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Abstract
Photocatalysis is a unique technology that harnesses solar energy through in-situ processes, operating without the 
need for external energy inputs. It is integral to advancing environmental, energy, chemical, and carbon-neutral 
objectives, promoting the dual goals of pollution control and carbon reduction. However, the conventional 
approach to photocatalyst design faces challenges such as inefficiency, high costs, and low success rates, 
highlighting the need for integrating modern technologies and seeking new paradigms. Here, we demonstrate a 
comprehensive overview of transformative strategies in photocatalyst design, combining computational materials 
science with deep learning technologies. The review covers the fundamental principles of photocatalyst design, 
followed by a comprehensive examination of computational methods and the workflow for deep-learning-assisted 
design. Deep learning approaches are extensively reviewed, focusing on the discovery of novel photocatalysts, 
microstructure design, property optimization, novel design approaches, application exploration, and mechanistic 
insights into photocatalysis. Finally, we highlight the synergy between multidimensional computation and deep 
learning, while discussing the challenges and future directions in photocatalyst development. This review offers a 
comprehensive summary of deep-learning-assisted photocatalyst design, offering transformative insights that not 
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only enhance the development of photocatalytic technologies but also expand the practical applications of 
photocatalysis in various domains.

Keywords: Photocatalysis, materials design, computational method, deep learning, transformative strategy

INTRODUCTION
Photocatalysis offers a unique advantage by directly harnessing solar energy through in-situ processes[1], 
making it a highly sustainable technology that operates without external energy inputs[2]. By utilizing 
abundant and renewable sunlight, photocatalytic reactions significantly reduce reliance on fossil fuels and 
minimize greenhouse gas emissions[3]. One of the major environmental benefits of this technology is its 
ability to degrade a wide range of pollutants, such as organic compounds[4,5] and heavy metals[6], thus 
promoting cleaner ecosystems. In the energy domain, it plays a pivotal role in solar fuel generation, 
particularly through hydrogen production via water splitting, offering a clean and renewable energy 
source[7-9]. Additionally, it enhances chemical processes by enabling selective reactions with greater 
efficiency, reducing the need for hazardous chemicals and lowering operational costs[10]. With the global 
focus on carbon neutrality, photocatalysis contributes to carbon reduction efforts by converting CO2 into 
valuable fuels and chemicals, thus advancing the circular carbon economy[11]. The key to unlocking the full 
potential of this technology lies in the design of advanced photocatalysts, which optimize light absorption, 
charge separation, and photocatalytic efficiency.

Traditional approaches to photocatalyst design are fraught with inefficiencies, high costs, and low success 
rates, which significantly hinder progress in this field[12]. These methods often depend on laborious trial-
and-error experimentation[13-15], consuming substantial time and resources while offering limited predictive 
power for real-world applications. Key photocatalytic properties, such as charge separation efficiency[16] and 
reaction kinetics[17,18], remain difficult to optimize, resulting in suboptimal performance and limited 
advancement. The high costs associated with synthesizing and characterizing photocatalysts further 
compound these issues, limiting scalability and delaying the transition from laboratory research to 
industrial implementation[19]. Surface reactivity, adsorption dynamics, and charge transfer mechanisms[20,21] 
are not well understood through conventional methods, hindering systematic improvements in reactivity 
and stability. Consequently, many photocatalysts designed through traditional approaches fail to achieve the 
required durability, selectivity, and efficiency needed for practical applications in energy conversion and 
environmental remediation. To overcome these challenges, there is an urgent need to adopt advanced 
methodologies, such as computational modeling and deep learning, to develop new paradigms that can 
accelerate the discovery process and enhance the overall performance of photocatalytic systems.

The rise of computational science and deep learning has revolutionized materials design by offering 
predictive power, accelerated discovery, and improved optimization capabilities[22]. Advanced 
computational techniques, such as density functional theory (DFT)[23,24] and molecular dynamics[25], offer 
precise insights into electronic structures and reaction mechanisms that are challenging to capture through 
experimental methods alone. High-throughput screening (HTS) enables the evaluation of vast libraries of 
potential photocatalysts, facilitating the identification of promising candidates based on theoretical 
performance metrics before engaging in resource-intensive experimental validation[26]. Deep learning 
algorithms[27], trained on extensive datasets of material properties and photocatalytic performance, reveal 
intricate correlations between structural characteristics and photocatalytic activity, providing a data-driven 
approach to more effective photocatalyst design. It further enables the prediction of photocatalyst behavior 
under diverse environmental conditions, thereby advancing the development of durable and high-
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performance photocatalysts for real-world applications. The integration of machine learning with 
computational methodologies establishes a dynamic and iterative framework, allowing continuous 
refinement and optimization of photocatalytic systems. This integrated approach of computational 
modeling and deep learning accelerates the design process and significantly elevates photocatalyst 
performance, addressing the fundamental limitations of traditional methodologies.

Here, this review presents a transformative approach to photocatalyst design by integrating computational 
science with deep learning technologies. Fundamental principles of photocatalysis are explored, offering a 
comprehensive foundation for understanding the key factors that drive efficiency in photocatalytic systems. 
A detailed examination of computational methodologies follows, focusing on first-principles calculations 
and HTS, which play a critical role in optimizing photocatalytic performance and accelerating the discovery 
of efficient photocatalysts. The workflow for deep-learning-assisted photocatalyst design is outlined, 
emphasizing how data collection, feature engineering, model training, and validation are integrated with 
machine learning models to guide experimental validation and enhance predictive capabilities. Deep 
learning approaches are thoroughly investigated, with attention to the discovery of novel photocatalysts, 
microstructural design, property optimization, innovative design frameworks, application exploration, and 
mechanistic insights into photocatalysis. The synergy between multidimensional computations and deep 
learning is examined, demonstrating how this integrated framework addresses the inherent challenges of 
traditional design and fosters breakthroughs in photocatalyst development. This review offers 
transformative insights that not only advance the design of high-performance photocatalysts but also 
expand their practical applications across various fields, contributing to the broader goals of environmental 
sustainability and energy efficiency.

DESIGN OF PHOTOCATALYSTS
General principle of photocatalysis
Photocatalysis has emerged as a crucial technology with applications spanning environmental remediation, 
energy conversion, and sustainable chemical production[28]. Its significance lies in its ability to harness solar 
energy to drive chemical reactions, contributing to pollution reduction, carbon neutrality, and green energy 
generation. One of the primary advantages of photocatalysis is its ability to operate in-situ without the need 
for external energy inputs, relying solely on solar energy[29]. For example, in environmental remediation, 
photocatalysis has been extensively demonstrated under natural sunlight conditions[30]. Furthermore, it 
supports simultaneous pollution reduction and carbon mitigation[31]. This is evidenced by the photocatalytic 
reduction of CO2 into useful fuels or chemicals, promoting both environmental sustainability and carbon 
neutrality[32].

The fundamental mechanism[33-35] of photocatalysis involves the excitation of electrons within a 
semiconductor upon absorption of photons with energy equal to or greater than its band gap. This 
excitation promotes electrons from the valence to the conduction band, leaving corresponding holes in the 
valence band. The photogenerated charge carriers (electrons and holes) then migrate to the surface, where 
they participate in redox reactions. Electrons predominantly participate in reduction reactions, where they 
are transferred to oxygen molecules (O2) adsorbed on the photocatalyst surface, leading to the formation of 
superoxide radicals (•O2

-). These superoxide radicals can subsequently react with protons to produce 
hydrogen peroxide (H2O2) or other reactive oxygen species (ROS), which are highly effective in degrading 
organic pollutants and reducing heavy metals. Conversely, the holes (h+) facilitate oxidation reactions by 
oxidizing water (H2O) molecules adsorbed on the photocatalyst surface, generating hydroxyl radicals (•OH), 
which are highly reactive species capable of decomposing complex organic pollutants, splitting water or 
producing hydrogen peroxide, thus contributing to sustainable production. The overall efficiency of 
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photocatalysis is primarily governed by critical factors such as charge carrier separation, charge mobility, 
and the efficient suppression of electron-hole recombination[36]. Figure 1 presents an in-depth depiction of 
the pathways undertaken by photogenerated charge carriers, emphasizing the intricate redox reactions 
occurring at the photocatalyst surface, alongside recombination processes occurring both within the bulk 
and at the surface.

The core of photocatalysis lies in the photocatalysts. Traditional photocatalysts are typically bulk 
semiconductors[38] that harness light to drive photocatalytic reactions, but they often suffer from low 
efficiency due to limited surface area and rapid recombination of charge carriers. Nanostructured 
photocatalysts[39], on the other hand, offer significantly enhanced performance due to their increased surface 
area and improved charge carrier dynamics, which help reduce recombination and enhance photocatalytic 
activity. Heterojunction systems[40,41] combine two or more semiconductors with different band structures, 
creating interfaces that facilitate more efficient charge separation and transfer, thus improving overall 
efficiency. Low-dimensional systems, such as quantum dots[42], one-dimensional[43], and two-dimensional 
(2D) structures[44,45], exhibit unique quantum confinement effects that significantly alter their electronic 
properties. Quantum dots have tunable band gaps due to their nanoscale dimensions, enabling enhanced 
light absorption and charge separation[46]. One-dimensional structures, including nanowires or nanotubes, 
provide high charge carrier mobility along their axial direction to improve performances[47]. 2D systems 
feature high surface-to-volume ratios and exceptional electronic properties, offering more active sites for 
photocatalytic reactions[48].

The performance of photocatalysts is critically determined by several key characteristics, each influencing 
different aspects of photocatalytic efficiency. (1) The microstructure, including grain size, specific surface 
area, and pore size, directly affects the availability of active sites and the overall surface reactivity; (2) 
Architecture factors, such as quantum dots, nanowires, and heterojunctions, influence light absorption and 
charge separation, with more advanced structural designs often improving charge transportation; (3) 
Composition, including stoichiometry, doping elements, and the presence of defects, plays a pivotal role in 
tuning electronic properties, thereby optimizing light absorption, charge carrier dynamics, and redox 
processes; (4) The electronic structure, particularly the band gap, density of states (DOS), and electron 
affinity, dictates the ability to absorb irradiation energy and generate charge carriers, which are essential for 
driving photocatalytic reactions; (5) Photoelectric properties, such as carrier mobility, carrier lifetime, and 
quantum yield, determine the effectiveness of converting absorbed light into chemical energy. Higher 
mobility and longer carrier lifetimes facilitate more efficient charge separation and reduce recombination. 
Table 1 lists the key characteristics of photocatalysts and their typical characterization techniques.

Common modification strategies for photocatalysts include doping[49], cocatalyst loading[50] and 
incorporating single-atom catalysts[51,52]. Latest modification mechanisms, such as defect engineering, band 
structure engineering, and interfacial engineering, enable precise control at the atomic, electronic, and 
chemical bond levels, significantly enhancing photocatalytic performance[53,54]. Recently, constructing 
heterojunctions[55,56] remains a major focus of research, with types including Type I, Type II, Z-scheme, and 
S-scheme heterojunctions being extensively studied. In particular, S-scheme heterojunctions offer distinct 
advantages[57,58], such as optimized band alignment and enhanced charge separation, which contribute to 
superior redox capabilities and reduced electron-hole recombination, making them highly promising for 
practical applications[59]. For instance, in ribbon-based water purification, these modification strategies have 
been instrumental in enhancing photocatalytic degradation efficiency by improving charge carrier 
dynamics, optimizing active sites, and facilitating the breakdown of complex organic pollutants, thereby 
demonstrating significantly superior performance[60].
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Table 1. Key characteristics of photocatalysts and typical characterization techniques

Characteristics Typical characterization technique

Grain size SEM TEM DLS AFM

Specific surface area BET BJH MIP

Pore size BET SAXS

Facet XRD TEM

Lattice symmetry XRD Neutron diffraction

Microstructure

Space group XRD Electron diffraction

Quantum dot PL HRTEM AC-TEM

Nanowire SEM TEM AFM

Single few-layer nanostructure AFM HRTEM

Architecture

Heterojunction EELS STEM

Stoichiometry EDS ICP-MS ICP-OES XPS

Doping element XPS EELS

Defect PALS HRTEM

Composition

Functional group FTIR XPS SIMS

Band structure XPS ARPES

DOS XPS

Electron affinity UPS

Electron spin ESR EPR XMCD

Band gap UV-Vis PL

VBM XPS UPS

Electronic structure

CBM XPS

Absorption UV-Vis DRS

Carrier mobility Hall effect analysis Seebeck coefficient

Carrier lifetime TRPL

Photocurrent density LSV j-V curve

Photoelectric property

Quantum yield PL

DOS: Density of states; VBM: valence band maximum; CBM: conduction band minimum; SEM: Scanning electron microscopy; TEM: transmission 
electron microscopy; DLS: dynamic light scattering; AFM: atomic force microscopy; BET: Brunauer-Emmett-Teller measurements; BJH: Barret-
Joyner-Halenda measurements; MIP: molecularly imprinted polymer; SAXS: small angle x-ray scattering; PL: photoluminescence; HRTEM: high-
resolution transition electron microscopy; AC-TEM: spherical aberration corrected transmission electron microscopy; EELS: electron energy loss 
spectroscopy; STEM: scanning transmission electron microscopy; ICP-MS: inductively coupled plasma mass spectrometry; ICP-OES: inductively 
coupled plasma-optical emission spectrometry; XPS: X-ray photoelectron spectroscopy; PALS: positron annihilation spectroscopy; FTIR: Fourier 
transform infrared spectroscopy; SIMS: Secondary-ion-mass spectroscopy; ARPES: angle-resolved photoemission spectroscopy; UPS: ultraviolet 
photoelectron spectroscopy; ESR: electron spin resonance; EPR: electron paramagnetic resonance; XMCD: X-ray magnetic circular dichroism; UV-
Vis: ultraviolet-visible absorbance spectra; DRS: diffuse reflection spectroscopy; TRPL: time-resolved photoluminescence; LSV: linear sweep 
voltammetry.

Traditional procedure of photocatalyst design
Traditional photocatalyst design has predominantly relied on empirical methods, where photocatalysts are 
synthesized and evaluated through trial-and-error experimentation. The process typically begins with 
selecting semiconductors based on properties such as band gap and chemical stability, which indicate 
potential photocatalytic activity. Techniques such as sol-gel synthesis[61], hydrothermal methods[62], or 
chemical vapor deposition[63,64] are commonly used to fabricate photocatalysts. After synthesis, thorough 
characterization is conducted using methods such as transmission electron microscopy (TEM), X-ray 
photoelectron spectroscopy (XPS), and ultraviolet-visible absorbance spectra (UV-Vis) spectroscopy to 
assess key features such as morphology, electronic structure, and light absorption properties. The 
photocatalysts are then tested under controlled laboratory conditions to determine their efficiency in 
processes such as pollutant degradation or water splitting.
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Figure 1. Fundamental mechanism of photocatalysis[37]. Copyright 2022, Elsevier.

Despite its long-standing use, this traditional approach presents several inherent limitations. The trial-and-
error nature of the process is highly time-consuming and resource-intensive, requiring extensive 
experimentation without a guarantee of success. Additionally, the complexity of photocatalytic mechanisms, 
such as charge carrier dynamics, surface reactions and photon absorption, cannot be fully understood or 
optimized using experimental methods alone. As a result, many promising photocatalysts may go 
undiscovered, and the development of highly efficient systems is often impeded by the lack of predictive 
capability in traditional design approaches. These limitations have driven growing interest in computational 
techniques and data-driven methodologies to accelerate the discovery and optimization of photocatalysts[65].

Progress of deep learning in photocatalyst design
Machine learning was first applied in materials science to predict properties and accelerate the discovery of 
new materials[66,67]. Early models, including decision trees[68] and support vector machines[69], were employed 
to analyze datasets and detect patterns, thereby improving the efficiency of material screening and 
optimization processes. The transition from traditional machine learning to deep learning represented a 
paradigm shift in the field[70], as deep learning, particularly through neural networks, allowed for the 
extraction of more complex, high-dimensional relationships from large datasets. This development 
significantly enhanced predictive accuracy and deepened our understanding of the intricate behaviors 
governing material properties. The integration of deep learning in photocatalyst design has experienced 
remarkable growth, as evidenced by the sharp increase in publications and citations from 2012 to 2024 
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Figure 2. General description of deep-learning-assisted photocatalyst design. (A) Trends of publications and citations in 2012-2024; (B) 
Clustering diagram of keywords; (C) Contribution from top 20 journals.

[Figure 2A]. This upward trend underscores the expanding role of data-driven approaches in optimizing 
photocatalyst properties, highlighting the continued momentum of deep learning in transforming materials 
design. Table 2 summarizes notable research teams worldwide applying deep learning to design 
photocatalysts, highlighting diverse global efforts that underscore the expanding role of data-driven 
approaches in advancing photocatalysis.

In Figure 2B, the keyword clustering analysis highlights three primary thematic areas in deep-learning-
assisted photocatalyst design: methodology, materials, and applications. Prominent keywords such as 
“Learning”, “Machine”, and “Network” emphasize the critical role of machine learning techniques, 
particularly neural networks, in optimizing photocatalytic processes. The focus on “band gap” further 
suggests the integration of deep learning for theoretical predictions and mechanistic insights, supported by 
computational methods such as “DFT”. In terms of materials, clusters around “TiO2” and “metal oxide” 
indicate widely studied photocatalysts. Keywords such as “rate” and “density” reflect efforts to optimize 
material properties, including electronic structure and surface functionalities. Meanwhile, keywords such as 
“degradation”, “water splitting” and “hydrogen” underscore the key applications of photocatalysis, such as 
environmental remediation through pollutant degradation and energy conversion via water splitting. The 
presence of terms such as “hydrogen” and “oxidation” highlights the critical role of photocatalysis in 
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Table 2. International efforts in deep learning-based photocatalyst design

Researcher Institution Country/Region

Yang Liu, Zhenhui Kang Soochow University China P.R.

Yong-Bin Zhuang, Jun Cheng Xiamen University China P.R.

Yunjin Yu, Yadong Wei Shenzhen University China P.R.

Ting Ren, Xin Li Institute of Electrical Engineering, CAS China P.R.

Jianmei Yuan, Yuliang Mao Xiangtan University China P.R.

Hui-Ming Cheng, Gang Liu Institute of Metal Research, CAS China P.R.

Jinlan Wang Southeast University China P.R.

David A. Winkler, Rachel A. Caruso Royal Melbourne Institute of Technology Australia

Geoffrey A. Ozin University of Toronto Canada

Xiaoying Zhuang, Alexander Shapeev Leibniz University Hannover Germany

Andrew I. Cooper University of Liverpool Great Britain

Zhenhua Pan, Kenji Katayama Chuo University Japan

Alicja Mikolajczyk Fahrenheit Universities Poland

Ramazan Yildirim Bogazici University Türkiye

Xiong Yu University System of Ohio United States

renewable energy generation and environmental sustainability. This categorization illustrates how deep 
learning fosters innovation across fundamental research and practical applications in photocatalysis.

High-impact journals have been instrumental in shaping the field, with several leading publications 
contributing significantly to the dissemination of cutting-edge research. As depicted in Figure 2C, Applied 
Catalysis B-Environment and Energy has emerged as a key platform. Chemical Reviews and ACS Applied 
Materials and Interfaces have also made substantial contributions, reinforcing the importance of this 
interdisciplinary approach. Additionally, journals such as Advanced Energy Materials and Journal of the 
American Chemical Society have been central to promoting advances in deep-learning-enhanced 
photocatalyst design, further solidifying the role of this technology in the future of materials discovery and 
development.

The photocatalyst design has seen substantial progress in materials, applications, mechanistic 
understanding, algorithms, and computility, as shown in Figure 3. Early photocatalysts, such as TiO2 and 
ZnO, have evolved into more advanced systems, including nanomaterials, heterojunctions, quantum dots, 
and 1D/2D structures, greatly expanding their functionality. Initial applications focused on environmental 
remediation, specifically organic pollutant degradation and heavy metal reduction, but have since 
diversified to include CO2 reduction, hydrogen production, sterilization, and nitrogen fixation, reflecting 
the growing versatility of photocatalysis in addressing global issues. Mechanistic insights have deepened, 
allowing precise control over electron-hole pair dynamics, band structures, and surface reactions, which has 
led to significant improvements in stability and efficiency. Concurrently, advancements in deep learning 
algorithms have enabled more accurate predictions of photocatalytic behavior, accelerating the discovery 
and optimization of photocatalytic systems. Additionally, enhanced computility, driven by breakthroughs in 
GPUs and parallel computing, has allowed researchers to simulate complex processes and manage large 
datasets, pushing the boundaries of what can be achieved in photocatalyst design. The interplay between 
deep learning and photocatalyst development is driving rapid innovation, where new machine learning 
models refine material discovery and mechanistic insights, while advances in photocatalysis provide rich 
data that fuel further algorithmic evolution. This dynamic feedback is accelerating progress toward the next 
generation of high-performance photocatalysts, with far-reaching implications for environmental and 
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Figure 3. Progress of deep learning algorithm in photocatalyst design, application and mechanism together with computility 
development. DNN: Deep Neural Network; CNN: Convolutional Neural Network; GNN: Graph Neural Networks; SVR: support vector 
regression; RNN: Recurrent Neural Network; LSTM: Long Short-Term Memory; GRU: Gated recurrent unit; GAN: Generative Adversarial 
Networks; KAN: Kolmogorov-Arnold Network; KNN: K-nearest neighbors; GPR: Gaussian process regression; RFR: random forest 
regression; FNN: feed-forward neural network; ENIAC: electronic numerical integrator and computer; UNIVAC I: universal automatic 
computer I; ARM: advanced risc machines; GTX: Giga texel shader eXtreme; RTX: ray tracing texel eXtreme.

energy applications.

COMPUTATIONAL DESIGN OF PHOTOCATALYSTS
First-principles calculation
First-principles calculations are a cornerstone of modern computational materials design, offering insights 
into the fundamental properties of photocatalysts without relying on empirical parameters[71,72]. Based on 
quantum mechanical principles, particularly DFT, first-principles methods allow for the accurate prediction 
of electronic structure, band gaps, and surface reactions, which are critical for understanding photocatalytic 
activity. By solving the Schrödinger equation for electrons, first-principles calculations describe the behavior 
of charge carriers, providing detailed information about electron-hole pair dynamics, defect states, and 
adsorption properties at the atomic level. DFT plays a pivotal role in these first-principles approaches, 
providing a practical and efficient method to approximate the many-body electron problem. Using DFT, 
properties such as charge density distribution, adsorption energies, and band structure can be determined 
with a level of detail that aids in deciphering the reactivity and efficiency of photocatalysts[73]. The use of 
generalized gradient approximation (GGA)[74,75] or more sophisticated hybrid functionals[76] allows for 
refined predictions that align well with experimental observations, offering valuable insights that drive the 
rational design of advanced photocatalysts. Computational approaches to property optimization, such as 
cocatalyst addition and elemental doping, can be utilized to modify the electronic properties of 
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photocatalysts, including increasing the band gap and enhancing charge separation. These calculated 
modifications are essential for reducing electron-hole recombination and ultimately improving 
photocatalytic efficiency, addressing complex design challenges effectively[77].

As listed in Table 3, several widely used software packages are central to these calculations. VASP (Vienna 
Ab initio Simulation Package), one of the most commonly used tools, integrates projector augmented wave 
(PAW)/Perdew-Burke-Ernzerh (PBE) modules and hybrid functionals such as HSE06 for more accurate 
electronic structure calculations. Quantum ESPRESSO, known for its use of the PBE functional and DFT-
D2 for dispersion corrections, is frequently employed for band gap and optical absorption predictions. 
Additionally, Materials Studio, with modules such as CASTEP, offers robust capabilities for calculating 
electronic properties, including band structure and light absorption coefficients. These software tools, 
combined with the growing computational power, enable researchers to predict the performance of 
potential photocatalysts with high precision, guiding experimental validation and accelerating the discovery 
process. These computational parameters, such as band gap, adsorption energy, and Gibbs free energy, are 
not only applicable to specific photocatalysts but also have broad applicability across various 
semiconductors for predicting photocatalytic activity. The universality of these first-principles-derived 
parameters across different systems provides a solid foundation for the theoretical design of photocatalysts. 
Through accurate calculations, these parameters help identify candidates with optimal electronic structures, 
thereby accelerating the development of efficient photocatalysts.

Table 3 also lists some classical works of photocatalyst designs based on first-principles calculation. One 
notable example exhibited in Figure 4A is the work by Shen et al., where DFT calculations played a pivotal 
role in designing a defective ZnTi-LDHs/Ti3C2O2 photocatalyst aimed at improving the selectivity for C2 
organics in the photocatalytic reduction of CO2

[78]. The DFT simulations revealed that the formation of a 
Schottky junction significantly enhanced charge separation and increased the concentration of 
photogenerated electrons on the photocatalyst surface, while oxygen vacancies facilitated CO2 adsorption 
and activation by lowering the Gibbs free energy barrier for CO intermediate formation. This DFT-guided 
strategy not only optimized C2 selectivity but also provided detailed insights into the reaction mechanisms, 
underscoring the crucial role of first-principles calculations in advancing the design of photocatalysts for 
high-value product formation. In another example shown in Figure 4B, Wang et al. utilized DFT to guide 
the molecular engineering of g-C3N4 through the integration of donor-acceptor units to address inherent 
structural defects[79]. DFT calculations were employed to predict the optimal electron-donating unit, with 
benzaldehyde identified as the ideal candidate to enhance intramolecular charge transfer and narrow the 
band gap. This theoretical prediction was validated experimentally, where the modified g-C3N4 
demonstrated a 3.73-fold improvement in photocatalytic tetracycline degradation compared to the 
unmodified version, indicating the critical role of DFT in optimizing photocatalysts for environmental 
applications. In summary, first-principles calculations, particularly those grounded in DFT, have proven 
indispensable in predicting and fine-tuning the electronic and structural properties of photocatalysts, 
thereby facilitating the rational design of highly efficient systems across a wide range of applications.

HTS
HTS[91,92] is a technique that rapidly evaluates large sets of materials through the integration of 
computational and experimental methods, facilitating the efficient identification of candidates with optimal 
properties. It is instrumental in materials science, allowing for the automation of the evaluation process, 
which significantly accelerates the discovery and optimization of novel materials. HTS allows for the swift 
screening of various compositions, surface modifications, and structural configurations, identifying those 
with enhanced photocatalytic performance. This method reduces the time and resources typically required 
for experimental validation and expands the search space for high-performance photocatalysts. The HTS 
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Table 3. Photocatalyst design based on first-principles calculation

Photocatalyst Software/Package Property Ref.

Ag- and Cu-based
delafossite ABO2

VASP: GGA+U, PAW Band structure, DOS, work functions, absorption 
coefficient

[74]

SWCNTs/g-C3N4 
nanocomposites

VASP: PAW/PBE, DFT-D2, HSE06, TDHF Band gap, charge transfer, light absorption, Gibbs 
free energy

[76]

LDHs/Ti3C2O2 VASP: PAW, GGA, PBE Adsorption activation, Gibbs free energy [78]

g-C3N4 Gaussian 16 package Band structure, HOMO, LUMO, electrostatic 
potential, DOS

[79]

GeC monolayer Quantum ESPRESSO: PBE, DFT-D2 Band gap, optical absorption [80]

Non-metal doped MoSe2 VASP: PAW, PBE Band structure, formation energy, redox potential [81]

N-doped ZnO DFT+Dmol3 Band gap, local density state [82]

Nb-doped LiSbO3 VASP: SCAN, PAW, MBJ Bandgap, elastic modulus, ferroelectric properties [83]

Pt-C/N/P/S-ZrO2 Materials Studio: CASTEP, GGA, PBE, OTFG, 
Tkatchenchen-Scheffler, HSE06

Band structure, HER, free energy, work function, 
DOS, light absorption

[84]

M@2DPI VASP: PAW, PBE, DFT-D3, HSE06 Band structure, CO2RR, HER [85]

Pt-non-metal-doped WS2 VASP: PAW, PBE, DFT-D3, HSE06 Band structure, Gibbs free energy, CO2RR [86]

Mo-SnO2 Materials Studio: CASTEP, GGA, PBE Band structure, DOS, absorption coefficient [87]

Co-doped g-C3N4 VASP: PAW, PBE, GGA Band structure, charge density difference, optical 
absorption

[88]

SiC/WS2 Materials Studio: meta-GGA SCAN, CASTEP, 
HSE06

Band structure, effective mass, optical property [89]

C4N/MoS2 VASP: PAW, PBE, GGA, DFT-D2 Band structure, charge density difference, optical 
absorption, electrostatic potential

[90]

DOS: Density of states; VASP: Vienna Ab initio Simulation Package; GGA: generalized gradient approximation; PAW: projector augmented wave; 
PBE: Perdew-Burke-Ernzerh; DFT: density functional theory; MBJ: modified Becke Johnson; HSE06: Heyd-Scuseria-Ernzerhof 06 functional; OTFG: 
on-the-fly generated; CASTEP: cambridge sequential total energy package; TDHF: time-dependent Hartree-Fock; SWCNTs: single-walled carbon 
nanotubes; LDHs: layered double hydroxide; CO2RR: CO2 reduction reaction; HER: hydrogen evolution reaction; HOMO: highest occupied 
molecular orbital; LUMO: lowest unoccupied molecular orbital.

Figure 4. Typical works of photocatalyst design by first-principle calculations. (A) LDHs/Ti3C2O2 designed by DFT calculation for 
photocatalytic reduction of CO2 to C2 organics[78]. Copyright 2022, Elsevier; (B) DFT predirected design of donor-acceptor structured g-
C3N4 for efficient photocatalytic tetracycline abatement[79]. Copyright 2023, Wiley. DFT: Density functional theory; TDOS: total density 
of states; HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; PDOS: partial density of states; 
LDHs: layered double hydroxide.

process in photocatalyst design typically starts with the creation of a comprehensive library of candidate 
materials, generated through either computational predictions or experimental synthesis. These candidates 
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Figure 5. Photocatalyst designs by high-throughput screening. (A) Machine learning accelerated exploration of ternary organic 
heterojunction photocatalysts for sacrificial hydrogen evolution[93]. Copyright 2023, American Chemical Society; (B) High-throughput 
computational screening of Janus 2D III-VI van der Waals heterostructures for solar energy applications[94]. Copyright 2022, American 
Chemical Society; (C) Data-driven materials discovery of robust and synthesizable photocatalysts for CO2 reduction[95]. Copyright 2019, 
Springer; (D) Data-driven discovery of intrinsic direct-gap 2D materials as potential photocatalysts for efficient water splitting[96]. 
Copyright 2024, American Chemical Society. PBE: Perdew-Burke-Ernzerh; ML: machine learning; HSE: Heyd-Scuseria-Ernzerhof.

are then evaluated in a systematic manner, employing automated computational simulations or high-
throughput experimental platforms to assess critical photocatalytic properties, such as band gap, charge 
carrier dynamics, and surface reactivity. Based on the screening results, the most promising candidates are 
identified for in-depth experimental validation and further optimization, streamlining the discovery of 
high-performance photocatalysts.

HTS has been successfully applied in several key studies to accelerate the discovery and optimization of 
photocatalysts, demonstrating its effectiveness in identifying high-performance candidates [Figure 5]. In a 
study by Yang et al., HTS combined with machine learning was employed to explore ternary organic 
heterojunction photocatalysts for sacrificial hydrogen evolution[93]. By conducting 736 experiments out of a 
possible 4,320 combinations, the most active systems achieved photocatalytic hydrogen production rates 
exceeding 500 mmol·g-1·h-1, showcasing the power of HTS in rapidly identifying high-performance 
photocatalysts. Sa et al. employed HTS to identify promising 2D Janus III-VI van der Waals 
heterostructures for solar energy applications[94]. From a total of 19,926 heterostructures, 1,035 were selected 
based on stability, and further application-driven screening revealed 66 photocatalysts and 71 solar cell 
candidates, highlighting the efficiency of HTS in pinpointing top-performing systems for energy 
conversion. Singh et al. conducted a large-scale HTS of 68,860 potential photocathodes for CO2 reduction, 
utilizing first-principles computations to assess synthesizability, corrosion resistance, visible-light 
absorption, and electronic structure compatibility with fuel synthesis[95]. Out of this vast pool, only 52 
systems met all criteria, with 43 newly discovered candidates emerging as promising for further exploration, 
underscoring the capacity of high-throughput methods to efficiently filter through vast datasets and identify 
high-performing photocatalysts. Thermodynamic stability is initially prioritized to eliminate impractical 
candidates and minimize computational burden, while band edge alignment is assessed last due to its 
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Figure 6. Workflow for deep-learning-assisted photocatalyst design.

computational intensity, applied only to candidates that meet all preceding criteria. Wang et al. employed a 
data-driven, large-scale screening approach to explore intrinsic direct-gap 2D systems for photocatalytic 
water splitting[96]. Through a three-stage process of high-throughput DFT calculations, 16 candidates were 
identified as highly promising for efficient solar-to-hydrogen conversion, demonstrating the power of HTS 
in uncovering potential photocatalysts from vast, uncharted chemical spaces. HTS has emerged as a 
powerful tool for the rapid identification of high-performance photocatalysts by systematically exploring 
vast chemical spaces through a combination of computational modeling and experimental techniques. This 
approach not only expedites the discovery of photocatalysts with enhanced properties but also provides an 
efficient pathway for optimizing systems prior to in-depth experimental validation.

WORKFLOW FOR DEEP-LEARNING-ASSISTED PHOTOCATALYST DESIGN
Figure 6 presents the workflow for deep-learning-assisted photocatalyst design, which integrates several 
critical stages. The process begins with data collection, followed by featurization, where raw data are 
transformed into meaningful descriptors. Model training is conducted to optimize deep learning models 
based on these features, and model evaluation ensures the accuracy and reliability of predictions. The 
trained model is then applied to explore the unknown materials space, identifying promising photocatalysts. 
Based on the evaluation outcomes, model improvement is implemented, leading to the discovery of 
materials with superior properties that advance to practical applications, forming a continuous cycle of 
innovation.
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Data collection and preprocess
Data forms the essential backbone of any deep learning model. In the photocatalyst design, data is typically 
derived from experimental measurements, published literature, and high-throughput computational 
simulations. These sources provide extensive information on material properties, performance metrics, and 
structural features, offering valuable insights into photocatalytic behavior. The process of data collection 
and preprocessing is critical for ensuring dataset quality and consistency. Data cleaning is conducted to 
address issues such as duplicate entries, missing values, and errors. To handle missing data, various 
imputation strategies were employed, tailored to the characteristics of the dataset and the specific 
attributes[97]. A hybrid framework leveraging Markov Logic Networks (MLNs) was implemented to infer 
probable values by supplementing insufficient integrity constraints with learned instantiated rules, thus 
establishing a robust data cleaning mechanism[98]. Additionally, an "active label cleaning" strategy[99] was 
utilized to improve data quality, particularly in datasets with label noise. This method prioritized samples 
for re-annotation based on estimated label correctness and labeling difficulty, enabling a more targeted and 
efficient correction process compared to random selection, thereby optimizing data preparation and 
significantly enhancing the overall quality of the training dataset.

Standardization techniques such as min-max scaling and z-score normalization[100] are employed to ensure 
uniformity across different data sources, particularly when integrating datasets with varying formats. For 
feature extraction, methods such as principal component analysis (PCA) and autoencoders[101,102] are 
commonly used to reduce dimensionality and isolate the most relevant characteristics, transforming raw 
data into a structured format suitable for deep learning model inputs. Table 4 lists the popular databases 
available for photocatalyst design. These databases offer a wide array of data, ranging from crystal structures 
(ICSD, CSD, COD) to computational predictions and material properties (Materials Project, AFLOW, 
NREL). Some databases, including MatWeb and MatNavi, focus on experimental data, while others, such as 
the Open Quantum Materials Database (OQMD), provide computationally derived properties and high-
throughput calculations, enabling researchers to explore new material candidates and optimize 
photocatalytic performance.

Feature engineering and descriptors
Feature engineering[103] is a fundamental step in constructing deep learning models for the design of 
photocatalysts, where raw data must be transformed into structured and informative features that reflect the 
photocatalyst properties. This process directly affects the model capability to capture complex relationships 
within the data, ultimately determining its accuracy and predictive power. A crucial aspect of feature 
engineering is the use of descriptors, which quantitatively represent the physical and chemical 
characteristics of photocatalysts. Selecting the appropriate descriptors is essential for ensuring the model 
focuses on the most relevant features, significantly enhancing its ability to predict photocatalytic 
performance and optimize photocatalyst design[104].

Common descriptors in photocatalyst design include electronic structure, geometric structure, and surface 
properties, as listed in Table 5. Electronic structure descriptors, such as band gap, valence band maximum 
(VBM), conduction band minimum (CBM), and DOS, are crucial for understanding light absorption and 
charge carrier dynamics. Geometric descriptors, including size, morphology, crystal planes, and lattice 
symmetry, provide insights into the spatial arrangement of atoms and its effect on photocatalytic activity. 
Surface property descriptors, including specific surface area, pore structure, and surface functional groups, 
influence reactivity and adsorption behavior. These descriptors are essential for building deep learning 
models that can accurately predict and optimize photocatalytic performance across various applications, 
such as water splitting, pollutant degradation, and hydrogen production. Furthermore, the descriptors 
encompass not only electronic structure parameters but also geometrical and surface characteristics, such as 
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Table 4. List of popular databases available for photocatalyst design

Name Database details Data source

ICSD Inorganic Crystal Structure Database Published structures

CSD Crystal structure data of small molecule organic compounds and metal-organic 
compounds

Experiments

COD Organic, inorganic, metal-organic, and mineral structures Published and unpublished 
structures

Materials Project Provide material crystal structure and physicochemical properties, as well as other 
calculation tools such as structures and phase diagrams

Calculation using standard 
calculation scheme

Chem Spider The structure of chemical organic materials Calculation and experiments

AFLOW Structure and properties High-throughput calculation

Harvard Clean Energy 
Project

Properties of organic solar compounds High-throughput calculation

Springer Materials High quality numerical database on material properties Published structures

MatWeb Material physical and chemical properties, grades Experiments

MatNavi Phase diagrams and properties of metals, inorganic non-metals, polymers, 
superconductors, and other materials

Calculation and experiments

Materials Cloud Open and seamless sharing of computing science resources Computational science

Khazana Structure and property, tools to design materials by learning from the data Calculation

NREL Materials 
Database

Properties of materials for renewable energy applications Calculation

Open Materials 
Database

Electronic structure database for 3D organic crystals Calculation

Open Quantum 
Materials Database

Thermodynamic and structural properties DFT calculation

Topological Materials 
Database

Topology Material Database High-throughput computation

DFT: Density functional theory.

Table 5. Typical descriptors for photocatalysts in deep-learning approach

Material Application Descriptors Ref.

MOFs Water splitting Morphology, pore structure, band structure, bandgap, VBM, CBM, carrier mobility [105]

Conjugated
Polyelectrolytes

Hydrogen 
production

Morphology, surface functional groups, band structure, bandgap, VBM, CBM [106]

Bi12TiO20 Cefixime removal Morphology, size, specific surface area, space group, stoichiometry, band structure, 
bandgap

[107]

Bi2O3/MnO2 Acetaminophen 
degradation

Morphology, size, specific surface area, porous structure, surface functional groups, crystal 
planes, band structure, light absorption coefficient, carrier mobility, carrier lifetime

[108]

g-C3N4 NO removal Specific surface area, pore structure, doping atoms, bandgap, absorption wavelength [109]

TiO2 Phenazopyridine 
ozonation

Morphology, size, specific surface area, porous structure, surface functional groups, crystal 
face, band structure, light absorption coefficient, carrier mobility, carrier lifetime, 
photocurrent density, absorption wavelength

[110]

ZnO Dye degradation Morphology, size, specific surface area, surface functional groups, crystal plane, lattice 
symmetry, space group, band structure, carrier mobility, carrier lifetime, light absorption 
coefficient, absorption wavelength

[111]

TiO2-biochar BB41 degradation Morphology, size, specific surface area, pore structure, surface functional groups, crystal 
plane, lattice symmetry, band structure, carrier mobility, light absorption coefficient, 
absorption wavelength

[112]

2D materials Water splitting Size, band structure, bandgap, VBM, CBM, carrier mobility, carrier lifetime [113]

Co3O4/TiO2 MB degradation Morphology, size, surface functional groups [114]

VBM: Valence band maximum; CBM: conduction band minimum; MOFs: metal organic frameworks; MB: methylene blue; BB41: Basic Blue 41.

pore structure and surface functional groups. These features help establish nonlinear correlations between 
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semiconductor properties and photocatalytic performance, facilitating a generalized performance prediction 
across various photocatalysts. Deep learning approaches leverage these diverse features to extract patterns 
from large datasets, aiding in identifying and optimizing the most promising candidate and enhancing the 
efficiency of photocatalyst design and application.

Model construction and training
The construction and training of deep learning models for photocatalyst design involve defining the model 
architecture, selecting relevant descriptors as input features, and optimizing the model parameters. Typical 
deep learning models with their features and applications are listed in Table 6. Traditional deep learning 
models, including deep neural networks (DNNs)[115], are widely used for classification and regression in 
predicting photocatalytic properties. Convolutional neural networks (CNNs)[116] analyze spatial data, aiding 
in surface and structural characterization. Recurrent neural networks (RNNs)[117] and Long Short-Term 
Memory (LSTM)[118] handle time-series data, crucial for studying reaction kinetics. State-of-the-art models 
such as transformers[119] capture complex dependencies using self-attention mechanisms[120]. Shapley 
additive explanations (SHAP)[121] and Gradient-weighted class activation mapping (Grad-CAM)[122] improve 
model interpretability by highlighting key features. Kolmogorov-Arnold networks (KANs)[123] are adept at 
modeling nonlinear systems, revealing insights into complex photocatalytic processes.

Model validation and evaluation
Model validation and evaluation are essential steps in ensuring the robustness and effectiveness of deep 
learning models in photocatalyst design. These processes verify predictive accuracy and generalization 
ability, ensuring alignment between model predictions and experimental data, while mitigating issues such 
as overfitting and underfitting[124]. Key evaluation metrics include mean squared error (MSE) and root MSE 
(RMSE), which quantify prediction errors, and R-squared (R²), which measures the proportion of variance 
explained by the model. Cross-validation and hold-out methods[125] are commonly used to partition datasets 
into training and testing subsets, providing unbiased estimates of model performance.

DEEP LEARNING APPROACHES IN PHOTOCATALYST DESIGN
Building on the deep-learning-assisted workflow outlined in the previous section, deep learning techniques 
have profoundly transformed multiple facets of photocatalyst design. These approaches encompass six 
critical areas: novel photocatalyst discovery, microstructure design, property optimization, innovative 
methodologies, application exploration, and mechanistic insights into photocatalytic processes. The 
following sections provide a detailed examination of each area, illustrating how deep learning drives 
advancements in the design and development of high-performance photocatalysts.

Discovery of novel photocatalysts
Deep learning has revolutionized the discovery of novel photocatalysts by enabling the rapid screening of 
vast chemical spaces and predicting materials with superior photocatalytic properties. By leveraging data-
driven models, deep learning accelerates the identification of candidates optimized for light absorption, 
charge separation, and photocatalytic efficiency, significantly reducing the time and resources required 
compared to traditional experimental approaches.

A recent study[126] utilized machine learning to design perovskite oxide materials for photocatalytic water 
splitting, addressing the inefficiency of traditional trial-and-error methods in discovering new visible-light 
photocatalysts, as shown in Figure 7A. The study constructed structural-property models to predict 
hydrogen production rates and optimal bandgaps using algorithms such as gradient boosting regression 
(GBR), support vector regression (SVR), and backpropagation artificial neural networks (BPANN). The 
feature selection process began with an initial set of 24 features, comprising 18 atomic parameters and six 
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Table 6. Typical deep learning models with their features and applications

Deep learning model Features Applications

DNN Multi-layer architecture Classification, regression

CNN Convolutional layers for spatial data Image classification, object detection

RNN Sequence modeling Time-series, speech recognition

LSTM Long-term dependency handling Time-series forecasting

GAN Adversarial training Image generation, data augmentation

GNN Graph structure processing Social networks, drug discovery

Transformer Self-attention mechanism NLP, machine translation

SHAP Feature importance attribution Model interpretability, finance

Grad-CAM Visual attention mapping Model transparency, medical imaging

KAN Universal function approximation Nonlinear system modeling

DNN: Deep Neural Network; CNN: Convolutional Neural Network; RNN: Recurrent Neural Network; LSTM: Long Short-Term Memory; GAN: 
Generative Adversarial Networks; GNN: Graph Neural Networks; SHAP: shapley Additive explanations; Grad-CAM: Gradient-weighted Class 
Activation Mapping; KAN: Kolmogorov-Arnold Network.

Figure 7. Machine learning aided discovery of novel photocatalysts. (A) Machine learning aided design of perovskite oxide materials for 
photocatalytic water splitting[126]. Copyright 2021, Elsevier; (B) Machine learning strategy for designing high-performance photoanode 
catalysts[127]. Copyright 2023, Royal Society of Chemistry.
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experimental conditions. These features were then reduced to 20 through an initial filtering step, focusing 
on eliminating redundancies. Subsequently, advanced selection techniques such as Max Relevance Min 
Redundancy (mRMR) and embedded feature selection were applied, ultimately narrowing the set to 7-9 key 
features that significantly enhanced model accuracy while minimizing overfitting. The BPANN model 
achieved the highest prediction accuracy for hydrogen production, while GBR showed the best performance 
for bandgap prediction. Ultimately, 14 promising perovskite photocatalysts were identified from 30,000 
candidates, and two online web servers were developed to share the prediction models, allowing public 
access for future research. Huang et al. applied machine learning techniques to address the complex task of 
selecting optimal cocatalysts for BiVO4 photoanodes in photoelectrochemical systems, as exhibited in 
Figure 7B[127]. The approach involved training multi-layer perceptron neural networks and tree-based 
ensemble models to predict high-performance cocatalyst-photoanode combinations. The random forest 
model achieved a classification accuracy of 96.30%, with cocatalyst type and preparation method identified 
as the most influential factors affecting photocatalytic performance. Additionally, the study utilized SHAP 
to derive heuristic rules for guiding the selection of promising cocatalyst/photoanode systems.

There are also some successful cases in novel photocatalyst design accelerated by deep learning. Machine 
learning has been applied to the design of TiO2-coated glass for improved NOx removal efficiency[128]. 
Additionally, core-shell Au-silica nanoparticles[129], lead-free Bi-based perovskites[130], and g-C3N4-based 
single-atom photocatalysts[131] have been identified through deep-learning approaches. Choudhary et al. 
developed the InterMat framework, which combines DFT and GNN to predict band offsets in 
semiconductor interfaces, enabling the rapid screening of over 1.4 trillion potential interfaces[132]. This large-
scale model, which is publicly available, offers an efficient tool for discovering novel photocatalysts. The 
application of deep learning in the discovery of novel photocatalysts has significantly accelerated the 
identification and design of high-performance photocatalytic systems, demonstrating its transformative 
impact across various applications.

Microstructure design of photocatalysts
The microstructure of photocatalysts is critical in determining their efficiency, as it directly affects light 
absorption, charge separation, and surface activity. Microstructures such as heterojunctions provide 
significant advantages by promoting more efficient charge separation and transfer at interfaces, which in 
turn enhances overall photocatalytic performance. Guevarra et al. employed a deep learning-based materials 
structure-property factorization (MSPF) to accelerate the design of photocatalyst structures[133] [Figure 8]. 
This approach utilized Deep Reasoning Networks (DRNets) for phase mapping and matrix factorization for 
modeling key properties, revealing synergistic interactions between BiVO4-like and Cu-based phases that 
significantly enhanced photocatalytic performance. The study highlights the role of deep learning in 
advancing structural innovation and optimizing complex photocatalytic systems.

Building on recent advances, further efforts have utilized deep learning models to explore complex 
structural modifications. Jiang et al. developed an interpretable CNN to predict active sites involved in TiO2

-mediated photocatalytic degradation of organic contaminants[134]. The model employed EfficientNet to 
extract critical structural features and utilized Grad-CAM to highlight molecular regions most influential in 
determining degradation rates. Similarly, Zhou et al. applied graph CNNs (GCNNs) to establish a structure-
property relationship for nanoporous cobalt zirconate, predicting ammonia yield from photocatalytic 
nitrogen fixation based on structural parameters such as pore volume and surface area[135]. Therefore, the 
integration of deep learning in microstructural design has significantly advanced the optimization of 
photocatalyst structures, leading to enhanced performance across various systems, including 
heterostructures and perovskite oxides.
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Figure 8. Phase mapping in the Bi-Cu-V oxide system. (A) Photographs of 4 sputter-deposited composition libraries in Bi–Cu–V oxide 
system; (B) Representative XRD patterns collected on the composition libraries, where each XRD pattern is plotted at the location of the 
composition in the Bi–Cu–V composition graph; (C) The DRNets solution for one composition, showing that the XRD pattern of the Bi0.11

Cu0.39V0.50 oxide sample is composed of 42% BiVO4 and 58% Cu2V2O7; (D) The resulting phase map of the primary 14 of the 21 phases 
identified by DRNets, where each phase has a unique symbol whose point size indicates phase concentration in the composition 
graph[133]. Copyright 2022, Springer Nature. XRD: X-ray diffraction; DRNets: deep reasoning networks.

Property optimization of photocatalysts
Predicting key properties of photocatalysts by deep learning models has emerged as a critical research area, 
which offers high-precision predictions, greatly enhancing the optimization of photocatalytic performance. 
Bonke[136] employed machine learning algorithms to optimize the multivariable performance of a self-
assembled photocatalytic system for CO2 reduction [Figure 9]. By defining a holistic performance metric 
that integrates multiple figures of merit, the model guided experimental optimization of yield, quantum 
yield, turnover number, frequency, and selectivity simultaneously. Additionally, Wang et al. demonstrated 
the efficacy of intelligent algorithms, particularly artificial neural networks (ANNs), in optimizing 
photocatalyst properties[137]. These models enable accurate predictions of key photocatalytic performance 
metrics, significantly reducing the time and resources required for experimental iterations, thereby 
accelerating the design of efficient photocatalysts. This methodology provided a standardized approach for 
optimizing multimetric photocatalytic systems, offering deeper insights into performance bottlenecks and 
accelerating advancements in photocatalysis.

Beyond multivariable optimization, machine learning has been extensively applied to enhance the 
performance of diverse photocatalytic systems. For instance, random forest models have been used to assess 
the contribution of pretreatment methods on TiO2 surfaces for CO2 reduction[138], while CatBoost models 
have optimized malachite green degradation efficiency using noble metal-doped BiFeO3 (NM-BiFeO3) 
composites[139]. Additionally, decision tree models have predicted gas and liquid product types in 
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Figure 9. Multivariable multimetric optimization of self-assembled photocatalytic CO2 reduction performance using machine learning 
algorithms. (A) Overview of the workflow; (B) Holistic improvement measured by objective function alongside improvement of both 
YieldCO and TOFCO; (C) Ascending YieldCO and corresponding TOFCO

[136]. Copyright 2024, American Chemical Society. TON: Turnovers 
for CO formation; TOF: turnover frequency; QY: quantum yield.

photocatalytic CO2 reduction over metal-organic frameworks[140]. Gated recurrent unit (GRU) neural 
networks have forecasted hydrogen production in continuous water splitting systems[141]. Moreover, GBR 
methods have modeled the degradation of persistent pollutants such as perfluorooctanoic acid (PFOA)[142]. 
Through the integration of experimental data and theoretical models, deep learning has significantly 
enhanced the ability to predict and optimize key photocatalytic properties, such as light absorption, 
photocatalytic efficiency, and degradation performance, driving improvements across diverse applications 
in photocatalyst design.

Novel deep learning approaches of photocatalyst design
Beyond the common deep learning models, novel approaches continue to emerge, offering enhanced 
capabilities for photocatalyst design. These advanced methods improve adaptability and the ability to 
handle complex relationships in large datasets, driving significant progress in the field. Figure 10 reveals a 
hybrid method combining computational fluid dynamics (CFD), ANNs, and genetic algorithms (GA) for 
the analysis and optimization of micro-photocatalytic reactors aimed at NOx abatement[143]. CFD 
simulations were used to investigate the effects of key variables, while ANN models were developed to 
predict NO conversion with high accuracy (R2 = 0.9997). GA was then employed to optimize operating 
conditions, achieving full NO conversion (100%) under specific parameters, with residence time identified 
as the most influential factor. A multi-objective optimization further applied GA to maximize NO 
consumption while minimizing pressure drop, offering valuable insights into balancing performance 
metrics.
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Figure 10. CFD, ANN and GA as a hybrid method for the analysis and optimization of micro-photocatalytic reactors for NOx 
abatement[143]. Copyright 2021, Elsevier. CFD: Computational fluid dynamics; ANN: artificial neural network; GA: genetic algorithm; MSE: 
mean squared error.

In addition to hybrid CFD-ANN-GA approaches, recent advancements have introduced innovative 
methods to enhance the design and optimization of photocatalysts. Li et al. combined machine learning 
with high-throughput experimentation to identify organic molecules with high photocatalytic activity, 
successfully predicting molecular performance and significantly reducing experimental costs[144]. Similarly, 
Parmar et al. applied a comparative approach using ANN and response surface methodology to optimize 
ciprofloxacin degradation, achieving high predictive accuracy and offering a novel strategy for 
pharmaceutical waste removal through computational modeling[145]. The emergence of novel deep learning 
approaches has significantly enhanced photocatalyst discovery and optimization, providing innovative 
solutions that improve predictive accuracy and reduce experimental costs across various applications.

Application exploration for photocatalysts
Deep learning has significantly broadened the scope of photocatalyst applications by enabling precise 
predictions of system performance in complex environments. This advancement accelerates the discovery of 
new uses in areas such as environmental remediation, energy conversion, and medical applications. 
Malayeri et al. leveraged ANN and GA to optimize photocatalytic oxidation (PCO) reactors for air 
purification, thereby expanding the applicability of PCO technology in indoor environments[146]. By 
accurately predicting volatile organic compound (VOC) and by-product concentrations, the ANN model 
facilitated the identification of optimal operating conditions, significantly enhancing the efficiency of 
harmful compound removal. This approach also minimized the formation of toxic by-products, addressing 
a critical challenge in the widespread adoption of PCO technology. The study illustrated how advanced 
machine learning techniques can broaden PCO application in the development of safer and more effective 
air purification systems [Figure 11].

Beyond air purification, deep learning has significantly expanded the applications of photocatalysts in fields 
such as water treatment[147], energy conversion[148], and medical applications[149]. In water treatment, machine 
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Figure 11. Application of artificial neural network and genetic algorithm in optimization of photocatalytic oxidation reactor for air purifier 
design[146]. Copyright 2023, Elsevier. ANN: Artificial neural network; GA: genetic algorithm; VOC: volatile organic compound.

learning has optimized the photocatalytic degradation of pollutants such as dyes and pharmaceuticals[150], 
enhancing process efficiency and introducing innovative treatment approaches. In the energy and medical 
sectors, deep learning has driven advancements in solar-to-hydrogen conversion[151] and the design of 
antimicrobial surfaces[152]. Therefore, it has greatly expanded the scope of photocatalyst applications, 
facilitating advancements in cutting-edge areas, driving innovative solutions to complex global challenges.

Mechanism insights for photocatalysis
Deep learning has become an essential tool in unraveling photocatalytic reaction mechanisms by analyzing 
reaction pathways and intermediates. These models offer profound insights into the fundamental processes 
of photocatalysis, enabling more precise experimental design and the optimization of photocatalytic 
systems. Kim et al. utilized a machine learning approach to unravel the complex mechanisms influencing 
the photocatalytic reaction rate constant (k) in semiconductor-based photocatalysts [Figure 12], specifically 
for dye removal applications[153]. By employing a decision tree model and SHAP feature selection, the 
analysis identified 11 key input features that significantly impacted the reaction rate. Experimental 
conditions emerged as the most influential factor (59%), followed by atomic composition (39%), offering 
valuable insights into how process parameters and co-catalysts interact to affect photocatalytic performance. 
This study demonstrated the ability of machine learning models to enhance our understanding of reaction 
mechanisms by elucidating the interactions between multiple process variables.

Beyond reaction rate analysis, another work[154] explored the excitonic effects in nearly 50 photocatalysts for 
CO2 reduction, an often overlooked but crucial aspect of photocatalytic performance. By applying the 
Bethe-Salpeter formalism, this study identified six promising materials through optical property screening, 
offering new insights into the role of exciton binding energies in enhancing solar-energy harvesting 
applications. The works highlighted how deep-learning approaches were advancing the understanding of 
photocatalytic mechanisms, from reaction kinetics to excitonic effects, offering valuable insights for 
optimizing photocatalyst performance. Therefore, deep learning approaches in photocatalyst design have 
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Figure 12. Machine learning analysis to interpret the effect of the photocatalytic reaction rate constant (k) of semiconductor-based 
photocatalysts on dye removal[153]. Copyright 2024, Elsevier. SVR: Support vector regression; SHAP: shapley additive explanations; 
LGBM: light gradient boosting machine; XGB: eXtreme gradient boosting.

significantly advanced the field by enabling the discovery of novel photocatalysts, optimizing 
microstructures, and refining material properties for enhanced performance. These approaches have also 
expanded the range of photocatalyst applications, from environmental remediation to energy conversion 
and medical uses, while providing critical insights into the underlying mechanisms driving photocatalytic 
reactions. As deep learning models evolve, their integration with experimental data and computational 
methods continues to push the boundaries of photocatalyst design, paving the way for future breakthroughs 
in cutting-edge research areas.

SYNERGY OF MULTIDIMENSIONAL COMPUTATION AND DEEP LEARNING IN 
PHOTOCATALYST DESIGN
The discovery of novel photocatalysts has significantly benefited from both computational and deep 
learning methodologies, each contributing distinct advantages that, when integrated, provide a 
comprehensive framework for materials design. Initially, computational methods, particularly those based 
on DFT, enable accurate assessment of key properties such as electronic structure, thermodynamic stability, 
and adsorption energetics. These insights are essential for identifying promising candidates grounded in 
fundamental physical and chemical principles. In contrast, deep learning complements computational 
approaches by capturing complex, nonlinear relationships within existing data, thus enabling rapid 
predictions of photocatalytic performance across a vast range of materials. When combined, the integrated 
approach leverages the precision of computational methods to generate high-quality training datasets for 
deep learning models, while deep learning expedites the screening process, efficiently identifying potential 
high-performance materials. This synergistic use of computational and deep learning techniques not only 
reduces the discovery timeline but also enhances the accuracy and scalability of photocatalyst development, 
thereby providing a robust framework for the advancement of next-generation photocatalytic systems. This 
integration of deep learning and computational methodologies lays the foundation for more sophisticated 
multidimensional approaches, designed to further expand capabilities by synthesizing data from multiple 
sources and scales.

Multidimensional computational models encompass a range of techniques designed to handle complex 
systems by integrating data from various sources and scales. These models include hybrid approaches that 
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combine different computational methods, multiscale simulations that link phenomena across different 
levels of resolution, and multimodal analyses that incorporate diverse data types to provide a more holistic 
understanding of intricate processes. Multimodal and multiscale computational models have been 
successfully applied in areas such as estimating permeate flux in dynamic membranes[155] and predicting 
wettability evolution on laser-textured surfaces[156]. These methods have also advanced the understanding of 
surface-enhanced spectroscopy[157] and photocatalysis[158,159], providing detailed insights into reaction 
mechanisms and kinetics. In photocatalyst design, such approaches hold the potential to optimize structures 
and performance by integrating atomic-scale simulations with larger environmental models, enabling more 
efficient and scalable solutions for real-world applications.

Loh et al. explored the integration of multiscale physics and machine learning to tackle the challenges of 
photocatalyst-photoreactor synergy in solar fuel production[160] [Figure 13]. By leveraging physics-informed 
neural networks (PINN), this approach captured complex, multiscale phenomena such as charge-carrier 
dynamics and solar energy collection, offering a deeper understanding of material-photoreactor 
interactions. The study exemplified how combining multidimensional computation with deep learning 
could optimize reactor performance and drive advancements in scalable solar fuel technology. 
de Oliveira et al. combined CFD, photon fate simulations, and machine learning to optimize continuous-
flow photocatalytic systems[161]. By integrating these multidimensional computational techniques, the study 
reduced computational costs while maintaining high accuracy in predicting photon distribution and 
reaction rates. This framework highlighted the potential of combining CFD and machine learning to 
streamline the design and scaling of advanced photocatalytic reactors. The combination of 
multidimensional computational models and deep learning has demonstrated significant potential in 
optimizing photocatalytic systems, improving both predictive accuracy and computational efficiency. 
Looking ahead, this integration holds immense promise for accelerating the development of advanced 
photocatalysts and reactors, driving transformative progress in cutting-edge technological innovations and 
global challenges.

CHALLENGES AND FUTURE PROSPECTS
The integration of deep learning with photocatalyst design has driven innovations across multiple 
dimensions, including the discovery of novel photocatalysts, the optimization of microstructures and 
properties, and the exploration of advanced approaches, applications, and mechanistic insights. The synergy 
between deep learning and multidimensional computational models has facilitated more precise 
predictions, cross-scale analyses, and enhanced reactor designs. These combined methodologies have 
broadened the applications of photocatalysis, accelerating breakthroughs in environmental remediation, 
energy conversion, and performance optimization. Despite these advancements, several critical challenges 
remain to be addressed to fully unlock the potential of deep-learning-assisted photocatalyst design.

Dataset availability and quality
One of the fundamental challenges in deep-learning-assisted photocatalyst design is the acquisition of high-
quality, comprehensive datasets. Photocatalytic reactions involve complex interactions between factors such 
as composition, structure, environmental conditions, and experimental setups, making it difficult to 
compile standardized data across different studies. Existing datasets are often fragmented, with 
inconsistencies in reporting, missing information, and limited experimental reproducibility. The scarcity of 
large, labeled datasets also limits the training of robust deep learning models, reducing their ability to 
generalize across diverse photocatalytic systems. Addressing these challenges requires the aggregation of 
data from multiple sources and the development of uniform data collection protocols to ensure data quality 
and consistency.
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Figure 13. Deep learning in multiscale physics of photocatalyst and photoreactor design[160]. Copyright 2024, Wiley. DFT: Density 
functional theory; TD-DFT: time-dependent density functional theory.

To manage and organize the growing volume of photocatalytic data, effective data management strategies 
are essential. Implementing standardized data formats and ontologies can streamline the integration of 
diverse datasets from experimental and computational studies. Advanced data cleaning techniques, such as 
automated outlier detection and missing value imputation, are necessary to ensure the reliability of the data 
used for model training. The development of centralized databases or repositories for photocatalytic 
research will facilitate data sharing and collaboration within the scientific community. Cloud-based 
platforms and machine learning pipelines can further enhance data processing efficiency and scalability, 
ensuring continuous model improvement as more data becomes available.

Interpretable deep learning model
The “black box” nature of deep learning models poses a significant challenge in photocatalyst design, 
limiting the understanding of how model predictions are made. Improving the transparency of these models 
is essential to close the gap between predictions and physical experiments, enabling a clearer interpretation 
of how specific features influence photocatalytic performance. Approaches such as SHAP and local 
interpretable model-agnostic explanations (LIME) are proving effective in identifying the most critical input 
variables. The KAN model further enhances interpretability by providing a more quantifiable explanation of 
the relationships between inputs and outputs. Additionally, integrating physics-based principles through 
models such as PINN aligns the deep learning process more closely with known physical laws. These 
advances will facilitate a deeper understanding of photocatalytic mechanisms and promote the broader 
application of deep learning in photocatalyst design.
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Scalability and computing resources
The increasing complexity and size of deep learning models, especially large-scale models, used in 
photocatalyst design require significant computational resources, presenting a challenge in managing vast 
datasets and running high-dimensional simulations. As large models such as transformers and foundation 
models become more prevalent, the demand for scalable computing infrastructures, such as high-
performance computing clusters and cloud-based systems, has become essential to handle the intense 
computational workloads. Hardware advancements, particularly in the development of GPUs and TPUs, are 
driving improvements in training speed and model efficiency. Moreover, the development of more efficient 
architectures, along with advancements in large model fine-tuning, is reducing computational cost while 
maintaining high predictive accuracy. Techniques such as model pruning, quantization, and efficient 
distributed computing frameworks enable parallelization, allowing the processing of massive datasets across 
multiple machines. These large models open the door for unprecedented accuracy in predictions, but the 
hardware and algorithmic advancements will be critical to overcoming the computational bottlenecks 
associated with their scale. The integration of these advancements is key for making large-scale 
photocatalyst design feasible and scalable.

Reversal design of photocatalysts
Reversal design is a methodology that works backward from a desired property or performance target to 
identify the optimal structures or configurations, offering a powerful approach in materials science. In 
photocatalyst design, reversal design enables the identification of systems with optimized performance by 
working backward from specific targets, such as light absorption or photocatalytic efficiency, to tailor 
structural or compositional features. This methodology accelerates the discovery process by narrowing the 
search space to systems that meet predefined performance metrics. Deep learning enhances reversal design 
by using predictive models that efficiently map the relationship between structures and properties, allowing 
rapid iteration toward optimal solutions. It can generate new candidates through generative models and 
apply reinforcement learning to refine designs based on experimental feedback. With its ability to explore 
vast design spaces, deep learning-driven reversal design is transforming the way photocatalysts are 
discovered and developed.

Multiscale modeling and computation
Photocatalytic reactions inherently span multiple scales, from electron-level interactions to macroscopic 
phenomena, posing significant challenges for comprehensive modeling. The integration of models that 
describe different scales - such as atomic-scale electron dynamics, charge carrier transport, and bulk-phase 
mass transfer - into a unified multiscale framework remains a critical hurdle in photocatalyst design. 
Multiscale deep learning models provide an opportunity to bridge these gaps, enabling more accurate 
performance predictions by incorporating insights from various scales. This requires combining quantum 
simulations, molecular dynamics, and continuum models, which presents not only computational demands 
but also algorithmic complexity. Successful advances in multiscale modeling could yield deeper insights into 
how atomic and molecular processes influence macroscopic behavior, driving the development of more 
efficient photocatalysts. Additionally, ensuring the interpretability and practical applicability of these 
models is essential for their experimental validation. Addressing these challenges is a pivotal goal in 
advancing both photocatalyst design and materials informatics.

Future directions amidst challenges
Despite their substantial advantages in reducing experimental costs and time, deep learning and other 
computational methodologies present several inherent challenges. A primary challenge is the need for 
further enhancement of computationally designed photocatalysts. While integrated computational 
approaches can identify promising candidates, these photocatalysts frequently require additional 
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modifications - such as surface engineering, doping, or structural optimization - to achieve optimal 
performance[162]. Addressing these limitations often involves iterative cycles of computational predictions 
followed by experimental validation to refine photocatalyst properties[163]. Another critical challenge 
involves scaling these technologies from laboratory settings to industrial applications. Photocatalysts that 
demonstrate exceptional performance on a small scale often encounter significant obstacles in maintaining 
efficiency and stability during scale-up. Overcoming these scale-up challenges requires advancements in 
reactor design, synthesis methodologies, and engineering practices to ensure economically feasible 
production processes. Moreover, the successful commercialization of photocatalyst technologies 
necessitates a multidisciplinary approach. Issues such as stability, selectivity, and overall efficiency cannot be 
fully addressed within a single discipline. Effective commercialization requires collaboration among 
chemists, materials scientists, chemical engineers, and industry professionals to bridge the gap between 
laboratory research and market-ready technologies, ultimately facilitating the transition to commercially 
viable photocatalytic solutions. In conclusion, although challenges remain, rapid progress in computational 
tools, coupled with targeted experimental efforts and interdisciplinary collaboration, suggests a promising 
future for photocatalyst design and application. With ongoing innovation, these technologies hold 
substantial potential for contributing to sustainable energy and environmental applications.

CONCLUSIONS
In conclusion, the integration of deep learning with photocatalyst design has transformed the field, 
unlocking new strategies for optimizing photocatalytic systems. This review highlights how computational 
methods combined with deep learning have significantly advanced the discovery of novel photocatalysts, 
refined microstructure design, optimized functional properties, and provided deeper mechanistic insights, 
driving innovations in environmental remediation, energy conversion, and chemical processes. 
Furthermore, the synergy between multidimensional computational models and deep learning has enabled 
more precise predictions, efficient experimental validation, and greater scalability in photocatalytic 
applications. Despite these advancements, challenges remain in areas such as dataset quality, model 
interpretability, and the seamless integration of multiscale modeling. Addressing these challenges will be 
crucial for further breakthroughs, guiding the future design of high-performance photocatalysts and 
fostering the development of sustainable technologies.
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