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Abstract
Unmanned Aerial Vehicles (UAVs) are pivotal in enhancing connectivity in diverse applications such as search and
rescue, remote communications, and battlefield networking, especially in environments lacking ground-based in-
frastructure. This paper introduces a novel approach that harnesses Multi-Agent Deep Reinforcement Learning to
optimize UAV communication systems. The methodology, centered on the Independent Proximal Policy Optimiza-
tion technique, significantly improves fairness, throughput, and energy efficiency by enabling UAVs to autonomously
adapt their operational strategies based on real-time environmental data and individual performance metrics. More-
over, the integration of Distributed Ledger Technologies with Multi-Agent Deep Reinforcement Learning enhances
the security and scalability of UAV communications, ensuring robustness against disruptions and adversarial attacks.
Extensive simulations demonstrate that this approach surpasses existing benchmarks in critical performance met-
rics, highlighting its potential implications for future UAV-assisted communication networks. By focusing on these
technological advancements, the groundwork is laid for more efficient, fair, and resilient UAV systems.

Keywords: Unmanned aerial vehicles-to-ground communication, multi-agent deep reinforcement learning, fairness
and throughput, distributed ledger technologies
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1. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) have significantly revolutionized communication in different areas, includ-
ing wireless sensor networks (WSN), cellular networks, the Internet of Things (IoT), and Space-Air-Ground
Integrated Networks (SAGIN). These flexible platforms facilitate the rapid implementation of communication
services to users on the ground in situations when terrestrial infrastructure is not accessible or has been com-
promised, including in disaster-impacted areas or conflict-ridden battlefields. UAVs are versatile and can be
used for various purposes such as improving communication coverage, serving as mobile relays, enabling edge
computing, and performing data collection. These applications have advanced UAV-assisted technology to the
forefront of research in wireless communications and network sectors [1–4]. The benefits of UAVs are distinc-
tive and can be credited to several significant advancements. Advancements in industrial technology have
enabled the downsizing of electronic equipment, enhancing their capacity and facilitating the integration of
more advanced modules on UAVs at a lower cost. Furthermore, the great mobility of UAVs allows them to be
deployed in difficult terrains such asmountains and rivers, where setting up ground-based infrastructure is not
feasible. This guarantees thorough and smooth communication capacities. Thirdly, UAVs provide excellent
visibility for ground communication systems, minimizing signal route loss caused by barriers and improving
Line-of-Sight (LoS) connections. In recent years, substantial research has been dedicated to enhancing the
control systems of UAVs to address the challenges associated with their deployment. Notable among these
advancements is the development of distributed adaptive fuzzy formation control for multiple UAVs, which
can handle uncertainties and actuator faults while operating under switching topologies. This method utilizes
fuzzy logic to adaptively manage the formation of UAVs, ensuring robust performance despite the presence of
system uncertainties and potential faults [5]. Additionally, neural adaptive distributed formation control has
emerged as a significant approach for managing nonlinear multi-UAV systems with unmodeled dynamics. By
leveraging neural networks, this control strategy can adapt to complex, nonlinear interactions within the UAV
network, ensuring stable formation control even when the system dynamics are not fully known or are subject
to change. These neural adaptive methods provide a high degree of flexibility and robustness, making them
suitable for dynamic and uncertain environments [6]. Furthermore, other advanced control techniques, such
as Model Predictive Control (MPC) and Reinforcement Learning (RL), have been applied to UAV systems to
enhance their autonomous capabilities. MPC allows UAVs to predict and optimize their trajectories based
on future states, ensuring efficient navigation and collision avoidance. RL, on the other hand, enables UAVs
to learn optimal control policies through interaction with their environment, adapting to new scenarios and
improving performance over time [7,8]. These advancements in UAV control systems are critical for enabling
UAVs to operate autonomously and efficiently in various applications, from disaster response to commercial
delivery services. The integration of these sophisticated control techniques ensures that UAVs can maintain
stable formations, handle dynamic changes, and operate reliably even in the presence of uncertainties and
external disturbances.

1.1. Related work
Cutting-edge research is being conducted on UAV-assisted communication, fairness, and energy efficiency in
wireless networks. These studies are aimed at devising new and inventive solutions and strategies to enhance
the performance, reliability, and security of UAV communication systems. The [5] investigated the utilization
of UAVs as aerial base stations for Ground Users (GUs) and proposes cooperative jamming by UAV jammers
to counter ground eavesdroppers. It leveraged Multi-Agent Deep Reinforcement Learning (MADRL) to opti-
mize UAV trajectories, transmit power, and jamming power. The research [6] has focused on optimizing UAV
trajectories, user association, and GUs’ transmit power to achieve fairness-weighted throughput.The research
has emphasized the importance of balancing fairness and throughput inUAV-Base Stations (BSs)-assisted com-
munication and introduces the UAV-Assisted Fair Communication (UAFC) algorithm based on multi-agent
deep reinforcement learning [7]. Moreover, it proposes sharing neural networks to reduce decision-making
uncertainty. The authors in have explored energy-efficient UAV trajectories for uplink communication and
employ reinforcement learning for load balancing [8]. The challenge of secure communication in the presence
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of multiple eavesdroppers is addressed in [9], and the utilization of UAV jammers and artificial noise signals
is proposed. The study [10] considered fairness alongside coverage and throughput, introducing the UAFC al-
gorithm for fair throughput optimization. Additionally, the work proposed the sharing of neural networks
for distributed decision-making. The study investigated the use of UAVs as mobile relays between GUs and
a macro base station, utilizing reinforcement learning for trajectory optimization [11]. The authors in [12] ad-
dressed wiretapping by ground eavesdroppers and propose cooperative jamming and multi-agent reinforce-
ment learning as countermeasures. The study [13] has focused on the investigation of UAV-BSs for efficient
wireless communication, balancing coverage, throughput, and fairness. A MADRL approach for UAV-BSs
serving GUs is proposed in [14], considering fair throughput, coverage, and flight status. Additionally, in the
context of integrating UAVs into 6G networks, several key areas of innovation and study have been identified,
such as the exploration of UAV capabilities, base station offloading, emergency response, intelligent telecom-
munication, and mobile edge computing [15–18]. In addition to the current body of knowledge on UAV com-
munication systems and their optimization through deep learning and distributed ledger (DL) technologies, it
is pertinent to consider advancements in multi-agent network applications. One notable study in this domain
is mentioned in [19]. This research addresses the challenges in multi-agent networks where the ability to per-
form collective activities is crucial. The study investigates the containment and consensus tracking problems
within a network of continuous-time agents characterized by state constraints. These endeavors aim to address
the challenges and opportunities associated with UAV-assisted communications, contributing to the develop-
ment of efficient, secure, and scalable UAV communication systems. Several limitations exist in the current
works related to UAV-to-ground communication. These limitations include fairness, complex structure, relia-
bility, security, privacy, and scalability. Furthermore, there are other unresolved issues and limitations in the
field of UAV-assisted communications that require additional research. A concern is the lack of emphasis on
supporting multiple users in emergency communication situations, requiring equitable service delivery. Inno-
vative methods are required to ensure effective cooperation and connectivity among UAVs that can maintain
UAV connectivity without relying on fixed infrastructure. Centralized methodologies now in use pose notable
scalability and complexity issues, highlighting the necessity for more adaptable and scalable methods in UAV
communication systems. As a result, we have identified a significant research gap that needs to be addressed.
To enhance UAV communication systems, we have explored the potential of DL technology and MADRL.

1.2. Major contribution
The major contribution of this paper is summarized as follows.

1. The paper proposed a new system model that utilizes multiple UAVs to provide fair communication ser-
vices to ground users without ground-based stations. Our approach addresses the challenges of UAV network
connectivity and equitable throughput by optimizing fair throughput and energy efficiency.

2. A MADRL framework for UAV communication scenarios is used, with an Independent Proximal Policy
Optimization (IPPO) technique. This enables decentralized learning for individual observations, promoting a
more in-depth investigation of tactics. The reward system encourages fairness and energy efficiency.

3. The challenges posed by limited load capacities and energy resources in UAVs are addressed through the
utilization of MADRL and Distributed Ledger Technologies (DLT). The MADRL framework, specifically em-
ploying the IPPO technique, enables UAVs to optimize their energy usage and load management by making
efficient, decentralized decisions based on real-time observations. The reward function within the MADRL
framework is designed to incentivize energy efficiency, ensuring that UAVs conserve energy during prolonged
missions. Additionally, the integration of DLT ensures secure and efficient data management, thereby reduc-
ing computational and communication overhead, which, in turn, aids in conserving energy and effectively
managing load capacities.
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Figure 1. Proposed system model using integrated MADRL and distributed ledger techniques.

4. The MADRL-based solution incorporating DL technology has been rigorously evaluated through exper-
imental validation and compared against traditional benchmarks. The results demonstrate superior perfor-
mance in terms of fairness, throughput, and energy efficiency. Furthermore, the actual outcomes highlight
notable enhancements in scalability, security, and fairness for UAV communications. This presents a substan-
tial advancement in the field, effectively showcasing the technology’s capacity to establish new standards for
UAV-assisted communication systems.

The rest part of the paper is organized as follows. Section 2 develops the system model; problem formulation
and objective function is explained in Section 3; Section 4 discusses the combined features of MADRL DL.
Results and discussion are explored in Section 5, and finally, Section 6 provides the conclusion.

2. SYSTEM MODEL
The framework illustrated in Figure 1 presents an advanced system for communication that consists of a group
of UAVs, each equipped with DLT and MADRL capabilities. The purpose of this design is to overcome the
limitations of traditional communication networks, particularly in areas where conventional infrastructure is
insufficient or degraded. In this innovative network, UAVs act as independent aerial relay stations, forming
a robust mesh network to provide connectivity to GUs across different terrains. Each UAV 𝑚 from the fleet
𝑀 has a position w𝑢𝑚 (𝑡) at time 𝑡, which includes altitude 𝐻. The movement of UAVs between time slots is
limited by their maximum speed 𝑉𝑚𝑎𝑥 and the time slot duration 𝛿 [20,21].

∥w𝑢𝑚 (𝑡) −w𝑢𝑚 (𝑡 − 1)∥2 ≤ (𝑉𝑚𝑎𝑥 · 𝛿), ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (1)
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The UAVs manage communication links with GUs using a Time Division Multiple Access (TDMA) scheme.
The binary indicator variables 𝛼𝑠𝑟𝑐𝑚,𝑘 (𝑡) and 𝛽𝑑𝑠𝑡𝑚,𝑘 (𝑡) denote whether a source 𝑘𝑠𝑟𝑐 or destination 𝑘𝑑𝑠𝑡 GU is
connected to UAV 𝑚 during time slot 𝑡 [22,23].

𝛼𝑠𝑟𝑐𝑚,𝑘 (𝑡), 𝛽𝑑𝑠𝑡𝑚,𝑘 (𝑡) ∈ {0, 1}, ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (2)

The constraints C1 and C2 for access control are expressed as∑
𝑚∈𝑀

𝛼𝑠𝑟𝑐𝑚,𝑘 (𝑡) ≤ 1, ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3)

∑
𝑚∈𝑀

𝛽𝑑𝑠𝑡𝑚,𝑘 (𝑡) ≤ 1, ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (4)

The integration of DLT ensures a secure and unchangeable exchange of data, while MADRL enables UAVs
to make informed decisions for enhancing the network’s performance. In MADRL, the Q-function is used to
measure the effectiveness of a particular action taken in a specific state, represented asΘ(𝑠, 𝑎), where 𝑠 denotes
the state and 𝑎 represents the action. The primary goal is to optimize the policy parameters Θ such that the
total future rewards are maximized. This optimization process involves using an update function 𝑈, which
modifies Θ iteratively according to a specific update rule.

𝑈 (Θ|𝑠, 𝑎) = Θ(𝑠, 𝑎) + ΔΘ (5)

The change ΔΘ in the policy parameters is defined as

ΔΘ = 𝛼 ·
(
R(𝑠, 𝑎) + 𝛾 · max

𝑎′∼𝜋(·|𝑠′)
Θ(𝑠′, 𝑎′) − Θ(𝑠, 𝑎)

)
(6)

In this particular formulation, the learning rate 𝛼 represents the extent to which new information overrides
old information. The function R(𝑠, 𝑎) provides the immediate reward after taking an action 𝑎 in a particular
state 𝑠. The discount factor 𝛾 balances the significance of immediate and future rewards. The policy 𝜋(·|𝑠′),
which can potentially be an 𝜖-greedy strategy, guides the selection of the subsequent action 𝑎′ in the next state
𝑠′, and the operation max𝑎′∼𝜋(·|𝑠′) identifies the action that maximizes the expected Q-value given the policy
𝜋 and the new state 𝑠′. By means of this mechanism, the algorithm gradually approaches an optimal policy
that prescribes the best action to take in any given state to maximize long-term rewards. Dual transmitters on
UAVs and Orthogonal Frequency-Division Multiple Access (OFDMA) can reduce interference with a factor 𝜂
that mitigates its impact in UAV-to-UAV communication.

𝐼𝑡𝑜𝑡𝑎𝑙 =
𝑁∑
𝑖=1

𝜂 · 𝐼𝑖 (7)

where 𝐼𝑡𝑜𝑡𝑎𝑙 represents the overall interference experienced by a GU.The value of 𝑁 refers to the total number
of interfering signals, and the value of 𝐼𝑖 is the interference generated by the 𝑖 − 𝑡ℎ signal. The term 𝜂 (where
0 < 𝜂 < 1) indicates the effectiveness of interference reduction techniques.

2.1. UAV to UAV channel
In the system model illustrated in Figure 1, the communication channel between UAVs plays a crucial role
in ensuring efficient data transfer in scenarios where ground infrastructure is lacking or non-existent, such
as in search and rescue missions or in remote communication setups. This model addresses the challenges
of providing equal access and uninterrupted connectivity among UAVs, while also taking into account the
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limitations imposed by their load capacities and energy resources. The channelmodel is based on the principles
of free space propagation, adapted to the dynamic and versatile nature of UAVs enabled by MADRL [24–26].

The channel gain or path loss between two UAVs, 𝑚𝑖 and 𝑚 𝑗 , at a particular time slot 𝑡, is characterized by the
following equation, which adheres to the free space propagation model.

𝑔𝑚𝑖 ,𝑚 𝑗 (𝑡) =
𝑝0

∥w𝑚𝑖 (𝑡) −w𝑚 𝑗 (𝑡)∥2
(8)

where 𝑝0 is the channel gain at a reference distance of one meter under ideal conditions, w𝑚𝑖 (𝑡) and w𝑚 𝑗 (𝑡)
represent the position vectors of UAV𝑚𝑖 and𝑚 𝑗 at time slot 𝑡, respectively. The expression ∥w𝑚𝑖 (𝑡) −w𝑚 𝑗 (𝑡)∥
stands for the Euclidean distance between two UAVs at time 𝑡, which reflects the spatial connection impact-
ing signal quality. The signal-to-noise ratio (SNR) at UAV 𝑚 𝑗 caused by the transmission from UAV 𝑚𝑖 is
determined to handle communication links and potential interference when many UAVs are operating close
to each other.

𝛾𝑚𝑖 ,𝑚 𝑗 (𝑡) =
𝑃𝑚𝑎𝑥 · 𝑔𝑚𝑖 ,𝑚 𝑗 (𝑡)

𝑛0 · 𝑏𝑢
(9)

where 𝑃𝑚𝑎𝑥 is the maximum transmit power of the UAV, determining the strength of the transmitted signal;
𝑛0 is the noise spectral density, reflecting the background noise level that can impact signal reception and 𝑏𝑢
signifies the bandwidth allocated for the UAV-to-UAV communication link, which influences the data rate.

To maintain the quality of the communication link, the communication strategy must keep the SNR above a
predetermined threshold. This creates a communication range 𝑅𝑐 that serves as a key distance for UAVs to
communicate efficiently. When the distance between two UAVs exceeds 𝑅𝑐 , signal quality may drop, affecting
the reliability of the communication link.

Using MADRL, each UAV independently changes its position and communication settings to optimize the
network’s total data transfer rate while ensuring equal treatment of all GUs being serviced. TheMADRL archi-
tecture, via its IPPO technique, enables individual observation-based learning to tackle the non-convex nature
and hybrid variable difficulties found in traditional systems. Integrating DLT into this architecture enhances
security and immutability by openly and permanently recording all communication transactions.

2.1.1 Handling NLoS conditions
In urban environments where obstacles are prevalent, Non-Line-of-Sight (NLoS) conditions are common and
significantly influence UAV-to-UAV communication. To address this, our model incorporates both LoS and
NLoS conditions by adapting the path loss model accordingly. The probability of LoS 𝑃𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗

and NLoS
𝑃𝑁𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗

conditions is modeled based on environmental factors such as building density and height. The
average path loss 𝑃𝐿𝑚𝑖 ,𝑚 𝑗 (𝑡) considering both LoS and NLoS conditions is given by

𝑃𝐿𝑚𝑖 ,𝑚 𝑗 (𝑡) = 𝑃𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗
× 𝑃𝐿𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗

+ 𝑃𝑁𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗
× 𝑃𝐿𝑁𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗

(10)

where 𝑃𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗
is the probability of LoS condition, 𝑃𝑁𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗

= 1 − 𝑃𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗
is the probability of NLoS

condition, 𝑃𝐿𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗
is the path loss under LoS condition, and 𝑃𝐿𝑁𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗

is the path loss under NLoS
condition.

http://dx.doi.org/10.20517/ces.2024.10


Ali et al. Complex Eng Syst 2024;4:14 I http://dx.doi.org/10.20517/ces.2024.10 Page 7 of 16

The path loss values for LoS and NLoS conditions are calculated based on empirical models suitable for urban
environments. The LoS probability 𝑃𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗

is influenced by the elevation angle 𝜃𝑚𝑖 ,𝑚 𝑗 and the density of
obstacles, modeled as:

𝑃𝐿𝑜𝑆𝑚𝑖 ,𝑚 𝑗
=

1
1 + 𝑎 exp(−𝑏(𝜃𝑚𝑖 ,𝑚 𝑗 − 𝑎))

(11)

where 𝑎 and 𝑏 are constants that depend on the urban environment.

2.2. UAV-to-ground channel
The UAV-to-ground channel in the proposed model includes the probability of LoS communication, which is
essential for signal strength and reliability and is influenced by the environment. Urban environments with
many buildings tend to have a lower LoS probability compared to open rural areas. The probability is modeled
as

𝑃𝐿𝑜𝑆𝑘 ( ·) ,𝑚(𝑡 ) =
1

1 + 𝑎 exp(−𝑏(𝜃𝑘 (·),𝑚 [𝑡] − 𝑎))
(12)

where 𝑎 and 𝑏 are environment-dependent constants, and 𝜃 represents the elevation angle between the GU
and the UAV. The average path loss considers both LoS and NLoS conditions, and is calculated as

𝑃𝐿𝑘 (·),𝑚(𝑡) = 𝑃𝐿𝑜𝑆𝑘 ( ·) ,𝑚(𝑡 ) × 𝑃𝐿𝐿𝑜𝑆𝑘 ( ·) ,𝑚(𝑡 ) + (1 − 𝑃𝐿𝑜𝑆𝑘 ( ·) ,𝑚(𝑡 ) ) × 𝑃𝐿𝑁𝐿𝑜𝑆𝑘 ( ·) ,𝑚(𝑡 ) (13)

The path loss for both LoS and NLoS scenarios is calculated based on the carrier frequency 𝑓1, the distance
𝑑𝑘 (·),𝑚(𝑡) , and the speed of light 𝑐. The average path losses for LoS and NLoS situations are denoted by 𝜂𝐿𝑜𝑆
and 𝜂𝑁𝐿𝑜𝑆 correspondingly.

𝑃𝐿𝐿𝑜𝑆𝑘 ( ·) ,𝑚(𝑡 ) = 20 log
(4𝜋 𝑓1𝑑𝑘 (·),𝑚(𝑡)

𝑐

)
+ 𝜂𝐿𝑜𝑆 (14)

𝑃𝐿𝑁𝐿𝑜𝑆𝑘 ( ·) ,𝑚(𝑡 ) = 20 log
(4𝜋 𝑓1𝑑𝑘 (·),𝑚(𝑡)

𝑐

)
+ 𝜂𝑁𝐿𝑜𝑆 (15)

The SNR for the uplink from GU to UAV and the signal-to-noise interference ratio (SINR) for the downlink
from UAV to GU are computed considering the transmit power of the GU (𝑝𝐺), the channel gain (ℎ), the
bandwidth allocated to each GU (𝑏𝑢), and the interference from other UAVs. The SNR for uplink from GU to
UAV is defined as

𝛾𝑘𝐺2𝑈𝑠𝑟𝑐,𝑚1(𝑡 ) =
𝑝𝐺 · ℎ𝑘𝑠𝑟𝑐 ,𝑚1(𝑡)

𝑛0 · 𝑏𝑢
(16)

where ℎ𝑘𝑠𝑟𝑐 ,𝑚1(𝑡) = 10−𝑃𝐿𝑘𝑠𝑟𝑐 ,𝑚(𝑡 )/10 is the channel gain.

The SINR for downlink from UAV to GU takes into account the interference from other UAVs.

𝛾𝑈2𝐺𝑚2,𝑘𝑑𝑠𝑡 (𝑡 )
=

𝑝𝑈 · ℎ𝑚2,𝑘𝑑𝑠𝑡 (𝑡)
𝐼𝑚2,𝑘𝑑𝑠𝑡 (𝑡) + 𝑛0 · 𝑏𝑢

(17)
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The transmission rate for uplink and downlink is calculated using the logarithmic function of 1 + 𝛾, where 𝛾
is the SNR or SINR, as appropriate.

It is assumed that the bottleneck in transmission rate is either on the uplink or downlink, not on the UAV
to UAV link, due to high-quality links between UAVs. The instant transmission rate between the 𝑘th pair
is determined by the minimum of the uplink or downlink transmission rates, considering the hovering time
(𝜏𝑚ℎ𝑜𝑣𝑒𝑟 (𝑡)) and the ratio of source (𝑞1) and destination (𝑞2) allocation factors.

3. PROBLEM FORMULATION AND OBJECTIVE FUNCTION
We define the accumulative throughput for the k-th user pair at time slot 𝑡 as

𝑇𝑃𝑘 (𝑡) =
𝑡∑
𝑟=1

𝑟𝑘 (𝑟) (18)

Here, 𝑟𝑘 (𝑟) represents the throughput for user pair 𝑘 at time slot 𝑟 .

Subsequently, the sum accumulative throughput for all user pairs is given by

𝑆𝑈𝑀_𝑇𝑃(𝑡) =
∑
𝑘∈𝐾

𝑇𝑃𝑘 (𝑡) (19)

To ensure fairness, we utilize Jain’s index [26] to measure fair throughput

𝑓 (𝑡) = (∑𝑘∈𝐾 𝑇𝑃𝑘 (𝑡))2
𝐾
∑
𝑘∈𝐾 (𝑇𝑃𝑘 (𝑡))2

(20)

The parameter 𝑒 represents the energy consumed by each UAV 𝑚 at each time slot 𝑡. where the fairness index
𝑓 (𝑡) ranges between 1

𝐾 and 1.

The access policies ofGUs and the locations ofUAVs at time slot t are represented by 𝐴 = {𝛼𝑠𝑟𝑐𝑚,𝑘 (𝑡), 𝛽
𝑑𝑠𝑡
𝑚,𝑘 (𝑡)}𝑚∈𝑀,𝑘∈𝐾,𝑡∈𝑇

and𝑊 = {𝑤𝑚𝑢 (𝑡)}𝑚∈𝑀,𝑡∈𝑇 , respectively.

Our objective function aims to maximize

𝑆𝑚𝑎𝑥 =
∑
𝑡∈𝑇 𝑓 (𝑡) · 𝑆𝑈𝑀_𝑇𝑃(𝑡)∑

𝑡∈𝑇
∑
𝑚∈𝑀 𝑒𝑚 [(𝑡)

(21)

Subject to constraints (1)–(4), where 𝐶1 enforces a safe distance 𝑑𝑠𝑎 𝑓 𝑒 between any two UAVs to avoid col-
lisions, for any m, n in M and t in T, and 𝐶2 secures the network’s algebraic connectedness with a positive
measure 𝜆2. The target function aims to enhance equity and efficiency, as well as decrease the energy usage of
all UAVs, in accordance with system needs. Constraint 𝐶1 controls the spatial mobility of UAVs, while con-
straints (2)–(4) manage the access control for GUs. Constraint 𝐶2 is based on the second smallest eigenvalue
of the Laplacian matrix to guarantee that the UAVs sustain a linked network topology.

4. COMBINED MADRL AND DISTRIBUTED LEDGER
The IPPO method improves trajectory optimization for many UAVs by employing a decentralized approach.
Every UAV functions within a partially observable Markov Decision Process (MDP) framework, making de-
cisions based on its own observations rather than a common global state. The system’s state is determined by
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aggregating all UAV observations, while actions are decided independently in each location.

1. Observation Space Every UAV has a specific observation area that contains crucial environmental data,
including the locations of all UAVs and GUs, total throughput, satisfaction levels, and access regulations. This
extensive observation space is created to avoid execution problems in simulation and acts as a placeholder
because of the fixed input dimensions needed by neural networks. Let O𝑖 represent the observation space for
UAV 𝑖. The information can be expressed as a vector containing environmental data.

O𝑖 = [p1, . . . ,p𝑁 ,g1, . . . ,g𝑀 , 𝜏, 𝜎, 𝛼] (22)

where p 𝑗 is the location of UAV 𝑗 , g𝑘 is the position of GU 𝑘 , 𝜏 is the accumulative throughput, 𝜎 is satisfac-
tion levels, and 𝛼 is access policies.

2. Action Space A UAV’s action space is defined by the direction and distance of movement. The collective
action space for all UAVs is the combination of individual actions, with a dimensionality equal to twice the
number of UAVs. The action space for UAV 𝑖, represented as A𝑖 , comprises movement direction 𝜃𝑖 and dis-
tance 𝑑𝑖 . The communal action spaceA is determined by

A =
𝑁?
𝑖=1
A𝑖 =

𝑁?
𝑖=1
(𝜃𝑖 , 𝑑𝑖) (23)

where 𝑁 is the number of UAVs.

3. Reward FunctionThe incentive function integrates a cooperative element shared by all UAVs and an indi-
vidual element that encompasses penalties for border breaches, unsafe distances, connectivity problems, and
energy usage. The incentive function design ensures that UAVs work together to optimize fair throughput
while minimizing energy consumption and penalty infractions. The reward function for UAV 𝑖 is denoted as
𝑅𝑖 .

𝑅𝑖 (O𝑖 ,A𝑖) = 𝑤𝑐𝐶 + 𝑤𝑖 𝐼 − 𝑤𝑏𝐵 − 𝑤𝑑𝐷 − 𝑤𝑒𝐸 (24)

where 𝐶 is the cooperative component, 𝐼 is the individual throughput, 𝐵 represents border violation penalties,
𝐷 represents unsafe distance penalties, 𝐸 represents energy consumption, and 𝑤𝑐 , 𝑤𝑖 , 𝑤𝑏 , 𝑤𝑑 , 𝑤𝑒 are the cor-
responding weights.

4. Actor-Critic NetworksThis methodology maintains distinct actor-critic networks for each UAV, updating
them exclusively based on individual observations, in contrast to classic centralized training and exploration
(CTDE) systems that could restrict the diversity of agent policies. This encourages a wider range of actions and
decreases policy similarity among actors. Each UAV 𝑖 has actor 𝜋𝑖 and critic 𝑄𝑖 networks, which are defined
by parameters 𝜃𝑖 and 𝜙𝑖 correspondingly.
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𝜋𝑖 (𝑎 |O𝑖; 𝜃𝑖) (25)

𝑄𝑖 (O𝑖 , 𝑎; 𝜙𝑖) (26)

The networks are updated using gradients from the collected experiences:

Δ𝜃𝑖 ∝ ∇𝜃𝑖 log 𝜋𝑖 (𝑎 |O𝑖; 𝜃𝑖)𝐴𝑖 (27)

Δ𝜙𝑖 ∝ ∇𝜙𝑖 (𝑅𝑖 −𝑄𝑖 (O𝑖 , 𝑎; 𝜙𝑖))2 (28)

where 𝐴𝑖 is the advantage function for UAV 𝑖.

5. AlgorithmsThe training algorithm requires UAVs to observe the state, make judgments using the actor net-
work, execute actions, receive rewards, and update their networks with knowledge stored in memory. IPPO
differs from MAPPO in that it utilizes only the buffered information of each agent during the update phase,
instead of aggregating information from all agents. The IPPO algorithm is defined by the following iterative
phases.

Algorithm
• Observe state O𝑖 for UAV 𝑖.
• Choose action 𝑎𝑖 using actor network: 𝑎𝑖 ∼ 𝜋𝑖 (·|O𝑖; 𝜃𝑖).
• Execute action 𝑎𝑖 and observe reward 𝑟𝑖 and new state O′𝑖 .
• Store transition (O𝑖 , 𝑎𝑖 , 𝑟𝑖 ,O′𝑖 ) in memory.
• Sample random mini-batch from memory and update 𝜃𝑖 and 𝜙𝑖 using stochastic gradient descent.

The key distinction of IPPO in the update phase is in the use of the experiences:

For each UAV 𝑖 : 𝜃𝑖 ← 𝜃𝑖 + 𝜂Δ𝜃𝑖 (O𝑖 , 𝑎𝑖 , 𝑅𝑖 ,O′𝑖 ) (29)

where 𝜂 is the learning rate.

4.1. Computational complexity analysis
The computational complexity of the proposed MADRL algorithm with the IPPO technique involves several
components, including observation space processing, action space exploration, reward calculation, and the
update of actor-critic networks.

1. Observation Space Processing: Each UAV has an observation space of size 𝑂 (𝑁 + 𝑀), where 𝑁 is the
number of UAVs and 𝑀 is the number of GUs. This space includes the positions, battery levels, and other
relevant state information of all UAVs and GUs. The processing of the observation space, which involves
gathering and updating this information, is 𝑂 (𝑁 + 𝑀) per UAV.

2. Action Space Exploration: The action space for each UAV includes movement direction and distance. The
exploration of the action space, which involves selecting an action based on the current policy, is 𝑂 (1) per
UAV since the action space’s dimensionality remains constant regardless of the number of UAVs and GUs.
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3. Reward Calculation: The reward function involves cooperative components, individual throughput, border
violations, unsafe distances, and energy consumption. These calculations involve linear operations on the
observations and actions. Therefore, the complexity for calculating the reward function is𝑂 (𝑁 +𝑀) per UAV.

4. Update of Actor-Critic Networks: The update of the actor and critic networks involves backpropagation
through neural networks. Let 𝐿 be the number of layers and 𝐷 be the maximum number of neurons per layer.
The complexity of updating each network is𝑂 (𝐿𝐷2). Given that each UAV has its separate networks, the total
complexity for updating all UAVs is 𝑂 (𝑁𝐿𝐷2).

Combining all components, the overall computational complexity per time step per UAV is written as

𝑂 (𝑁 + 𝑀) +𝑂 (1) +𝑂 (𝑁 + 𝑀) +𝑂 (𝐿𝐷2) = 𝑂 (𝑁 + 𝑀) +𝑂 (𝐿𝐷2) (30)

Given that the number of layers 𝐿 and the number of neurons 𝐷 per layer are typically constants for a fixed
neural network architecture, the primary factors influencing computational complexity are the number of
UAVs 𝑁 and the number of GUs 𝑀 . In scenarios with a large number of UAVs and GUs, the complexity scales
linearly with 𝑁 + 𝑀 . However, the quadratic term 𝐿𝐷2 related to the neural network updates can become
significant if the network architecture is very deep or wide. Thus, the overall computational complexity of the
MADRL algorithm with the IPPO technique for the entire system (considering 𝑁 UAVs) is:

𝑂 (𝑁 · (𝑁 + 𝑀 + 𝐿𝐷2)) = 𝑂 (𝑁2 + 𝑁𝑀 + 𝑁𝐿𝐷2) (31)

5. RESULTS AND DISCUSSION
UAV-assisted communication network simulation is a technology that aims to connect locations without
ground-based infrastructure. It uses a 10 km x 10 km 3D simulated environment to replicate both rural and
urban terrains. UAVs fly between 100 and 300 meters to communicate directly with ground users for optimal
transmission. To simulate real-world user dispersal, 50 GUs are randomly dispersed over the simulation ter-
ritory. The MADRL algorithm is used to balance current and future rewards with a learning rate of 0.01 and
a discount factor of 0.95. The communication technicalities include a noise spectral density of -174 dBm/Hz
and a transmit power of 20 dBm for UAVs and 23 dBm for GUs. The implementation details of the IPPO
algorithm describe the MADRL model: Each UAV agent’s policy and value networks are updated depending
on observations and rewards to imitate learning. Each UAV contains a blockchain module that imitates DL
technology for secure and immutable communication transactions. The networks have densely linked layers
with Restricted Linear Unit (ReLU) activation and a softmax layer for action probability. The observation
space contains important data such as the UAV’s location, battery level, adjacent GUs, and network through-
put. Specific actions describe UAV direction and distance motions for the next time slot, defining the action
space. The incentive function encourages GUs to improve throughput, energy efficiency, and fairness.

The simulation results depicted in Figure 2 illustrate the comparative performance of four UAV communica-
tion strategies across a sequence of time slots. The primary strategy, MADRL with DL, is shown to achieve
the highest throughput, a testament to the efficacy of integrating DL technology with advanced RL algorithms.
This strategy exhibits a rapid ascent in throughput that stabilizes as it approaches the system’s capacity limit,
forming an S-shaped logistic curve that represents a realistic growth pattern in network throughput. The sec-
ond strategy, standalone MADRL, although effective, does not reach the peak performance achieved by its
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Figure 2. Comparison investigation proposed framework based onMADRL with DL, standaloneMADRL, traditional RL and static K-means.

DL-enhanced counterpart, suggesting that while MADRL is a robust approach, its integration with DL tech-
nologies offers significant improvements. This curve parallels the top performer at a slightly subdued growth
rate, demonstrating substantial but not maximal efficiency. The traditional RL strategy curve rises at a more
modest pace, reflecting a lower growth rate and capacity. This indicates that traditional RL, while capable,
falls short of the more sophisticated MADRL techniques, particularly in environments that demand dynamic
and complex decision-making. Lastly, the Static K-Means strategy lags behind, with the least growth rate and
capacity, suggesting its relative inadequacy in adapting to the evolving demands of UAV communication net-
works. Its performance trajectory, while still positive, is themost gradual and plateaus at the lowest throughput
level, underscoring the limitations of less dynamic optimization methods. The results collectively encapsulate
the cumulative throughput achievements of the UAV networks over time, measured in Gbps.

Figure 3 presents a comparison of four UAV communication optimization techniques across four metrics,
including cumulative rewards, fairness index, cumulative throughput, and energy consumption. After 5000
episodes, the proposedMADRLwithDL approach demonstrates the highest rewards in the cumulative rewards
graph, indicating its superior performance in accumulating benefits over time. The data analysis shows a steady
and significant rise in rewards, suggesting that this strategy is highly effective in achieving the desired outcomes
in the simulated scenario. The fairness index graph evaluates the fair distribution of resources among users or
agents. The proposed MADRL with DL consistently exhibits good performance, with a fairness index close to
one, indicating optimal fairness. This method effectively distributes resources in a fair manner, guaranteeing
that no individual or group is given special treatment. The cumulative throughput graph demonstrates the
amount of data successfully transmitted over the network. The proposed MADRL with DL approach achieves
the highest throughput, indicating efficient network traffic management. This technique shows a consistent
and substantial increase in throughput, indicating an effective optimization strategy for maximizing data flow
in the network. The energy consumption graph compares the energy needed by each technique to achieve its
objectives. The proposed MADRL with DL technique is notable for its minimal energy usage, emphasizing its
effectiveness. It is essential to focus on energy efficiency for UAV operations to ensure sustainability and cost-
effectiveness. The proposed technique is designed to be high-performing and energy-efficient. The proposed
MADRLwith DL approach outperforms the standaloneMADRL, traditional RL, and static K-Means strategies
in all performance metrics. These findings highlight the advantages of incorporating deep learning with DL
technology in UAV communication systems, resulting in improved performance, fairness, throughput, and
energy efficiency. Utilizing effective analysis rather than relying on a curve can highlight the enhanced benefits
of using advanced algorithms to oversee intricate communication networks.
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Figure 3. Throughput, rewards, fairness index and energy estimations.

Figure 4. Number of UAVs evaluation in terms of energy, throughput and fairness index.

Figure 4 compares the performance of various communication mechanisms using different numbers of UAVs.
The methods evaluated are the proposed MADRL with DL, Standalone MADRL, Traditional RL, and Static K-
Means. The fairness index is used to assess the equitable allocation of resources among UAVs or network users.
The MADRL with DL proposal shows the highest fairness index, indicating its effectiveness in ensuring equi-
table conditions throughout the network. As the number of UAVs increases, fairness grows, demonstrating
the effectiveness of the proposed MADRL with Deep Learning as the UAV fleet size scales up. The Standalone
MADRL has a higher fairness index compared to the Traditional RL and Static K-Means, indicating a more
equitable distribution of resources. The throughput represents the data transmission rate controlled by each
approach. The graph shows that as the number of UAVs increases, all techniques enhance throughput, but
the Proposed MADRL with DL performs better than the other methods, showcasing its superior capacity to
efficiently manage more intricate connections and larger data transfers. The Standalone MADRL outperforms
Traditional RL, while Static K-Means has the lowest throughput, indicating that advanced dynamic techniques
can effectively utilize more UAVs to enhance network capacity. Similarly, energy consumption shows the
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energy usage for each technique. Reduced energy usage is favorable as it indicates a more effective use of re-
sources. The Proposed MADRL with DL consumes more energy compared to previous options, but it offers
a trade-off for increased fairness and throughput. The Standalone MADRL has somewhat greater efficiency
compared to the Proposed MADRL with DL, while Traditional RL consumes less energy than both MADRL
approaches. The Static K-Means algorithm, while highly energy-efficient, may exhibit lower performance com-
pared to other algorithms, as seen by preceding measures. The data indicates that the Proposed MADRL with
DLmethod achieves superior performance in fairness and throughput, albeit with increased energy usage. The
StandaloneMADRLmethod is characterized by a balanced combination ofmoderate energy consumption and
performance. Traditional RL and Static K-Means are more energy-efficient but lag in network performance,
showing a trade-off between energy efficiency and operational efficacy. This research can help identify the
optimal technique for UAV network communication based on the specific needs for fairness, throughput, and
energy efficiency.

6. CONCLUSIONS
This research marks a significant advancement in UAV communication systems, particularly beneficial in en-
vironments lacking ground-based infrastructure. By integrating MADRL with DLT, we have significantly en-
hanced the performance, fairness, and energy efficiency of UAV networks. The proposed system architecture
leverages a cluster of UAVs to deliver equitable communication services, striking an optimal balance between
network connectivity and resource utilization. The decentralized learning strategy, based on the IPPO tech-
nique, enables UAVs to tailor their operational strategies based on individual observations, fostering a dynamic
and adaptive communication environment. While our findings demonstrate that the MADRL with DLT ap-
proach substantially outperforms traditional methods across various metrics, this study also opens several
avenues for future research. Future work could explore the integration of more complex adaptive algorithms
to further enhance the system’s responsiveness to changing environmental conditions and user demands. Addi-
tionally, further research is needed to address potential challenges in scalability and manageability as the size
and complexity of UAV networks increase. The complexities involved in real-world implementations, such
as regulatory hurdles and varying environmental conditions, also present substantial challenges that require
innovative solutions. Moreover, as UAV technologies and the frameworks for their operation evolve, continu-
ous improvements in security measures will be essential to safeguard against increasingly sophisticated cyber
threats. The adoption of newer cryptographic techniques and advanced security protocols will be crucial to
ensure the integrity and confidentiality of the data transmitted within these networks.
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