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Abstract
The circadian system plays a crucial role in regulating metabolic homeostasis at both systemic and tissue levels by 
synchronizing the central and peripheral clocks with exogenous time cues, known as zeitgebers (such as the 
light/dark cycle). Our body’s behavioral rhythms, including sleep-wake cycles and feeding-fasting patterns, align 
with these extrinsic time cues. The body cannot effectively rest and repair itself when circadian rhythms are 
frequently disrupted. In many shift workers, the internal rhythms fail to fully synchronize with the end and start 
times of their shifts. Additionally, exposure to artificial light at night (LAN), irregular eating patterns, and sleep 
deprivation contribute to circadian disruption and misalignment. Shift work and jet lag disrupt the normal circadian 
rhythm of liver activity, resulting in a condition known as “circadian disruption”. This disturbance adversely affects 
the metabolism and homeostasis of the liver, contributing to excessive fat accumulation and abnormal liver 
function. Additionally, extended working hours, such as prolonged night shifts, may worsen the progression of non-
alcoholic fatty liver disease (NAFLD) toward non-alcoholic steatohepatitis (NASH) and increase disease severity. 
Studies have demonstrated a positive correlation between night shift work (NSW) and elevated liver enzymes, 
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indicative of hepatic metabolic dysfunction, potentially increasing the risk of hepatocellular carcinoma (HCC) 
related to NAFLD. This review consolidates research findings on circadian disruption caused by NSW, late 
chronotype, jet lag, and social jet lag, drawing insights from studies involving both humans and animal models that 
investigate the effects of these factors on circadian rhythms in liver metabolism.

Keywords: Night shift, circadian disruption, liver homeostasis, non-alcoholic fatty liver disease (NAFLD), hepatic 
cancer

INTRODUCTION TO THE CIRCADIAN SYSTEM
Circadian rhythms govern various physiological functions through intrinsic autonomous oscillators known 
as free-running rhythms, allowing organisms to adapt their behaviors to a roughly 24 h cycle in response to 
environmental changes aligned with the Earth’s day-night cycle[1]. These internal (endogenous) 
physiological rhythms are orchestrated by a master pacemaker in the hypothalamus known as the 
suprachiasmatic nucleus (SCN). These intrinsic “time-keeping” oscillators synchronize with the external 
environmental time cues known as zeitgebers, with light being the most potent zeitgeber[2-4]. However, 
improper exposure to zeitgebers, a prevalent issue in modern society, can disrupt circadian equilibrium and 
adversely affect human health. The central SCN clock is synchronized with peripheral clocks present in 
nearly every cell across various organs[1].

CENTRAL/MASTER CLOCK (SUPRACHIASMATIC NUCLEI) AND PERIPHERAL CLOCKS
The central clock, the SCN, in mammals uses direct neural projections via the retinohypothalamic tract 
(RHT) to respond to light signals received from the retina. SCN acts as a master clock that coordinates the 
synchronization of the peripheral tissues through autonomic and endocrine signals[5]. At the molecular level, 
the circadian clock functions through a transcription-translation feedback loop (TTFL), with about 24 h 
periodicity[6]. The SCN and peripheral clocks employ similar molecular mechanisms based on an auto-
regulatory TTFL comprising positive (activating) and negative (inhibitory) feedback loops[7]. The core of the 
circadian system features crucial clock genes, including circadian locomotor output cycles kaput (CLOCK) 
and brain and muscle Arnt-like protein-1 (BMAL1)[8]. On the contrary, the negative feedback loops involve 
Period (PER) genes PER1/2/3 and Cryptochrome (CRY) genes CRY1/2[9,10]. Additionally, the Rev-Erb alpha 
and retinoid-related orphan receptor alpha (RORα) nuclear receptors (NRs) regulate BMAL1 transcription 
through competitive binding to the ROR-response element (RORE)[11,12]. The SCN regulates peripheral 
tissue clocks via multiple mechanisms, including: (1) innervation of peripheral tissues by the autonomic 
nervous system; (2) signaling through the endocrine system; (3) temperature control; and (4) integration of 
behavioral signals such as feeding[13]. The sympathetic and parasympathetic neurons, which receive inputs 
from both the SCN and hypothalamus, extend their innervation to a broad spectrum of peripheral organs, 
encompassing the liver, muscles, adipose tissue, intestine, and heart. Peripheral clocks are further influenced 
by additional zeitgebers, including exercise, sleep patterns, and meal timing[14]. Disruption of circadian 
rhythms caused by improper meal timing, night shift work (NSW) schedules, or sleep deprivation often 
disturbs the synchronization between the body’s internal clock and the external environment. This 
desynchronization may affect the coordination between the central and peripheral biological processes 
within an organism. Such disturbances have been linked to the onset of obesity, metabolic disorders[15], and 
several types of cancers[16]. Shift workers such as firefighters (exposed to carcinogenic chemicals during fires) 
and painters (exposed to harmful solvents and pigments) are at elevated cancer risk[17]. The detrimental 
health impacts of these disruptions include impaired glucose metabolism, alterations in endocrine and 
immune functions, elevated blood pressure, and heightened levels of inflammatory markers associated with 
shift work[18-24]. Night shift schedules may also disturb the 24 h rhythms of urinary metabolites among police 
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officers on rotating shifts[25].

Peripheral circadian gene expressions in peripheral blood mononuclear cells and shift workers
There is a wealth of literature demonstrating the effects of night shifts on circadian genes (CGs). Using 
samples from beard follicles, a study examined clock gene expression in Japanese men across three distinct 
population cohorts: (1) those who work one night shift and then take the day off; (2) those who work on 
three or more consecutive night shifts (factory workers); and (3) those who work only daytime hours. The 
expression of Period 3, Nr1d1, and Nr1d2 was investigated using quantitative polymerase chain reaction 
(qPCR). Compared to the consecutive-night group, the patterns of Period 3 and Nr1d2 expression in the 
daytime and one-night groups were more alike. It suggests that, depending on the shift pattern or type, 
working night shifts modifies the circadian Period 3 and Nr1d2 expression rhythms and levels[26]. Other 
studies described how the night shift affects peripheral CGs and circadian-controlled genes (CCGs) linked 
to breast cancer. The authors measured the levels of cortisol and melatonin in plasma, as well as the levels of 
CCGs [erythrocyte sedimentation rate (ESR1 and ESR2)] and peripheral CGs (PER1, PER2, PER3, and 
BMAL1) in peripheral blood mononuclear cells (PBMCs). In day shift nurses, the 24 h rhythms of cortisol 
and melatonin aligned with light/dark cycles corresponding to their shifts, and these rhythms were reflected 
in the mRNA expression of PER2, PER3, BMAL1, and ESR2. These rhythms peaked in the morning. In 
contrast to day shift nurses, night shift workers displayed abnormalities in the rhythmic expressions of the 
PER2, PER3, BMAL1, and ESR2 genes. As a result, there was a reduced inverse connection between PER2 
and BMAL1[27]. The study compiled fifteen epidemiological research papers, five of which focused on shift 
work employment, and identified BMAL1, BMAL2, CLOCK, neuronal PAS domain protein 2 (NPAS2), 
CRY1, CRY2, PER1, PER3, and TIMELESS as potential risk variants for breast cancer[28]. The study 
evaluated clock gene expression in two peripheral clocks, oral mucosa cells and PBMCs, in 11 police officers 
who worked the night shift and measured central clock markers, urinary 6-sulfatoxymelatonin, and salivary 
cortisol. The morning/evening difference seen at baseline in PBMCs vanished after a week of working 
nights, and PER1-3 and Rev-ERBα expression in oral mucosa cells lost rhythmicity. It is thought that shift 
work-related medical illnesses may be significantly affected by molecular circadian disruptions[29]. The study 
evaluated the resetting effects of bright light exposure on peripheral clock indicators, such as clock gene 
expression in PBMCs, as well as central clock markers, including plasma cortisol and melatonin, in 
individuals who are night owls. The phase of PER1 and BMAL1 rhythms in PBMCs was delayed by 
approximately 2.5-3 h (P < 0.05) in response to a night schedule; no shift was seen for the other clock genes 
or the central markers[30]. In a different study, on days off from work, PBMCs were collected for RNA 
extraction every 3 h, and cortisol and melatonin were measured. Differential gene expression patterns 
between night shift and day shift participants were found using genome-wide microarray analysis of PBMCs 
from a group of nurses. Furthermore, regardless of shift type, there was a significant variation in the 
quantity of rhythmic transcripts across the individuals. It demonstrates how shift work schedules impact 
PBMC gene expression and circadian alignment[31]. Researchers looked into how NSW and genes related to 
the circadian and melatonin pathways affected the risk of breast cancer in Korean women. A standardized 
questionnaire was used to gather data on NSW and other variables, while hospital-based case-control 
research was conducted to analyze twenty-two polymorphisms in eleven different genes. Upon examining 
the primary impacts of each single nucleotide polymorphism (SNP), variations in CLOCK rs11133373 were 
associated with an increased risk of breast cancer. The findings of the study support the potential 
involvement of various loci related to circadian rhythms, melatonin-synthesizing genes, their interactions, 
and gene interactions with NSW in the pathogenesis of breast cancer[32].

CIRCADIAN MISALIGNMENT: A SILENT DISRUPTOR
The circadian clock is essential for regulating vital hepatic functions and cellular processes. Contemporary 
lifestyles, often marked by factors such as nighttime exposure to artificial light, rotating night shift 
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schedules, social jet lag, irregular sleep-wake cycles, and inconsistent eating patterns, frequently disrupt the 
natural rhythm of the circadian clock, leading to “circadian misalignment.” This phenomenon is believed to 
contribute to global health challenges, including obesity, non-alcoholic fatty liver disease (NAFLD), and 
non-alcoholic steatohepatitis (NASH)[33]. Circadian misalignment is also associated with various disorders, 
including obesity, type 2 diabetes, and metabolic syndrome (MetS)[34-37]. Extensive evidence from studies 
involving both humans and animal models indicates a clear association between circadian disruption and 
the incidence of hepatocellular carcinoma (HCC)[38,39]. Additionally, the impact of NSW on increasing the 
risk of NAFLD, which can potentially progress to hepatic cancer, remains uncertain[40-42].

KEY FACTORS RESPONSIBLE FOR CIRCADIAN RHYTHM DISRUPTION
Artificial LAN, rotating night shifts, and social jet lag have freed modern society from the constraints of 
natural day-night cycles, but they have also led to behaviors that are misaligned with the body’s circadian 
rhythms. Circadian rhythms are significantly influenced by exposure to artificial LAN, which is particularly 
pronounced due to NSW. Light information from the retina of the eye is transmitted to the master circadian 
pacemaker, the SCN, via the monosynaptic RHT. In this pathway, light is converted into a neuronal signal 
by melanopsin-positive intrinsically photoreceptive retinal ganglion cells (ipRGCs) located in the retina. 
The neurotransmitter glutamate is released into the SCN in response to light stimulation of the retina. 
Glutamate plays a crucial role in regulating circadian rhythms. The SCN interacts with other brain regions, 
including the arcuate nucleus, paraventricular nucleus, and lateral hypothalamus, using neurotransmitters 
such as gamma-aminobutyric acid (GABA). The brain translates the information of light signals into an 
integrated response that is sent to peripheral organs through the autonomic system and hormonal signals. 
The peripheral clock receives the information and communicates back to the brain’s clock SCN after 
synchronizing with external time. The central and peripheral clocks work simultaneously to stabilize 
rhythms that regulate physiological functioning at the cellular and tissue levels. For example, the SCN 
transmits the signals of artificial light due to night shift (signals of the light-dark cycle) to the periphery of 
the body by directly interacting with other brain regions through the production of signaling molecules or 
by indirectly determining rest-activity periods that in turn regulate the feeding-fasting cycle. Disruptions in 
feeding and fasting rhythms due to the reverse pattern of the light-dark cycle experienced by night shift 
workers can lead to altered metabolic homeostasis at both the cellular and molecular levels. This 
misalignment can interfere with the circadian regulation of metabolic processes, ultimately impacting 
pathophysiology and hepatic health at a molecular or cellular level. The following are key factors responsible 
for circadian rhythm disruption [Figure 1], detailed below in separate sections:

Exposure to LAN
Experimental research has demonstrated that disturbances in circadian rhythms caused by exposure to LAN 
may accelerate carcinogenesis in rodents[43]. Blue light, particularly in the 480 nm range, significantly 
impacts the circadian system by influencing the melanopsin-containing retinal ganglion cells (ipRGCs) that 
regulate the body’s internal clock[44]. Earlier, among newly diagnosed NAFLD adults, investigations have 
indicated that nighttime light exposure can reduce melatonin secretion, delay the sleep-wake cycle, disrupt 
circadian rhythms, and thus disrupt liver metabolism[44,45]. Furthermore, desynchronization between 
circadian clocks and the natural light-dark cycle due to LAN has been linked to health issues like sleep 
disorders, mood changes, metabolic issues, and even chronic conditions over time, including cardiovascular 
disease[44,46], as well as breast and prostate cancers[47,48].

NSW
Shift work is widely acknowledged as a significant workplace hazard, impacting approximately 20% of 
workers in industrialized nations who participate in rotating shifts or night work outside of traditional 
daytime hours[49]. Distinct forms of shift work include “permanent NSW,” where individuals exclusively 



Page 5 of Singh et al. Hepatoma Res 2024;10:46 https://dx.doi.org/10.20517/2394-5079.2024.88 23

Figure 1. Factors responsible for circadian misalignment in liver metabolism. SCN: Suprachiasmatic nucleus; ZT: zone time; Per 1: period 
circadian regulator 1; Per 2: period circadian regulator 2; FXR: farnesoid X receptor; Cyp7A1: cholesterol 7 alpha-hydroxylase; BMAL1: 
basic helix-loop-helix ARNT Like 1; CLOCK: circadian locomotor output cycles kaput; GLUT2: glucose transporter 2; GYS: glycogen 
synthase; GSK3: glycogen synthase kinase-3; InsR: insulin receptor; Cry1: circadian cryptochrome; AKT: protein kinase B; GLUT 4: 
glucose transporter 4; PPARs: peroxisome proliferator-activated receptors; SREBP: sterol regulatory element-binding protein; Rev-Erb : 
NR1D (nuclear receptor subfamily 1 group D); FA: fatty acid; ER: endoplasmic reticulum; ROS: reactive oxygen species.

work overnight, and “rotating shift work,” which involves regular shifts that alternate between daytime and 
nighttime, including morning, evening, and night shifts[50,51]. NSW imposes considerable strain on the body’s 
circadian timing system. Despite its prevalence in our modern 24 h society, there is growing evidence 
indicating that circadian disruption associated with shift work can result in various adverse health 
effects[36,52-54]. This disruption is particularly pronounced in NSW, where Chinese steelworkers are active and 
eating during the typical rest phase, while sleeping and fasting during the usual active phase[52].

Late chronotype (eveningness chronotype)
In modern industrialized societies, widespread access to artificial light throughout the day and night 
influences individuals’ preferences in their sleep-wake cycles, known as their Chronotype[55]. Chronotype 
characterizes how an individual’s circadian rhythms vary in both behavior and biology[56]. Individuals are 
often categorized as “early” or “morning” types, referred to as Early Birds, who prefer going to bed and 
waking up early. Conversely, “late” or “evening” types, known as Night Owls, tend to stay up late and wake 
up later in the day. Like UK biobank participants, night owls are particularly susceptible to circadian 
disruption because their natural sleep patterns are frequently disturbed by typical work schedules compared 
to morning types[57]. The disruption of the circadian clock has been associated with the accumulation of 
hepatic fat and its progression to NAFLD and NASH in both animal models[58,59] and, more recently, in 
humans[59-61]. A recent study indicated that individuals with a late chronotype exhibited significantly higher 
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levels of visceral adiposity index, liver fat, and hepatic steatosis[59].

Social jetlag
Inadequate sleep is often compensated for on weekends or free days, a phenomenon known as “Social jetlag
(SJL)”. This term describes the difference in mid-sleep time between workdays and free days, which reflects
the degree of circadian disruption[62]. It is estimated that approximately 50% of workers and students
experience at least 2 h of SJL, while up to 70% experience at least 1 h, due to accumulated sleep deficits
during the week or adherence to fixed schedules that necessitate waking earlier than desired. Research
highlights various health implications of SJL[63]. For example, a cohort study among the Finnish adult
population identified an association between SJL and obesity, particularly among morning chronotypes[64].
Separate cross-sectional studies in Japan and the Netherlands, excluding shift workers, demonstrated that
SJL exceeding 2 h doubled the likelihood of MetS[65,66]. Moreover, among prediabetic adults in Thailand,
each additional hour of SJL correlated with increases in relative body fat, mean body mass index (BMI), and
mean waist-to-hip ratio[67].

Late night eating
In recent decades, there has been a notable increase in eating behaviors such as skipping meals, eating later
in the day, and frequent snacking among the general population[68]. Observational studies and small human
trials indicate that these specific meal timing habits might elevate the risk of NAFLD[69,70]. The timing of
meals and the metabolism of macronutrients are influenced by circadian rhythms. Eating at inappropriate
times can disrupt these rhythms, leading to circadian misalignment. Consequently, frequent eating episodes,
particularly grazing or snacking outside traditional meal times, are associated with increased susceptibility
to NAFLD and obesity[70,71]. Modern dietary patterns frequently involve irregular and prolonged eating
schedules, compounded by a Western-style diet, sedentary lifestyles, and chronic sleep deprivation.
Together, these factors contribute to an increased vulnerability to metabolic disorders, including
NAFLD[72,73]. Animal studies and small human trials suggest that confining meals to the typical active period
- usually during the daytime for diurnal organisms like humans - may help reduce liver fat accumulation
and improve insulin sensitivity[58,74].

Sleep deprivation/poor sleep quality
Inadequate sleep quality may contribute to an increased susceptibility to NAFLD and NASH[75]. Research
indicates that sleep deprivation can induce hepatic steatosis and elevate alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) levels in mice[76]. Several large-scale population-based studies have shown
that short sleep duration is linked to NAFLD. For instance, sleeping fewer than 5 h per night may elevate
the risk of NAFLD - characterized by elevated ALT levels, a positive Fatty Liver Index, and sonographic
evidence of steatosis - by 35% to 70%[77,78]. Moreover, evidence suggests that poor sleep quality and
insufficient sleep duration among night-shift workers may increase the risk of breast cancer among
women[79,80].

SHIFT WORK TENDS TO ADOPT UNHEALTHY LIFESTYLES
With the rise of industrialization and economic growth, shift work has become increasingly prevalent[81]. 
Individuals who work shift schedules, particularly night shifts, often experience disruptions in their sleep 
patterns, changes in meal timings, and exposure to artificial light during nighttime hours, which can disturb 
their circadian rhythms[82]. One possible explanation for the connection between long working hours and 
NAFLD is reduced physical activity during extended work periods. Excessive working hours may limit 
opportunities for leisure-time exercise and contribute to fat accumulation among children[83]. Moreover, 
prolonged working hours are associated with other lifestyle factors, such as smoking and alcohol 
consumption, among iron and steelworkers[84]. Additionally, NSW has been shown to exacerbate NAFLD 
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among industrial workers[33,41,52,85,86]. The National Health and Nutrition Examination Survey (NHANES) 
reported that shift work increases the likelihood of NAFLD by 66% in lean individuals, though not in those 
who are obese[40]. Night shift working schedules positively correlate with abnormal liver function in workers 
without pre-existing non-alcoholic fatty liver (NAFL), indicating that circadian disruption caused by shift 
work schedules impacts liver health[87].

CIRCADIAN REGULATION IN LIVER METABOLISM AND HOMEOSTASIS
The liver’s circadian clock is finely tuned to meal timing and is closely intertwined with energy metabolism. 
It plays a crucial role in orchestrating metabolic functions, prompting extensive research into its 
implications for diseases such as NAFLD[61]. Dysregulation of the circadian system disrupts the genes 
associated with chronic jet lag, leading to impaired hepatic metabolism and changes in circulating levels of 
energy, lipids, insulin, and glucose, which may contribute to hepatic cancer development[3,39]. Animal-based 
experimental models replicating conditions similar to human NSW, reveal that the dynamic nature of 
hepatic metabolic processes, including glucose, lipid, and cholesterol/bile acid metabolism, is influenced by 
feeding/fasting cycles and circadian rhythms[88], and the circadian clock significantly contributes to lipid 
dysregulation, oxidative stress, and inflammation[58,89].

Shift working schedules disrupt circadian rhythms, adversely affecting liver metabolic homeostasis, and 
leading to hepatic fat accumulation[90]. About 40% of hepatic transcriptomics exhibit circadian 
oscillations[91], including rhythms in protein levels, posttranslational modifications, and several metabolites 
in mammals[92,93]. Recent research suggests that alterations in circadian rhythms, particularly in individuals 
with specific SNPs in clock-related genes like Signal transducer and activator of transcription 3 (STAT3), 
patatin-like phospholipase domain-containing 3 (PNPLA3), peroxisome proliferator-activated receptor-
gamma (PPAR), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), 
are linked to NAFLD development and progression[33]. Studies have shown that weakened rest-activity 
rhythms are associated with elevated liver enzyme levels [AST, alkaline phosphatase (ALP), gamma-
glutamyl transferase (GGT)] and decreased albumin levels[94]. Extended periods of night work increased the 
vulnerability of nurses to dyslipidemia and abnormal liver and kidney function. When the hepatic circadian 
clock is not functioning optimally, the body becomes more susceptible to metabolic disruptions such as 
insulin resistance, heightened adiposity, and the progression of fatty liver diseases, diabetes, and obesity, as 
well as fibrosis and HCC[39,90,95].

Abnormal bile acid synthesis
Bile acid synthesis plays a key role as a signaling molecule in maintaining glucose, lipid, and energy balance, 
mediated by the farnesoid X receptor (FXR). This synthesis follows a daily rhythm governed by the 
circadian control of cholesterol 7α-hydroxylase expression and activity[96]. Chronic circadian disruption may 
cause the dysregulation of bile acids, resulting in altered nutrient utilization and storage, consequently 
promoting NAFLD development[88]. Rotating shifts perturb melatonin secretion, further disrupting 
circadian rhythms and potentially impacting liver metabolic homeostasis. This imbalance may lead to 
impaired nutrient utilization and increased accumulation through bile acid dysregulation. Kim et al. (2022) 
suggested a potential mechanism while studying Korean male steelworkers wherein reduced melatonin 
function against oxidative stress could contribute to the pathogenesis of NAFLD[97].

Altered glucose metabolism and insulin signaling in the liver
The liver maintains glucose balance, with its regulatory centers influenced by circadian rhythms that enable 
it to anticipate and effectively respond to changes in glucose levels during feeding and fasting[98]. During the 
active phase (daytime for humans and nighttime for mice), after a meal, the liver responds to high glucose 
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levels by using glucose for glycolysis, or storing it as glycogen. However, upon reduced energy demands 
during the resting or fasting phase, the liver adapts to reduced energy demands by enhancing 
gluconeogenesis and glycogenolysis[99]. The disturbances to its circadian clock could have a significant 
impact on glucose regulation. Crucial regulators of these processes include glycogen synthase (GYS), 
glucose transporter 2 (GLUT2), glycogen synthase kinase (GSK3), and the insulin receptor (InsR)[100]. CRY, 
CGs, also modulate hepatic gluconeogenesis by influencing G protein-coupled receptor-mediated cyclic 
adenosine monophosphate (cAMP) accumulation and activating cAMP response element-binding protein 
(CREB)[101,102]. Circadian rhythm disruption may hinder insulin-induced Akt phosphorylation in white 
adipose tissue and affect the daily regulation of insulin sensitivity[103]. Importantly, disturbances in circadian 
rhythm are a leading cause of abnormal liver enzymes and insulin resistance among shift workers[104].

Altered lipid signaling in the liver
Approximately 20% of lipids, along with crucial enzymes involved in glucose, lipid, and bile acid 
metabolism, exhibit circadian oscillations in the mouse liver[58]. Hepatic CGs play roles in several key 
functions: (1) regulation of fatty acid (FA) synthesis via expression of elongation of very long chain FAs-3 
(ELOVL3), long-chain FA family member 6 (ELOVL6), and Fas Cell Surface Death Receptor (Fas)[105]; (2) 
they influence beta-oxidation and ketone body production[106]; and (3) direct the expression of the vital lipid 
response NRs and peroxisome proliferator-activated receptors (PPARs)[101,105,107]. The involvement of the 
circadian machinery in lipid metabolism has resulted in its association with hepatic steatosis[90]. Mice 
exposed to simulated shift work develop hepatic steatosis, showing an increase in hepatic genes associated 
with FA and triglyceride (TG) synthesis, and a decrease in genes involved in beta-oxidation[108,109]. Limiting 
food intake during the circadian day in mice helps to reduce hepatic TGs via transcriptional and enzymatic 
regulation of FA synthesis, lipolysis, and β-oxidation by the clock genes Rev-Erbα, Per2, and PPAR-γ[58,110]. 
Furthermore, time-restricted feeding (TRF) protects against steatohepatitis by reducing proinflammatory 
long-chain FA production and increasing the synthesis of the antioxidant glutathione in the liver[110]. In 
contrast to the general population, nurses encounter heightened work pressure and lead significantly 
different lifestyles, including frequent night shifts and nocturnal meals, which constitute high-risk factors 
influencing NAFLD[111].

FACTORS THAT INITIATE NAFLD AND DISEASE SEVERITY IN NIGHT SHIFT WORKERS
Recent evidence strongly links unhealthy lifestyles and metabolic conditions such as exposure to LAN, 
rotating night shifts, sleep deprivation, smoking, lack of physical activity, erratic eating patterns, overweight, 
obesity, diabetes, and dyslipidemia to an increased likelihood of developing NAFLD[111]. Studies have 
consistently shown that longer durations and frequent NSW, especially among nursing staff, correlate with 
higher risks of increased weight and obesity[112-115]. The increased susceptibility to NAFLD among night-shift 
workers appears to be partly mediated by elevated BMI[116]. A cross-sectional study on Chinese steelworkers 
showed that a significant interaction exists between gender and the duration of night shifts in influencing 
NAFLD risk, with males exposed to longer shifts exhibiting particularly increased odds of developing the 
condition compared to their female counterparts[52]. Given these findings, greater emphasis should be placed 
on screening male night-shift workers for NAFLD, owing to their increased vulnerability to the disease.

Furthermore, a study involving over 12,000 Japanese individuals found that those who reported sleeping less 
than 5 h per night had a significantly higher risk of developing NAFLD compared to those who slept more 
than 7 h[117]. Insights from rodent models of shift work have shed light on the role of the peripheral clock in 
regulating liver function. Mice fed a high-fat diet and exposed to a rotating light schedule, mimicking shift 
work conditions, showed increased body weight and higher food intake during their inactive period 
compared to mice under a standard light schedule[118]. Moreover, after just 8 weeks of light schedule 
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rotation, even on a standard chow diet, mice exhibited weight gain and hepatic steatosis, which worsened 
when they were subsequently fed a high-fat diet, leading to elevated levels of ALT[119]. Altered adipose tissue 
profiles marked by increased inflammation, angiogenesis, fibrosis, and adipocyte hypertrophy were seen in 
the adipose transcriptome of mice exposed to six months of rotating light schedules[103]. Continuous light 
exposure, mimicking circadian disruption by light pollution, exacerbated inflammation and insulin 
resistance induced by a high fructose diet in rats[120]. Nurses, particularly those in high-intensity and night-
shift roles such as emergency departments, exhibit a notably high prevalence of NAFLD, with rates 
potentially reaching 28.3%[121]. To address the drawbacks associated with NAFLD, it has been proposed to 
reclassify the term NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD)[122]. The 
presence of hepatic steatosis in combination with at least one of the following three conditions - type 2 
diabetes mellitus (T2DM), obesity, or metabolic dysregulation - are required for the diagnosis of MAFLD. 
Substantial evidence highlights that MAFLD is an independent risk factor for atherosclerosis and 
cardiovascular diseases. It is more closely associated with the primary risk factors for atherosclerosis and 
cardiovascular diseases, including dyslipidemia, T2DM, and hypertension, than NAFLD[123]. The new 
definition of MAFLD has emerged as metabolic dysfunction-associated steatotic liver disease (MASLD). 
While the exact mechanisms behind MASLD are not completely understood, disruptions in liver energy 
metabolism, lipid buildup, inflammation, and oxidative stress are believed to be the primary contributing 
factors[124]. Apart from these factors, recent preclinical studies have shown that the pertinent metabolic 
processes are regulated by circadian rhythms, underscoring the significant impact of circadian disruptions 
on the development of MASLD and metabolic dysfunction-associated steatohepatitis (MASH)[125].

CIRCADIAN DISRUPTION DUE TO NIGHT SHIFT: NAFLD INITIATION AND ITS 
PROGRESSION INTO NASH
NSW leads to a misalignment between workers’ activity patterns and the liver’s natural circadian rhythm. 
This disruption may result in additional hepatocyte damage and subsequent liver function 
abnormalities[101]. This work-induced disruption could also worsen liver conditions such as fatty liver, 
cholestasis, hepatitis, cirrhosis, and hepatic cancer, while these conditions themselves can further disturb the 
body’s natural circadian rhythms[126]. The liver’s peripheral clock, regulated by the central clock, maintains 
its own independent rhythm, which is essential for liver homeostasis[101]. Scientific evidence shows that 
serum liver enzymes reach their lowest levels during the nighttime and peak during the daytime, indicating 
that the production of these enzymes follows a circadian rhythm[127]. Persistent disturbance of the circadian 
rhythm fundamentally alters the expression of thousands of genes that are differentially regulated in NASH 
and HCC. The transcriptomes initiate comprehensive activation of cancer hallmarks, leading to rapid 
progression from NAFLD to the development of HCC and subsequent metastasis, as observed in mouse 
model[128]. Moreover, NAFLD is linked to specific alterations in liver transcription factors, such as sterol 
regulatory element-binding protein (SREBP), which regulates lipid production, carbohydrate-responsive 
element-binding protein (ChREBP), involved in glucose balance maintenance; and nuclear factor kappa B 
(NF-κb), associated with inflammatory responses[129]. Scientists proposed a “two-hit hypothesis” to explain 
how NSW may cause liver damage in cases of NAFLD[85]. Initially, working night shifts triggers lipid 
accumulation in liver cells, a condition known as hepatic steatosis or non-alcoholic fatty liver (NAFL), 
making these cells more vulnerable to damage (“first hit”). Subsequently, the oxidative stress caused by 
NSW leads to liver cell death, which can progress to NASH and/or liver fibrosis (“second hit”)[130]. The “2-
hit hypothesis” suggests that NAFL acts as a crucial intermediary in these mechanisms. The cancer-
promoting effects of circadian disruption in NASH encompass metabolic reprogramming, persistent cell 
proliferation and inflammation, evasion of growth suppressors, DNA surveillance, and apoptosis, as well as 
enhanced transdifferentiation of hepatocytes and extracellular matrix dysregulation. Chronic disruption of 
circadian rhythms accelerates the progression of NASH to cirrhosis and fosters the development of 
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precancerous environments. These environments are marked by inflammation that promotes tumor 
growth, increased formation of blood vessels, and activation of stroma-related epithelial-mesenchymal 
transition (EMT)[39,131]. The transcriptome analysis indicated that jet lag disrupts the regulation of oestrogen, 
androgen, WNT/β-catenin, transforming growth factor beta (TGFβ), phosphoinositide 3-kinase-Ak strain 
transforming-mammalian target of rapamycin (PI3K-AKT-mTOR), interferon, hedgehog, Interleukin-6-
janus kinase 2-signal transducer and activator of transcription 3 (IL6-JAK2-STAT3), Notch, Interleukin-2-
signal transducer and activator of transcription 5 (IL2-STAT5), and tumor necrosis factor-alpha-nuclear 
factor-kappa B (TNFα-NF-κB) signaling pathways in the liver, thereby contributing to the development of 
hepatic cancer[128]. Chronic exposure to disruptions in circadian rhythms can alter the expression of clock 
genes in the liver, potentially leading to various negative health effects, as reported in mice models[132,133].

Human population-based studies linking NSW to the initiation of NAFLD and NASH
NSW has been linked to deteriorated liver function and an increased risk of liver disease. Persistent rotating 
shift work frequently exhibits abnormal liver function, often indicated by irregular liver enzyme levels[85]. 
Yeung et al. found that disrupted rest-activity rhythms were linked to abnormal liver function biomarkers. 
Weakened rest-activity rhythms are correlated with poorer liver function, as indicated by various 
biomarkers, suggesting a potential role of circadian rhythms in maintaining liver health, as shown by the US 
National Health and Nutrition Examination Survey[94]. Furthermore, a 4-year longitudinal cohort study 
found a link between shift work and the incidence of NAFLD among the Chinese rail population, which 
supports the detrimental impact of shift work on NAFLD occurrence among these workers, especially those 
with frequent shift changes. The risk of developing NAFLD due to shift work was found to be higher in 
females and older individuals[134]. Shift work is associated with abnormalities in liver enzymes and provides 
some support for the notion that it has a greater impact on abnormal ALT levels in female workers 
compared to male workers in a cross-sectional study based on the Korea National Health and Examination 
Survey (2007-2015)[135]. The research examined the association between shift work and NAFLD in male 
workers within Korea’s steel manufacturing industry, revealing a link between shift work and moderate to 
severe NAFLD in these individuals[97]. Research involving male subjects indicated that individuals working 
night shifts had a higher likelihood of elevated ALT levels compared to those working during the day. 
Notably, a more pronounced dose-response effect was observed in individuals with longer durations of 
night shift employment[40,41]. NSW has been associated with the occurrence of NAFLD among Chinese 
female nurses, as evidenced by a web-based ambispective cohort study[121]. Similarly, rotating night shifts 
have been associated with a higher risk of new-onset NAFLD in Chinese male steelworkers. The study 
investigated how severe NAFLD correlates with prolonged QTc intervals and left ventricular hypertrophy 
(LVH) in a large group of Chinese male steelworkers. Significant correlations were found between the 
NAFLD fibrosis score, QTc interval abnormalities, left ventricular mass index (LVMI), and the likelihood of 
developing cardiovascular disease[136]. In line with this, blue-collar workers were reported to exhibit a higher 
incidence of prolonged QTc intervals, possibly attributable to factors such as overweight, obesity, smoking, 
and hypertension[137]. Lecca et al. discovered that consistent physical activity had a positive impact in 
preventing QTc prolongation[138]. Research on 6,881 steel production workers in China indicated that 
working night shifts was linked to higher chances of developing NAFLD, as revealed by a cross-sectional 
study. Specifically, current NSW was found to increase the risk of ultrasound-diagnosed NAFLD by 1.23 
times[52]. Furthermore, two other Chinese cross-sectional studies have identified a link between rotating 
NSW and the occurrence of NAFLD, potentially attributed to disturbances in circadian rhythms[45,52]. In a 
Chinese occupational cohort, working night shifts that involve rotation was linked to an increased 
probability of NAFLD, as determined by ultrasound. This risk escalates with both prolonged periods of shift 
work and extended nighttime hours[37]. Working rotating night shifts is linked to higher levels of ALT, GGT, 
and other liver enzymes among male steelworkers[139]. However, shift work was not associated with NAFLD 
as determined by levels of liver enzymes, ALT and e-AST, in the two cross-sectional studies[40,135]. A Thai 
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study examined the frequencies and duration of shift work and their relationship with NAFLD outcomes. 
While shift work status itself did not correlate with liver abnormalities, the length of time spent performing 
shift work was linked to NAFLD among workers[140]. A research study examined the relationship between 
different work schedules, individual biological rhythms, and their connection to liver fat accumulation and 
NAFLD among 282,303 participants from the UK Biobank. The study revealed that the hepatic proton 
density fat fraction (PDFF) was higher among irregular shift workers compared to those on permanent 
night shifts. Moreover, irregular shift work and a very late biological clock (chronotype) are linked to 
abnormal liver fat buildup, indicating that circadian disruption might play a role in its pathogenesis. These 
observations suggest implications for health strategies aimed at reducing the negative impact of shift 
work[141]. The research found NAFLD among healthy individuals working rotating shifts and explored its 
potential effects on nerve function. The findings suggest a significant prevalence of NAFLD among those 
engaged in rotating shift schedules. Furthermore, the study indicates that even though NAFLD is present, 
there appears to be no noticeable impact on the conduction of motor and sensory peripheral nerves, 
specifically in the common peroneal, median, and sural nerves[142]. Chinese research suggests that 
steelworkers who work shifts, particularly those with rotating schedules, are more prone to developing 
NAFLD due to disturbances in their internal body clock, which can contribute to liver fat accumulation and 
inflammation[52]. Interestingly, abnormal liver function, particularly indicated by elevated serum levels of 
ALT (e-ALT), is common among various professions that require NSW[85,86]. Workers on a 12-h rotating 
night shift showed notably elevated ALP levels and an increased risk of experiencing high to severe ALP 
levels compared to those on a fixed 12-h day shift[41,143,144]. After 5 years of monitoring Taiwanese electronic 
manufacturing workers, it was reported that 14.4% developed e-ALT. Additionally, those with hepatic 
steatosis initially showed that shift work could potentially worsen liver damage[85]. These investigations 
demonstrated a link between NSW and ALT levels, given the relevance of NAFLD to ALT levels[85,86]. 
Despite some uncertainty, research suggests a positive correlation between NSW and elevated ALT 
levels[40,145]. Similarly, serum ALP levels were elevated among shift workers, even after accounting for age, 
BMI, fasting blood sugar, and cholesterol levels[144]. The research discovered that both continuous exposure 
to light and a rotating light schedule triggered elevated levels of TNF-α, IL-6, IL-1β, along with serum lipids, 
AST, and ALT in mice[146]. Working night shifts by way of policemen specifically affects liver and kidney 
health, leading to conditions like NAFLD and declining renal function[41,147]. Biochemical markers that 
pertain to liver and kidney function primarily encompass ALT, AST, creatinine, uric acid (UA), and blood 
urea nitrogen (BUN).

Animal-based study reflecting circadian clock disruption and risk of HCC
Rodents can shed light on the effect of jet lag and night shifts on CGs. The key circadian oscillators in the 
liver and skin of mammals were studied concerning the effects of short- or long-term exposure to rotating 
shift and chronic jet lag. Long-term rotating shift conditions cause a considerable alteration in the liver’s 
circadian clock in mice, with a less pronounced but still noticeable effect in mice experiencing chronic jet 
lag. On the other hand, the skin’s circadian clock is impacted by all three of the simulated shift 
environments, suggesting that the skin clock is more responsive to rotating shift-work light conditions over 
an extended period of time than the liver clock. According to the study’s findings, under conditions that 
mimic shift work, the skin’s canonical clock genes exhibit more profound disruptions than those of the 
liver. These findings imply that the skin clock is more susceptible to shift work’s negative consequences[148]. 
However, other studies showed how the circulating glucocorticoids rhythms are dissociated from lighting 
cues, causing disruption in the timing of feeding behavior in mice; this phenomenon is most typically 
reflected in shift work and “jetlag” in transmeridian travel. The findings demonstrate the unfavorable 
behavioral effects that can occur when two circadian systems receive anti-phasic cues; in this instance, the 
effect is on the control of glucocorticoids, which is a function that is as essential to health as feeding 
behavior[149]. Mouse-based models of human-like livers offer a robust preclinical platform to investigate how 
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an inflamed liver environment and disrupted biological clocks contribute to hepatic cancer development, as 
well as to evaluate therapies against HCC[128]. The liver’s metabolism’s circadian homeostasis prevents 
carcinogenesis. Persistent disruption of circadian rhythms, like chronic jet lag, triggers spontaneous HCC in 
genetically normal mice, mirroring mechanisms seen in obese humans. Circadian disruption induces the 
activation of the constitutive androstane receptor (CAR) through mechanisms that promote cholestasis, 
peripheral clock disruption, and sympathetic dysfunction. Consequently, circadian dysfunction emerges as a 
significant risk factor for HCC. The research demonstrates that long-term disruption of biological rhythms 
alone can lead mice to develop hepatic cancer spontaneously, without changes in diet, external genetic 
stressors, or inherited genetic mutations[39]. Michelotti et al. reviewed studies and demonstrated that jet lag 
in mice leads to a widespread alteration in liver metabolism. This alteration not only enhances the 
production and storage of fats through increased cytoplasmic glycolysis but also elevates oxidative stress 
and boosts the synthesis of biochemical building blocks that facilitate fast cell division. Most of the jet-
lagged wild-type mice exhibit the advancement from NAFLD to NASH and subsequently to fibrosis at a 
young age. This is probably because jet lag induces sustained liver damage and inflammation, initiating a 
prolonged regenerative wound-healing cycle, which is a typical mechanism for tumor initiation[150].

PROLONGED WORKING HOURS AND EXTENDED YEARS OF SHIFT WORK: 
PROGRESSION OF NAFLD/NASH INTO DISEASE SEVERITY
A cross-sectional study in southern China found that extended rotating NSW is associated with an 
increased risk of dyslipidemia and abnormal liver function in nurses[151]. Other studies also reported 
cardiovascular disease[152,153], diabetes mellitus[154], MetS[155], and obesity in long-working shift workers[156]. In 
recent studies, including the Korea National Health and Nutritional Examination Survey VII and a large 
population-based Korean study, long work hours have been linked to NAFLD and recognized as an 
independent risk factor[42,52,157,158]. It is speculated that overwork contributes to the pathophysiology of 
NAFLD. Long working hours are strongly associated with psychosocial stress in blue-collar workers[159]. 
Moreover, a study revealed that the lean NAFLD group exhibited a higher incidence of working more than 
40 h per week yet sleeping for shorter periods of time compared to the control group[160]. Notably, extended 
working hours were strongly correlated with a higher incidence of lean NAFLD in the Korean population 
with long working hours and its severe manifestations in men, whereas this association was not observed in 
women[161]. Indeed, workers who occasionally or consistently worked night shifts had a 1.12 and 1.27 times 
higher likelihood, respectively, of developing NAFLD compared to those who never or rarely worked night 
shifts. Additionally, prolonged work hours, particularly those exceeding 60 h per week, were independently 
linked to the onset of NAFLD[158]. In a prospective study, the analysis of 281,280 UK Biobank participants 
showed that extended periods, increased frequency, consecutive night shifts, and prolonged hours per shift 
were linked to elevated risks of NAFLD, with risk escalating as these factors intensified. The study 
determined that the correlation between NSW and the occurrence of NAFLD remained significant 
regardless of genetic predisposition to the disease[162]. More intriguingly, the Dallas Steatosis Index (DSI) has 
been used in prior research to estimate NAFLD prevalence in biobank studies, such as those conducted with 
the UK Biobank[163]. Apart from this, a cross-sectional study utilizing data from the Korea National Health 
and Nutrition Examination Survey VII, which included 5,661 employed adults with no history of liver 
disease or heavy alcohol consumption, demonstrated that longer working hours are associated with an 
increased prevalence of NAFLD as indicated by a Hepatic Steatosis Index (HSI) score of 36 or higher. 
Individuals who worked 53-83 h per week had a greater likelihood of developing NAFLD compared to those 
who worked the standard 36-42 h per week, even after accounting for variables such as age, sex, BMI, 
smoking, alcohol consumption, physical activity, diabetes mellitus, hypertension, serum TG levels, and total 
cholesterol. Scientific studies have shown that increased physical inactivity[164] and reduced leisure-time 
physical activity, both of which are exacerbated by long working hours, are linked to lean NAFLD, as 
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reported in a cross-sectional study of South Korea[165]. Additionally, irregular shift work has been associated 
with the accumulation of pathological liver fat (hepatic fat fraction) and NAFLD in a study with 282,303 UK 
Biobank participants[141] and disease severity.

CARCINOGENIC EFFECT OF NIGHT SHIFT ON HCC AND OTHER MALIGNANCIES
Long-term disruptions in circadian rhythms increase the likelihood of HCC associated with NAFLD, 
although the precise mechanisms and direct implications for human HCC remain unclear. HCC, previously 
considered uncommon in the United States and other developed nations, has seen a nearly threefold rise in 
incidence, accompanied by a faster increase in cancer-related deaths[166]. In the context of liver metabolic 
disorders, NAFLD is projected to become the primary cause of HCC in the 21st century due to the 
widespread obesity epidemic[167]. Circadian disruption is associated with a higher cancer risk due to effects 
on the circadian system, including disturbances to its functioning and the activation of oncogenes, while 
also suppressing tumor suppressor genes. Using surveillance data, studies examined the relationship 
between age-standardized country-level cancer incidence rates for each cancer combined and 23 specific 
cancers by gender and the location inside a given time zone. The findings suggest that the timing of a place’s 
location concerning time zones provides a fascinating angle on how long-term disruptions to circadian 
rhythms may raise the risk of cancer. It appears that living near the western edge of a time zone in the 
United States significantly raises the risk of HCC, even after controlling for lifestyle factors like obesity[38,168]. 
Persistent disruption of daily biological rhythms can independently promote hepatic cancer in human liver 
cells. Liang et al. presented interesting observations and systematically analyzed the possible functions of 13 
core circadian clock genes (CCGs) in HCC to identify ideal biomarkers and therapeutic targets. Patients 
with low levels of CRY2, PER1, RORα, or high expressions of TIMELESS have a bad prognosis. 
Furthermore, pathway analysis showed that FA metabolism, the PI3K/AKT pathway, and the cell cycle are 
all impacted by these four CCGs. According to this research, the circadian clock genes TIMELESS, CRY2, 
PER1, and RORα may be used as therapeutic targets, diagnostic and prognostic biomarkers, and indicators 
of prognosis for patients with HCC. These genes may also facilitate HCC chronotherapy by rhythmically 
controlling drug sensitivity and crucial cellular signaling pathways. Overall, this disease progression closely 
resembles the pathophysiological process seen in humans with NAFLD that leads to spontaneous hepatic 
cancer[169]. One significant alteration in modern society’s way of life resulting from globalization and 
industrialization is the prevalence of chronic social jet lag and NSW[170,171]. Rotating shift work could 
potentially elevate the susceptibility to prostate cancer[172], breast cancer[173-175], lung[176,177], bladder cancer[178], 
biliary tract cancer[179], or colorectal cancers[180,181].

Circadian rhythms-mediated dysfunction in liver metabolism
Circadian rhythms of our body’s physiological functions are synchronizing with external environmental 
rhythms. These rhythms influence a variety of hepatic functions, including liver metabolism and 
homeostasis. Disruption in the circadian rhythm of physiological functions at the cellular or tissue level can 
lead to a number of diseases associated with hepatic health and metabolism. Tables 1 and 2 provide research 
studies conducted on circadian rhythm-mediated dysfunction in liver metabolism.

STRATEGIES TO REDUCE THE RISK OF NAFLD/NASH PROGRESSION AND DISEASE 
SEVERITY IN SHIFT WORKERS
In the realm of metabolism, most attention has been directed toward nutrition and exercise, while 
controllable hazards from circadian disruption have received relatively little focus. Enhancing sleep quality 
by ensuring adequate daytime sleep duration is crucial for night shift workers. It would be advisable to 
recommend that night shift workers with NAFLD aim for 7 to 9 h of daytime sleep as part of their healthy 
lifestyle modifications. Furthermore, research has shown that irregular snacking after midnight - a common 
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Table 1. Animal studies showing circadian rhythm-mediated dysfunction in liver metabolism

S. 
No.

Study model 
system/population Observation Outcome Reference

1 Mouse model Experimental chronic jet lag. Persistent dysregulation of liver metabolism. 
Cholestasis, peripheral clock disruption, and sympathetic 
dysfunction. 
Spontaneous HCC development.

[39]

2. Rat model Shift in food intake during 
simulated night-shift work on liver 
metabolism.

Development of hepatic steatosis. 
Increase in FA and TG synthesis.  
Decrease in beta-oxidation.

[109]

3. Mouse model Circadian clock, feeding time and 
lipid homeostasis.

Circadian clocks and feeding time dictate the phase and 
levels of hepatic TG accumulation.

[58]

4. Mouse model Mechanisms of sleep deprivation-
induced glucose intolerance on 
liver function.

Increased hepatic glucose production. 
Increased lipid oxidation. 
Hepatic steatosis and insulin resistance.

[76]

5. Mouse model Modeling shift work via a rotating 
light cycle. 

Promotes weight gain. 
Increased hepatic glycogen and TG.

[119]

6. Rat model Constant light exposure to normal 
chow or high-fat diet-fed animals. 
 

Glucose abnormalities and dyslipidemia in normal chow-fed 
rats. 
Glucose abnormalities, dyslipidemia, insulin resistance, 
inflammation and aggravated steatohepatitis in high fat fed 
rats.

[120]

7. Mouse with humanized 
livers

Circadian dysregulation via chronic 
jet lag.

Circadian dysfunction induces glucose intolerance, NAFLD-
associated human HCCs, and human HCC metastasis 
independent of diet in a humanized mouse model.

[128]

8. Mouse model Chronic circadian disruption via 
environmental uncoupling of the 
light-dark phases.

Created pathology similar to the genetic circadian 
disruption observed with loss of SRC-2. 
Metabolic syndrome and NAFLD.

[132]

HCC: Hepatocellular carcinoma; FA: fatty acid; TG: triglyceride; NAFLD: non-alcoholic fatty liver disease; SRC: steroid receptor coactivator.

eating pattern among Japanese night shift workers - is associated with elevated levels of 8-isoprostane[182]. 
Night shift workers should refrain from snacking at midnight. Embracing a healthier lifestyle, including 
increased physical activity and improved nutrition, can help lower the risk of metabolic disorders in these 
workers[183]. However, its effectiveness in reducing cancer risk has yet to be proven. The primary strategy for 
treating NAFLD centers on altering lifestyle behaviors. This includes encouraging adherence to the 
Mediterranean diet (MedDiet), which is abundant in carotenoids, polyphenols, fiber, and polyunsaturated 
FAs, while avoiding refined and high-sugar foods. In addition, regular physical activity is recommended to 
promote weight loss and manage the cardiometabolic risk factors linked to MetS effectively[184,185]. Night shift 
workers could be encouraged to eat either at the beginning or toward the end of their shift while avoiding 
meals during the biological night (e.g., midnight to 6:00 a.m.). They should also refrain from consuming 
large meals just before their daytime sleep[186]. On the other hand, effective strategies to enhance both the 
length and quality of sleep involve utilizing subdued lighting, taking brief naps, reducing exposure to 
electronic screens, and minimizing consumption of stimulants like caffeine, alcohol, tobacco, and snacks 
while working night shifts. Besides this, substantial evidence highlights that exposure to light during the 
nighttime and disturbances in circadian rhythms decrease the production of melatonin in individuals 
working night shifts. As a proof of concept, melatonin possesses oncostatic properties by acting as an 
antioxidant, stimulating apoptosis, scavenging free radicals, and inhibiting angiogenesis[187,188]. Thus, it could 
potentially serve as adjuvant therapy for various cancers[189]. According to two recent publications on rodent 
models, melatonin therapy decreases liver cell growth and oxidative stress while promoting programmed 
cell death in rats treated with diethylnitrosamine (DEN)[190,191]. The proposed perspective for the treatment of 
circadian rhythm-mediated dysfunction in liver metabolism includes lifestyle changes, melatonin 
supplementation, etc. A novel and efficient intervention emerged based on time of eating with circadian 
alignment termed TRF. This behavioral intervention can synchronize the central and peripheral rhythms, 
which in turn can treat circadian metabolic rhythm dysfunction and hepatic steatosis. The hormone 
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Table 2. Human epidemiological studies showing circadian rhythms-mediated dysfunction in liver metabolism

S. 
No.

Study model 
system/population Observation Outcome Reference

1. Human (US-based population) Association of rest-activity 
rhythms and liver function.

Elevated ALP and GGT, lowered albumin. [94]

2. Human (Korean steelworkers) Correlation between shift work 
and NAFLD

Shift workers have moderately severe NAFLD. [97]

3. Human (US-based population) Time zone meridian and HCC 
risk 

Circadian misalignment from the western region of a 
time zone impacts hepatocarcinogenesis.

[38]

Rotating night shift High levels of ALP enzyme and abnormal liver function. [41,144]4. Human (night shift workers from
South China)

5. Human (Korean population) Long working hours Pronounced risk of NAFLD. [42]

6. Human (Steelworkers of China) Rotating night shift Elevated ALT, GGT, and increased liver enzymes. [52,139]

7. Human (UK-based population) Shift work evening/late
chronotype

Hepatic fat accumulation and circadian misalignment. [57,141]

8. Human (Chinese population) Nighttime sleep duration Long nighttime sleep duration is associated with a 
modestly increased risk of NAFLD.

[75]

9. Human (US adult population) Sleep deprivation (duration and 
quality). 

Optimal sleep duration (≥ 7 h) is associated with a lower 
likelihood of abnormal ALT levels and NAFLD.

[77,78]

10. Human (Chinese male night shift 
workers)

NSW NSW is associated with elevated ALT levels. [87]

11. Human (Japanese population-
based study)

Effect of sleep duration Short sleep duration is a significant risk factor for NAFLD. [117,157]

12. Human (Chinese rail workers) Shift work Harmful effect of shift work on NAFLD incidence. [134]

13. Human (Korean population) Shift work Shift work affects female workers more than males on 
abnormal ALT.

[135]

14. Human (Thai Shift workers) Duration of shift work Liver enzyme abnormalities and NAFLD. [140]

15. Human (Korean population-
based study)

Long working hours.  Long working hours are independently associated with 
incident NAFLD.

[158,161]

ALP: Alkaline phosphatase; NAFLD: non-alcoholic fatty liver disease; HCC: hepatocellular carcinoma; ALT: alanine aminotransferase; NSW: night 
shift work; GGT: gamma-glutamyl transferase.

melatonin supplementation can improve NASH and can also help regulate cholangiocyte functions and 
maintain liver homeostasis.

Some recent research findings progressively showed the prevention and treatment of circadian rhythm-
mediated dysfunction in liver metabolism. Circadian proteins regulate several other proteins that are 
presently being investigated as potential therapeutic targets in NAFLD, including acetyl-CoA carboxylase 
(ACC), PPARs, incretins, and SREBP. As a result, the clock can maximize the positive effects and minimize 
the adverse effects of pharmacological medicines. The clock itself has the potential to treat circadian 
alignment as a target for NAFLD[90]. Since the oscillator responds to reset or resynchronize stimuli and 
certain clock components are directly involved in metabolic processes, small compounds targeted at clock 
components may offer other targets for therapeutic intervention[192,193]. Autophagy targets CRY1 for 
degradation, which has the temporal effect of suppressing hepatic gluconeogenesis[194]. The circadian clock’s 
functional network extends to regulate numerous physiological processes, including those targeted by 
almost all medications for MetS spectrum illnesses[195]. One possible target for the therapy of NAFLD is the 
circadian clock’s rhythmic influence on drug metabolism and detoxification processes through 
chronomedicine or chronopharmacokinetics[33,126].

CONCLUDING PERSPECTIVE
Circadian rhythms are based on a conserved, self-sustaining molecular clock present in all mammals, 
including humans. This clock exists in nearly all tissues and cells, underscoring the importance of temporal 
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organization at both the cellular and organismal levels. Occupations requiring permanent NSW often 
involve inappropriate eating times, exposure to LAN from artificial lighting or blue light-emitting devices, 
and frequent consumption of arousal-stimulating beverages like coffee and snacks during the night. These 
factors are well-established disruptors of the circadian system, progressively altering daily life. Misalignment 
in behavioral and physiological rhythms due to long hours or longer years of NSW is increasingly 
recognized as the accumulation of hepatic fat, abnormal liver function, progression and pathology of 
inflammation-related diseases, predominantly NAFLD/MASLD, and the risk of hepatic cancer.

Potential breakthroughs in this area will enhance scientific knowledge and improve occupational health. In 
this context, public and occupational health policies aim to raise awareness of the risks associated with 
unscheduled lifestyle-related diseases and the management of biological rhythm disorders. These policies 
will also guide employers in fostering a work environment that allows employees to perform at their best 
without compromising their health. Further research could focus on targeting genes such as CRY, Per, Rev-
Erb, and ROR alpha through loss-and-gain experiments (e.g., using Rev-Erb alpha agonists), which may 
lead to novel drug targets for treating insulin resistance and hepatic metabolism. Such drugs could be 
beneficial in the treatment of NAFLD and NASH.
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