2222, and 3333). The details of different models are included in 
Supplementary Materials.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4046-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4046-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4046-SupplementaryMaterials.pdf
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Figure 3. Replacing MLPs in the output block of the NeqIP[11] model with KANs employing B-spline and Gaussian basis functions. e and α 
stand for the lengths of the edges and the angles between the edges in the cluster. Substituting the MLP with the B-spline bases KAN 
improves prediction accuracy and significantly shortens the training time. MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold 
Networks; NeqIP: Neural equivariant interatomic potentials.

We tested MACE with MLPs and KANs on the carbon dataset[57,58], which includes 4,080 structures in the 
training set and 450 in the test set. This dataset comprises structural snapshots obtained from ab initio 
molecular dynamics and simulations employing Gaussian approximation potentials[57]. It contains a diverse 
range of carbon structures, including amorphous surfaces, bulk crystals, and liquid and amorphous carbon. 
The dataset was selected for its structural complexity, particularly the amorphous materials, which lack 
regular repeating patterns and present challenges in accurately modeling atomic interactions[57]. The carbon 
dataset was chosen to assess the robustness of KAN-based models across various material types.

Tensor prediction networks using KAN
In this study, we utilized the tensor prediction networks (ETGNN)[21] to predict the tensorial properties of 
crystals. In ETGNN, tensorial properties are represented by averaging the contributions of atomic tensors 
within the crystal. The tensor contribution of each atom is decomposed into a linear combination of local 
spatial components, which are projected onto the edge directions of clusters with varying sizes. This 
approach enables ETGNN to predict the tensorial properties of crystals with efficiency and accuracy while 
maintaining equivariance.

In the ETGNN architecture, the initial features are generated in the embedding block and subsequently 
updated through a series of update blocks. The output of the final update block is then aggregated into node 
features by the node output block to produce scalar outputs. As represented in Figure 5, consistent with our 
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Figure 4. Replacing MLPs in the output block of the MACE model[50] with KANs employing B-spline basis functions. (A) The general 
framework of MACE model. zi stands for the chemical species of atom i.        indicates the atomic positions of atom i.       represents the 
learnable features of atom i. (B) Replacing the linear combinations and MLPs in the output block with KANs. MLPs: Multi-layer 
perceptrons; KANs: Kolmogorov-Arnold Networks; MACE: Higher order equivariant message passing neural network.

Figure 5. Replacing MLPs in the output block of the ETGNN model[21] with KANs employing B-spline and Gaussian basis functions. e and 
α stand for the lengths of the edges and the angles between the edges in the cluster. Replacing the MLP in the output block with a KAN 
using Gaussian basis functions significantly improves prediction accuracy while also reducing training time. MLPs: Multi-layer 
perceptrons; KANs: Kolmogorov-Arnold Networks; ETGNN: Tensor prediction networks.

modifications to the ML potentials, we only replaced the projection part of the MLPs from the edge update 
block and the node output block, which, similar to the output block in ML potential models, convert the 
output features into scalars. We replaced the MLPs with KANs using Gaussian and B-spline bases. The 
details of different models are included in Supplementary Materials.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4046-SupplementaryMaterials.pdf
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We compared the accuracy of ETGNN using MLPs and KANs with different basis functions on a SiO2 
dataset[21]. The dataset consists of 3,992 randomly perturbed SiO2 structures calculated using density 
functional perturbation theory (DFPT). The dataset was split into training, validation, and test sets in a 6:2:2 
ratio. We calculated the Born effective charges using ETGNN with MLPs and KANs with Gaussian and 
B-spline basis functions.

RESULTS AND DISCUSSIONS
Machine learning potential Allegro using KAN
Replacing all MLPs with KANs with different basis functions
First, we tried replacing all MLPs in the Allegro model with KANs using different basis functions. The mean 
absolute error (MAE) and training times of the predicted potentials are presented in Table 2 and Figure 6. 
Notably, all three Allegro models using KANs demonstrated lower force and energy MAE than the original 
Allegro model with MLPs. Specifically, the force MAE for the KAN-based model with Gaussian bases is 
0.014 eV/Å, which is 12.5% lower than that of the MLP-based Allegro model. The model utilizing KANs 
with B-spline bases achieved the lowest validation energy MAE of 0.029 eV/atom, which is 17.1% lower than 
the MLP-based model. However, this model required nearly five times the training time. Conversely, the 
Allegro model with KANs using Gaussian bases also exhibited a lower validation energy MAE than the 
MLP-based model, 0.032 eV/atom, while maintaining a comparable training time. The model with Fourier 
bases resulted in a validation energy MAE similar to the MLP-based Allegro model but required a longer 
training time.

All three Allegro models using KANs demonstrated superior prediction accuracy compared to Allegro 
using MLPs. This improved performance may be attributed to the fact that basis functions such as splines 
offer better fitting capabilities than MLPs[36,49], providing significant advantages in solving complex problems 
such as predicting potential energy surfaces and physical properties of materials.

The Allegro model using B-spline basis functions demonstrated the highest prediction accuracy, likely due 
to the flexibility of B-splines as piecewise polynomial functions, which are well-suited for approximating 
complex functions. The Gaussian basis functions, which yield comparable accuracy, are particularly 
effective for modeling the underlying data distribution. In contrast, the Fourier basis functions, which are 
particularly effective for capturing periodic or oscillatory patterns in the data, may be less useful than the 
other two types of basis functions for predicting potential energy surfaces.

However, the Allegro model using B-spline basis functions required significantly longer training times 
compared to models using other basis functions. This is likely due to the substantial computational time 
required for operations of calculating the B-spline basis and rescaling the grids[39,49]. Employing more 
efficient basis functions, such as Gaussian and Fourier functions, can significantly accelerate the model 
calculation with comparable accuracy[36,39,41]. Among these, Gaussian-based KANs offer an optimal balance 
between accuracy and training efficiency, achieving prediction performance similar to B-spline-based KANs 
with significantly shorter training times. When training other ML methods, the choice of basis functions 
should be guided by the specific requirements of the application, such as whether accuracy or 
computational efficiency is the priority.

Replacing some of MLP in Allegro with KAN
We subsequently replaced MLPs in various parts of the Allegro model with KANs to identify the optimal 
configuration. The results are shown in Table 3 and Figure 7. Remarkably, the Allegro model incorporating 
KANs in the output block achieved the highest prediction accuracy, a validation energy MAE of 
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Table 2. Results of Allegro with MLPs and KANs with B-spline, Gaussian, and Fourier basis functions

Model Training F MAE 
(eV/Å)

Training E MAE 
(eV/atom)

Validation F MAE 
(eV/Å)

Validation E MAE 
(eV/atom)

Training 
time

Allegro using MLPs 0.016 0.028 0.016 0.035 4h 51m

Allegro using KAN with B-
spline bases

0.014 0.021 0.014 0.029 22h 45m

Allegro using KAN with 
Gaussian bases

0.014 0.026 0.014 0.032 4h 56m

Allegro using KAN with 
Fourier bases

0.014 0.025 0.014 0.037 6h 54m

The best results are written in bold. MAE: Mean absolute error; F: Force; E: Energy; MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold 
Networks.

Table 3. Results of replacing MLP from different parts of Allegro with KAN using Gaussian bases on the Ag dataset

Model Training F MAE 
(eV/Å)

Training E MAE 
(eV/atom)

Validation F MAE 
(eV/Å)

Validation E MAE 
(eV/atom)

Training 
time

Allegro using MLPs 0.016 0.028 0.016 0.035 4h 51m

Allegro using KAN in the two-body 
latent embedding and latent MLP part

0.015 0.025 0.015 0.028 5h 20m

Allegro using KAN in the output block 0.014 0.025 0.014 0.022 9h 40m

Allegro using KAN without MLP 0.014 0.026 0.014 0.032 4h 56m

The best results are written in bold. MAE: Mean absolute error; F: Force; E: Energy; MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold 
Networks.

Figure 6. The mean absolute error (MAE) of replacing MLPs in the Allegro model with KANs using various basis functions. All three 
Allegro models using KANs demonstrated lower force and energy MAE than the original Allegro model with MLPs. MLPs: Multi-layer 
perceptrons; KANs: Kolmogorov-Arnold Networks.
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Figure 7. The mean absolute error (MAE) of replacing MLPs in various components of the Allegro model with KANs on the Ag dataset. 
All three Allegro models using KANs demonstrated lower force and energy MAE than the original Allegro model with MLPs. 
Remarkably, the Allegro model incorporating KANs in the output block achieved the highest prediction accuracy. MLPs: Multi-layer 
perceptrons; KANs: Kolmogorov-Arnold Networks.

0.022 eV/atom, which is 37.1% lower than that of Allegro using MLPs. The Allegro model utilizing KANs in 
the two-body latent embedding and latent MLP parts demonstrated slightly improved prediction accuracy 
and reduced training time compared to the model using MLPs.

We also evaluated the inference speeds and GPU memory usage of various models by performing molecular 
dynamics simulations. The inference speeds and GPU memory usage of various models are shown in 
Table 4. In general, the Allegro models using KANs with different basis functions exhibited slightly higher 
GPU memory usage compared to those using MLPs. This suggests that Allegro models employing MLPs are 
more efficient in terms of model design and data handling, leading to better computation resource 
efficiency. Replacing only some of the MLPs in the Allegro model with KANs led to a reduction in GPU 
memory usage. Specifically, the Allegro model with KANs in the output block required 1,945 MB GPU 
memory, just 4 MB more than the 1,941 MB used by the Allegro model with MLPs. The inference speed of 
Allegro using KANs was only slightly slower than that of the model using MLPs. Specifically, the inference 
speed of the Allegro model with KANs in the output block is 8.92 ms per time step, only 0.70 ms per time 
step slower than the Allegro model using MLPs. Using KAN solely in the output block improves prediction 
accuracy compared to using MLP, and also improves inference speed and computation resource efficiency 
compared to using KANs throughout the entire Allegro model.

The improvements observed in the results on the Ag dataset were modest, likely due to the simplicity of the 
dataset, which significantly limited benefits of KANs[36]. Therefore, we proceeded to evaluate these models 
on the more complex HfO2 structures. The results, as presented in Table 5 and Figure 8, demonstrate that 
replacing the MLP in the output block of Allegro significantly improves prediction accuracy for both 
energies and forces. The validation force MAE is reduced to 0.054 eV/Å, a decrease of 27.0% compared to 
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Table 4. The inference speed and GPU memory usage of replacing MLP from different parts of Allegro with KAN using Gaussian 
bases

Model Inference speed (ms per time 
step)

GPU memory usage 
(MB)

Allegro using MLPs 8.22 1941

Allegro using KAN in the two-body latent embedding and latent MLP 
part

9.24 1963

Allegro using KAN in the output block 8.92 1945

Allegro using KAN without MLP 9.44 1963

MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold Networks.

Table 5. Results of replacing MLP from different parts of Allegro with KANs using Gaussian bases on the HfO2 dataset. The best 

results are written in bold

Model Training F MAE 
(eV/Å)

Training E MAE 
(eV/atom)

Validation F MAE 
(eV/Å)

Validation E MAE 
(eV/atom)

Training 
time

Allegro using MLPs 0.076 0.265 0.074 0.164 7d 3m

Allegro using KANs in the two-body 
latent embedding and latent MLP part

0.064 0.473 0.063 0.172 7d 2m

Allegro using KANs in the output block 0.053 0.146 0.054 0.104 4d 11h 40m

Allegro using KANs without MLP 0.058 1.444 0.056 0.200 7d 10m

MAE: Mean absolute error; F: Force; E: Energy; MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold Networks.

Figure 8. The mean absolute error (MAE) of replacing MLPs in various components of the Allegro model with KANs on the HfO2 
dataset. Replacing the MLP in the output block of Allegro significantly improves prediction accuracy for both energies and forces. MLPs: 
Multi-layer perceptrons; KANs: Kolmogorov-Arnold Networks.

Allegro with MLPs. Similarly, the validation energy MAE is reduced to 0.104 eV/atom, which is 36.6% lower 
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than with MLPs. Additionally, the training time is notably shortened. For the Allegro model using KAN 
without MLP, the training F MAE is 0.058 eV/Å, while the training E MAE is 1.444 eV/atom. This 
discrepancy is attributed to the model's relatively slow convergence speed, resulting in incomplete 
convergence by the end of the training process. In contrast, the Allegro model using KAN exclusively in the 
output block effectively combines the advantages of KANs and MLPs. This hybrid configuration leverages 
the expressive power and flexibility of KANs while retaining the efficiency of MLPs in other parts of the 
architecture. Consequently, using KANs in the output block facilitates faster convergence during training 
and better prediction accuracy for both forces and energies. Furthermore, the GPU memory allocated 
during the training process of the Allegro model using KANs in the output block is 45.63%, only 0.03% 
higher than using MLP. However, replacing MLPs in other parts of the Allegro model has minimal impact 
on either prediction accuracy or training time.

These findings are generally consistent with the results obtained from the Ag dataset. The improvements on 
prediction accuracies and training times are more pronounced in the HfO2 dataset compared to the Ag 
dataset. This difference arises from the impact of dataset complexity on the relative performance of KANs 
versus MLPs. In simpler datasets, such as the Ag dataset, the differences in performance between KANs and 
MLPs are minimal, as both models can effectively capture the underlying patterns. However, with 
increasing dataset complexity, KANs tend to outperform MLPs due to their ability to represent more 
intricate relationships and dependencies within the data[36]. Consequently, incorporating KANs in ML 
models may be particularly advantageous when dealing with datasets with high complexity and variability.

Replacing the MLP in the output block of the Allegro model with KAN significantly improves prediction 
accuracy. In some cases, this substitution also reduces training time. This improvement occurs because 
KANs are more effective at fitting functions[36,49]. However, basis functions such as splines are less capable of 
exploiting compositional structures and therefore inferior to MLPs in feature learning[36]. Consequently, the 
output block, which predicts energies from the final layer’s output, is well-suited for KANs to enhance 
prediction accuracy. Therefore, using KANs in other parts of the Allegro model, such as the embedding 
layer, results in smaller improvements in prediction accuracy compared to the output block.

Machine learning potential NequIP using KAN
We also investigated replacing MLPs with KANs in the NequIP model[11]. The results are shown in Table 6. 
All three models exhibited similar accuracy, likely due to the simplicity of the Ag dataset[36,49]. Additionally, 
replacing the MLP with the Gaussian bases KAN did not reduce training time. However, substituting the 
MLP with the B-spline bases KAN significantly shortened the training time.

Machine learning potential MACE using KAN
We also investigated replacing MLPs with KANs in the MACE model[50]. The root-mean-square errors 
(RMSE) of the forces, energies and stresses on the test set are summarized in Table 7. The MACE models 
with KANs and MLPs in the output block demonstrate comparable accuracy. Notably, the MACE model 
using KANs achieves significantly shorter training times compared to using MLPs.

For all three MACE models utilizing KANs in the output block with different random seeds, the results are 
consistently comparable to those using MLPs. Remarkably, these KAN-based models also demonstrate 
shorter training times across all scenarios compared to MLP-based models. This result demonstrates the 
ability of KANs to efficiently learn and generalize despite variations in the initialization parameters, 
highlighting their robustness, stability, and adaptability.
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Table 6. Results of replacing MLP from the output block of NequIP with KANs using Gaussian bases and B-spline bases on the Ag 
dataset

Model Training F MAE 
(eV/Å)

Training E MAE 
(eV/atom)

Validation F MAE 
(eV/Å)

Validation E MAE 
(eV/atom)

Training 
time

NequIP using MLPs 0.011 0.015 0.013 0.015 2d 8h 55m

NequIP using KANs with Gaussian 
bases in the output block

0.011 0.015 0.013 0.015 2d 11h 46m

NequIP using KANs with B-spline 
bases in the output block

0.011 0.016 0.013 0.013 1d 13h 2m

The best results are written in bold. NequIP: Neural equivariant interatomic potentials; MAE: Mean absolute error; F: Force; E: Energy; MLPs: 
Multi-layer perceptrons; KANs: Kolmogorov-Arnold Networks.

Table 7. Results of replacing MLP from the output block of MACE with KANs using B-spline bases on the carbon dataset

Model Seed RMSE F (meV/Å) RMSE E (meV/atom) RMSE stress (meV/ Å3) Training time

1111 307.6 8.0 119.2 4d 13h 10m

2222 306.5 8.0 119.4 2d 4h 51m

MACE using MLPs

3333 309.2 7.8 119.0 2d 12h 30m

1111 309.4 8.1 119.4 1d 42m

2222 305.1 7.7 119.1 21h 41m

MACE using KANs in the output block

3333 320.8 8.2 119.4 23h 6m

The best results are written in bold. MAE: Mean absolute error; F: Force; E: Energy; MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold 
Networks; MACE: Higher order equivariant message passing neural network; RMSE: Root-mean-square errors.

We also compared the performance of the MACE model using KANs in the output block with models from 
other literature[59], as summarized in Table 8. The MACE model with KANs demonstrated significantly 
higher prediction accuracy, highlighting the effectiveness of our approach.

ETGNN using KAN
We calculated the Born effective charges for the SiO2 dataset using ETGNN models with MLPs and KANs 
with Gaussian and B-spline basis functions. The results are shown in Table 9. Replacing the MLP in the 
output block with a KAN using a Gaussian basis significantly improves prediction accuracy while also 
reducing training time. The result is consistent with what we achieved on the Allegro model. The training 
time for ETGNN with KANs using B-spline bases is shorter than with MLPs, and longer compared to using 
KANs with Gaussian bases.

These results are consistent with the results on the Ag dataset, the HfO2 dataset and the carbon dataset, 
indicating that the advantages of KANs, such as improving accuracy and computational efficiency, are 
consistent across different material systems.

CONCLUSIONS
In this study, we assessed the impact of replacing MLPs with KANs in various ML models, including ML 
potentials allegro, NequIP and MACE and property prediction model ETGNN. By systematically replacing 
MLPs with KANs in different parts of these models, we demonstrated that KANs enhance prediction 
accuracy. Specifically, replacing MLPs in the output block of the ML model significantly improves accuracy 
and, in some instances, reduces training time. Moreover, using KANs exclusively in the output block 
increases inference speed and computation resource efficiency compared to using KANs without MLPs in 
the property prediction model. Using KANs exclusively in the output block strikes a balance between 
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Table 8. Comparison of the performance of the MACE model using KANs in the output block with models from other literature

Model Seed RMSE F (meV/Å) RMSE E (meV/atom)

1111 309.4 8.1

2222 305.1 7.7

MACE using KANs in the output block

3333 320.8 8.2

GAP[59] 1100 46

DP[59] 800 44

MTP[59] 630 35

REANN[59] 640 31

NEP[59] 690 42

HotPP[58] 395 16

MAE: Mean absolute error; F: Morce; E: Energy; GAP: Gaussian approximation potential; DP: Deep potential; MTP: Moment tensor potential; 
REANN: Recursive embedded-atom neural network; NEP: Neuroevolution potential; HotPP: High-order tensor message passing interatomic 
potential; RMSE: Root-mean-square errors.

Table 9. Results of replacing MLP from the output block of ETGNN with KAN using Gaussian bases and B-spline bases on the SiO2 

dataset

Model Training MAE (e) Validation MAE (e) Test MAE (e) Training time

ETGNN using MLPs 0.00452 0.00517 0.00502 2h 55m

ETGNN using KAN with Gaussian bases in the output block 0.00439 0.00473 0.00450 1h 36m

ETGNN using KAN with B-spline bases in the output block 0.00547 0.00564 0.00542 1h 51m

The best results are written in bold. ETGNN: Edge-based tensor prediction graph neural network; MAE: Mean absolute error; F: Force; E: Energy; 
MLPs: Multi-layer perceptrons; KANs: Kolmogorov-Arnold Networks.

prediction accuracy, computational efficiency, and resource efficiency. The choice of the optimal basis 
function for KANs depends on the specific problem.

Our results validate the effectiveness of substituting MLPs with KANs for improving ML models in 
predicting potential energy surfaces and physical properties. These findings demonstrate the strong 
potential of KANs in material science. This study offers a promising outlook for extending the use of KANs 
to broader applications in materials science, where MLPs are commonly employed.

Future research could explore the use of data augmentation techniques[60] to further improve the robustness 
of KAN models. For instance, using synthetic data generation[61], such as generating additional structures 
using molecular dynamics simulations or perturbing existing datasets, could expand the diversity and size of 
training data. This approach may enhance the ability of KAN-based models to generalize across a broader 
range of materials. Additionally, using domain adaptation techniques[62], such as transfer learning[63] or 
fine-tuning KAN models on related datasets, might extend the applicability of KAN-based models to new 
material classes where labeled data may be limited. Additionally, future research might also investigate 
incorporating KANs into emerging universal models, high-throughput screening in materials discovery, 
inverse design methods and other broader applications. For instance, relying on KAN’s powerful expressive 
capabilities, Universal MLPs such as M3GNet[64] and CHGNet[65], which are designed to generalize across a 
wide range of chemical and physical systems, could be able to achieve better prediction accuracy and 
generalization capability. Additionally, the computational efficiency and improved accuracy of KANs make 
them highly suitable for high-throughput screening workflows. For example, the accurate and efficient ML 
potentials developed in this study can be applied in molecular dynamics simulations to precisely determine 
thermal[66,67] and mechanical[68] material properties such as thermal conductivity[69,70] and elastic modulus[68]. 
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Furthermore, KAN-refined models may offer substantial potential for advancing inverse design, which 
focuses on identifying material structures with specific target properties[71-73]. Many existing inverse design 
approaches address such problems by first training a predictive model and then exploring the optimum in 
the design space using the trained model[74]. By enhancing the accuracy and efficiency of these models, 
KANs can enable more precise and effective design processes. Moreover, leveraging the interpretability of 
KANs[36] can also facilitate the discovery of new materials by revealing underlying design principles and 
guiding inverse design processes. In conclusion, KANs show significant promise for addressing a wide 
range of scientific and engineering challenges.
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