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Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) stands as an independent risk factor for 
cardiovascular disease (CVD), which is the leading cause of mortality among MASLD patients. The diverse 
spectrum of cardio-nephro-metabolic and vascular manifestations inherent in MASLD highlights the complex 
profile of CVD risk associated with this condition. However, current approaches to assessing CVD risk in MASLD 
lack specificity, predominantly relying on traditional markers. Although it is widely accepted that patients with 
advanced fibrosis are more prone to CVD risk, recent evidence suggests that this isolated focus may overlook the 
remarkable phenotypic variability of this CVD risk across the entire MASLD population.  Emerging data indicate a 
progressive escalation of CVD risk in parallel with the severity of MASLD, highlighting the need for precise disease 
staging to inform accurate risk assessment. To address this challenge, we propose a novel sequential approach to 
CVD risk assessment in MASLD. While traditional CVD risk factors remain essential, incorporating liver-specific 
parameters enhances risk stratification and guides targeted interventions to mitigate the substantial burden of 
cardiovascular disease in this vulnerable population. This approach involves initial screening using FIB-4 and 
NAFLD fibrosis score, followed by assessment of liver fibrosis with imaging-based non-invasive techniques in 
individuals at intermediate-high risk for advanced fibrosis and liver fat quantification in low-risk individuals. Future 
prospective investigations should focus on the simultaneous use of liver biomarkers and imaging modalities to 
evaluate, in a sex-specific manner, the efficacy of the proposed approach and to determine optimal thresholds of 
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liver fibrosis and steatosis for optimal CVD risk assessment.

Keywords: Biomarkers, cardiovascular risk, elastometry, fibroscan, liver fibrosis, steatosis, ultrasonography

INTRODUCTION
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a significant public health 
concern affecting up to one-third of the global population, with its prevalence rising alongside type 2 
diabetes mellitus in a mutual and bidirectional manner over the past two decades[1-3]. MASLD encompasses 
a spectrum of liver histology changes, ranging from benign hepatic steatosis, characterized by 
intrahepatocyte lipid accumulation, to more severe forms such as metabolic dysfunction-associated 
steatohepatitis (MASH), cirrhosis, and hepatocellular carcinoma. Although liver-related events are common 
in patients with advanced MASLD forms, the leading cause of mortality in MASLD is cardiovascular disease 
(CVD)[4,5]. Recent recognition of MASLD as an independent risk factor for CVD has further underscored 
the urgency of understanding its pathophysiology and implementing effective risk assessment strategies[6-9].

Despite growing awareness of the cardiovascular implications of MASLD, there is ongoing debate regarding 
the optimal strategy for assessing CVD risk in affected individuals. While traditional risk factors for CVD 
are well-established[10], there is increasing recognition of the importance of incorporating liver-specific 
parameters into CVD risk assessment algorithms for MASLD patients[11-13]. These hepatological parameters 
may offer unique insights into the complex interplay between metabolic dysfunction, steatotic liver disease 
(SLD), and cardiovascular health.

Aiming to direct future investigations, the present perspective article seeks to address this knowledge gap. 
To this end, published studies on CVD risk assessment strategies in MASLD are critically discussed, with 
due emphasis on the possible role of liver-related parameters. Our specific objective is to elucidate the most 
effective approaches for identifying and stratifying CVD risk in individuals with MASLD, as these are 
virtually useful for developing targeted interventions to mitigate the substantial burden of CVD in this 
vulnerable population.

MASLD VS.  MAFLD IN PREDICTING CVD RISK
The recent changes in NAFLD terminology, schematically illustrated in Table 1, have resulted in different 
CVD risk profiles within the realm of SLD owing to metabolic dysfunction. The criteria for metabolic 
dysfunction-associated fatty liver disease (MAFLD), introduced in 2020[14,15], have identified patients with 
metabolically complicated liver conditions, irrespective of alcohol consumption, and have consequently 
shown higher CVD risk than NAFLD[16,17].

In addition, the criteria for MASLD, introduced in 2023 under the umbrella term SLD[18], further 
differentiate patients with MASLD and increased alcohol consumption, termed metALD, which has been 
associated with elevated CVD risk compared to MASLD alone[19-23]. Moon et al., in a nationwide cohort 
study spanning a median follow-up of 9 years, observed an incremental risk of incident CVD from MASLD 
(SHR: 1.19) to metALD (SHR: 1.28)[19]. These findings imply that the MASLD nomenclature, compared to 
MAFLD, offers a more homogenous risk profile by acknowledging the impact of alcohol on CVD risk.

Moreover, MAFLD criteria, compared to MASLD, may overlook a significant proportion of lean patients 
with NAFLD[24-26], who are equally important in predicting CVD risk[27-29]. A meta-analysis of 21 studies 
revealed that individuals with lean NAFLD exhibited a 50% increase in the odds of cardiovascular mortality 
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Table 1. Definitions of NAFLD/MAFLD/MASLD

NAFLD MAFLD MASLD

Years 1988 2020 2023

Alcohol 
level

< 20 g/d (w) or < 30 
g/d (m)

No specific limit on alcohol < 20 g/d (w) or < 30 g/d (m)

definition Steatosis without other 
causes

 
steatosis with the presence (or treatment of) any of 
the following: 
 
 
 
 
1. overweight 
 
 
2. T2DM 
 
 
3. at least 2 metabolic abnormalities: 
 
 
 
increased WC 
 
 
increased BP 
 
 
elevated TG 
 
 
low HDL 
 
 
elevated FBS 
 
 
elevated HOMA-IR score 
 
 
elevated CRP 
 

 
steatosis with the presence (or treatment of) any 
of the following: 
 
 
 
 
1. overweight or increased WC 
 
 
2. T2DM or prediabetes 
 
 
3. increased BP 
 
 
4. elevated TG 
 
 
5. low HDL

NAFLD: non-alcoholic fatty liver disease; MAFLD: metabolic associated fatty liver disease; MASLD: metabolic dysfunction-associated fatty liver 
disease; WC: waist circumference; BP: blood pressure; TG: triglycerides; HDL: high-density lipoprotein; FBS: fasting blood sugar; HOMA-IR: 
homeostatic model assessment for insulin resistance; CRP: C-reactive protein; T2DM: type 2 diabetes mellitus

compared to their non-lean counterparts[30]. Furthermore, Kang et al. found that both MASLD and MAFLD 
were associated with coronary artery calcification (CAC) > 0, whereas only MASLD showed an association 
with severe CAC (> 300) (aOR: 1.38)[31].

In summary, recent data indicate that MASLD may offer better predictive value for CVD risk than MAFLD. 
MASLD provides a more homogeneous risk profile within SLD subcategories, captures lean NAFLD 
patients who also exhibit high CVD risk, and shows associations with a higher risk of ASCVD. However, it 
is essential to note that the superiority of MASLD over MAFLD in predicting CVD risk requires further 
validation.

SPECTRUM AND PATHOMECHANISMS OF CARDIOVASCULAR MANIFESTATIONS OF 
MASLD
The spectrum of cardio-nephro-metabolic and vascular manifestations of MASLD is wider than originally 
thought and embraces a variety of risk factors and damage to target organs. Figure 1 illustrates the principal 
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Figure 1. Spectrum of cardio-nephro-metabolic and vascular manifestations of MASLD[32-36]. AF: atrial fibrillation; CVD: cardiovascular 
disease; HF: heart failure; HTN: arterial hypertension; MASLD: metabolic dysfunction-associated steatotic liver disease.

cardiometabolic outcomes spanning from the full-blown metabolic syndrome to its individual components 
(arterial hypertension, diabetes, and prediabetes) and from major cardiovascular events (MACE) (both fatal 
and non-fatal) to atrial fibrillation, heart failure, and chronic kidney disease[32,33]. Further to these, heart 
valve calcifications (predominantly aortic valve sclerosis), left ventricular diastolic dysfunction and 
hypertrophy have also been reportedly associated with MASLD[34-36].

A cause-and-effect relationship between at least some of these cardiovascular manifestations is 
demonstrated by a Mendelian Randomization study[37] as well as by the finding that bariatric surgery in 
MASLD patients is associated with a significant reduction in incident cardiovascular events[38] and adverse 
hepatic outcomes[39].

The putative pathomechanisms associating MASLD with the various cardiovascular manifestations named 
above are incompletely defined and the succession of such mechanisms, postulated to act in parallel, 
remains speculative[33]. Interestingly, cardiovascular manifestations of MASLD tend to worsen in parallel 
with increasing liver fat content, the progression from simple steatosis to steatohepatitis and more advanced 
stages of liver fibrosis[33,40-43]. These findings may be useful both in the diagnostic and therapeutic arena.

The pathomechanics underlying cardiovascular manifestations of MASLD include, further to liver histology 
changes, the Metabolic Syndrome (and its individual features), underlying insulin resistance, accompanying 
lipotoxicity, systemic oxidative stress, and systemic (often sub-clinical) pro-inflammatory and pro-
thrombotic milieu[33]. Additional mechanisms include genetic polymorphisms, pro-inflammatory diets, gut 
dysbiosis, and extracellular vesicles[44-47].

VARIABLE CARDIOVASCULAR RISK IN MASLD
Cofactors, i.e., genetics and epigenetics, lifestyle habits, viruses, immunity, drugs, and gut microbiota, 
determine organ dysfunction in the setting of MASLD[48]. Sex is a strong genetic factor that modulates the 
risk of cardiovascular (CV) disease (CVD) in the context of MASLD[49]. Desai et al., based on a population 
of 409,130 hospitalizations with MASLD, found different sex distribution of CV risk factors (with women, 
compared to men, displaying higher levels of obesity and uncomplicated diabetes) and major CV and 
cerebrovascular events (which were more common among men)[50]. Interestingly, in this connection, 
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Kammerlander et al., in their study involving 3,482 participants in the Framingham Heart Study, found that 
cardiometabolic and CVD risk associated with visceral obesity could be adequately captured by simple 
anthropometric measures (such as waist circumference and body mass index) in men, while in women, 
measurement of abdominal visceral adipose tissue with computed tomography permitted more accurate 
assessment of obesity-associated cardiometabolic and CVD risk[51]. Collectively, these studies strongly 
suggest the need for sex-specific analyses of the interactions between cardio-metabolic risk, MACE, and 
MASLD.

Two common conditions document the notion that comorbidities with either chronic obstructive 
pulmonary disease (COPD) or chronic kidney disease (CKD) strongly affect the risk of CVD in MASLD.

COPD, an acknowledged CV risk factor, has several commonalities with MASLD and these two conditions 
are reportedly associated[52,53]. Viglino et al., in their prospective study of 111 COPD patients, found through 
multivariate analysis that after a 5-year follow-up, patients with liver fibrosis had more CV events and 
higher mortality than those with no fibrosis (HR [95%CI]: 2.94 [1.18; 7.33]), implying that early assessment 
of liver health might potentially improve CV outcomes in COPD[54].

CKD is a common CVD risk factor and a feared incident complication in the course of MASLD[55]. 
Miyamori et al. in their large population study have reported that only concomitant MASLD and CKD were 
independently associated with an increased risk of ischemic heart disease (HR, 1.51, 95%CI: 1.02-2.22), 
while either MAFLD or CKD alone were not[56]. Strategies aimed at preventing and contrasting the 
development and progression of CKD among those with MASLD have recently been discussed[55].

CURRENT STRATEGIES FOR CARDIOVASCULAR RISK ASSESSMENTS IN MASLD
I n  2 0 1 0 ,  t h e  p i o n e e r i n g  I t a l i a n  N A F L D  g u i d e l i n e s  s t a t e d  that "NASH patients should 
undergo periodic evaluation of cardiovascular risk"[57]. CVD is indeed the leading cause of mortality of these 
patients, particularly among those aged 45 to 54 years[58,59], and up to 10% of NAFLD individuals die from 
CVD, which is a 2-fold to almost 4-fold increased risk of CVD vs. non-NAFLD subjects[60-62], indicating that 
MASLD is a non-traditional CVD risk factor[63,64].

Presently, CVD risk assessment and management, preferentially as a hospital-based, multi-disciplinary 
approach[65,66], is universally endorsed by Scientific Societies as a key requirement in the care of MASLD 
patients[6,67-71].

Accumulating evidence indicates that both NAFLD and MAFLD are epidemiologically and causally 
associated with CVD, as proven by Mendelian randomization studies; therefore, NAFLD/MAFLD/MASLD 
must be considered as “high-risk” conditions for CVD like diabetes, which justifies aggressive correction of 
cardiometabolic risk factors among these patients[72].

However, whether the same CVD risk scoring systems should be used among MASLD individuals as those 
proposed for use in the general population remains uncertain. Indeed, elevated C-reactive protein levels are 
associated with CVD risk in MASLD[73], but the pro-inflammatory, insulin-resistant and 
hypertriglyceridemic components of NAFLD are generally neglected by available CVD risk scoring systems 
which, additionally, need to be locally validated[74]. Consistent with this concern, a Japanese study conducted 
among subjects with T2D and suspected coronary artery disease found that NAFLD, in addition to coronary 
artery calcium scores and FRS, improved the risk classification of cardiovascular events[75]. Similarly, a 
Korean population study found that the severity of steatosis diagnosed with ultrasound and NAFLD scoring 
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systems correlated with increased CVD risk[76].

The CVD risk is not homogenous across the MASLD population. Men, postmenopausal women, and those 
with the more advanced stages of fibrosis are more prone to the odds of MACE[77-80]; lean NAFLD, and 
NAFLD with concurrent sarcopenia are associated with more severe risk of ASCVD[81,82]. Moreover, changes 
in the NAFLD/MAFLD/MASLD nomenclature identify different CVD risk profiles[19,83-85]; metabolomic 
signatures predict distinctive CVD risk profiles[86], and “metabolic” (as opposed to “genetic”) MASLD is 
causally associated with the risk of MACE[37,87].

Two major validated CVD risk scoring systems have been proven useful among MASLD individuals: the 
Framingham Risk Score (FRS)[88] and the atherosclerotic CVD risk score (ASCVD)[89]. Both FRS and 
ASCVD predict the risk of incident MACE at 10 years based on patient demography, medical history, and 
routine clinical-laboratory assessment, making them practical tools for risk prediction[90].

However, validation in the specific MASLD setting would request additional investigation involving larger 
patient populations who should be fully characterized according to the so-called “LDE” paradigm assessing 
liver-related (“L”), disease determinants “D”, and extrahepatic features of disease (“E”)[91].

Non-invasive assessment of liver fibrosis is a major tool for CVD risk assessment, and various non-invasive, 
non-patented methods for early identification of liver fibrosis are available. These include APRI (based on 
AST, platelets), FIB-4 (AST, ALT, age, Platelets), NFS (based on age, body mass index, impaired fasting 
glucose/T2D, AST, ALT, platelets, and albumin), and VCTE (i.e. liver stiffness), whose differing 
characteristics have recently been thoroughly evaluated elsewhere[92]. Niederseer et al., in a large Austrian 
cohort, found that NFS was correlated with FRS (r = 0.29; P < 0.001), and a one-point increase in NFS 
strongly predicted high-risk FRS independent of confounding factors (OR 1.30, 95%CI 1.09-1.54; 
P = 0.003)[93]. A meta-analysis of 9 published studies, totaling 155,382 NAFLD cases, found that FIB-4 and 
NFS (rather than APRI) are useful for identifying individuals with NAFLD who are exposed to a higher 
CVD risk[11]. Further to biomarkers of liver fibrosis, the MELD-Na score also predicts MACE among 
NAFLD patients, and when added to the FRS, it may better define NAFLD-associated CVD risk[94].

Beyond liver biomarkers, various research indicates that increasing liver fibrosis assessed through both 
magnetic resonance elastography (MRE) and transient elastography (TE) correlates with CVD risk and 
could enhance CVD risk assessments in MASLD patients. Mangla et al. found in a patient population of 
asymptomatic T2D individuals that increased liver fibrosis (assessed by MRE ≥ 3.62) was associated with 
more elevated CVD risk assessed with CAC scores[95]. However, MRE is not universally available and other 
techniques may be used to assess liver fibrosis.

NEW EVIDENCE: EMPHASIS ON LIVER-RELATED PARAMETERS AND OPPORTUNITIES 
FOR SPECIFIC CARDIOVASCULAR RISK ASSESSMENT IN MASLD
The guidelines from the American Gastroenterological Association (AGA) / American Association for the 
Study of Liver Diseases (AASLD) propose a three-step screening approach for advanced fibrosis[69,96]. 
Initially, FIB-4 or NFS scoring is recommended[97], followed by liver stiffness measurement (LSM). These 
initial steps aim to rule out advanced fibrosis, with thresholds set at FIB-4 < 1.3 or NFS < -1.455 and 
LSM < 8 kPa. The final step confirms advanced fibrosis using either magnetic resonance elastography 
(MRE) or liver biopsy, particularly in intermediate to high-risk patients.
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While it is well recognized that patients with advanced fibrosis (≥ F3) are at a heightened risk of 
CVD[60,98-106], previous research on MASLD populations has associated this risk with any degree of fibrosis 
(≥ F1)[107-110] or significant fibrosis (≥ F2)[111-115]. For instance, a study by Wu et al. on asymptomatic MASLD 
patients diagnosed with MRI-PDFF demonstrated that the presence of any fibrosis (assessed by 
TE > 6.1 kPa) is the strongest predictor of subclinical atherosclerosis in MASLD[108]. Similarly, Park et al. 
reported that significant fibrosis (assessed by MRE ≥ 2.97) in MASLD is associated with CVD risk regardless 
of their FRS[113].

Moreover, a meta-analysis comprising 12 studies and 4,725 MASLD patients without prior CVD, focusing 
on elastography (TE and MRE) for fibrosis assessment, found that any degree of fibrosis was linked to 
subclinical atherosclerosis[13]. The pooled odds ratio (OR) was 1.64 (95%CI: 1.22-2.20) for ≥ F1, increasing 
with the degree of fibrosis to 2.22 (95%CI: 1.37-3.62) for ≥ F2, and to 3.42 (95%CI: 1.81-6.46) for ≥ F3. These 
findings underscore the importance of considering all levels of fibrosis in assessing CVD risk in MASLD 
patients, as even mild fibrosis appears to be associated with an increased risk of subclinical atherosclerosis.

In summary, recent investigations emphasize the critical importance of identifying patients at early disease 
stages, encompassing not only advanced fibrosis but also milder stages. These findings highlight the 
limitations of solely focusing on advanced fibrosis while broadening the scope of CVD risk assessments in 
MASLD. While FIB-4 < 1.3 and NFS < -1.455 demonstrate good performance in excluding advanced 
fibrosis[116,117], aligning with the primary goal of current guidelines for fibrosis assessment in the MASLD 
population, they exhibit relatively poor performance in ruling out significant fibrosis[117-119]. This presents a 
notable challenge, with special reference to patients classified as low-risk, who represent up to 80% of 
individuals with MASLD[120].

Conversely, recent studies with extensive sample sizes and population-based designs, typically enrolling 
individuals deemed to be at lower risk for advanced fibrosis, demonstrate that the extent of steatosis is 
associated with significantly increased CVD risk in MASLD. A meta-analysis of 19 studies involving 147,411 
asymptomatic individuals, with a substantial proportion sourced from health screenings, revealed a 
significant association between higher liver fat content (LFC) and CVD risk in MASLD[12]. The pooled OR 
for subclinical atherosclerosis was 1.27 (95%CI: 1.13-1.41) in cases of mild steatosis, which significantly 
increased to 1.68 (95%CI: 1.41-2.00) in moderate to severe steatosis.

Furthermore, the longitudinal study  by Pisto et al., involving 988 Finnish participants, with a median 
follow-up of 17.6 years, demonstrated an elevated risk of future cardiovascular events with higher LFC 
(adjusted Hazard Ratio [aHR]: 1.74, 95%CI: 1.16-2.63)[121].

Similarly, a longitudinal study conducted in Korea, encompassing a large sample size of 7.8 million 
individuals without prior CVD over a median follow-up of 8 years, illustrated that high LFC as measured by 
the surrogate Fatty Liver Index (FLI) was associated with a higher risk of MACE (myocardial infarction and 
ischemic stroke) in MASLD, both with and without DM. The adjusted HR in MASLD grade 1 without DM 
was 1.23 (95%CI: 1.22-1.25), significantly increasing to 1.44 (95%CI: 1.42-1.47) in MASLD grade 2 without 
DM, and the adjusted HR was 1.10 (95%CI: 1.07-1.13) in grade 1 MASLD with DM, which significantly 
increased to 1.25 (95%CI: 1.22-1.29) in grade 2 MASLD with DM[122]. These findings offer robust evidence 
supporting the utilization of steatosis quantification for CVD risk assessment in MASLD.

It is imperative to exercise caution when quantifying liver fat in populations at high risk for advanced 
fibrosis. In nearly all studies conducted within such populations, the severity of steatosis has shown either a 
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Figure 2. Proposed Algorithm for Cardiovascular Risk Assessments in MASLD. FIB-4: fibrosis-4; NFS: NAFLD fibrosis score; MASLD: 
Metabolic dysfunction-associated steatotic liver disease; TE: transient elastography; MRE: magnetic resonance elastography; CVD: 
cardiovascular disease.

non-significant or reverse association with CVD risk[100,103,112,113]. This underscores the significant 
confounding effect of advanced fibrosis on this association, potentially attributed to burnout MASH, where 
advanced fibrosis typically exhibits a reduction in the extent of steatosis, probably due to increased 
adiponectin serum levels[123,124]. Consequently, given that this strategy may mistakenly classify patients with 
advanced fibrosis as low-risk, it would be advisable to reserve this approach only to those patients in whom 
advanced fibrosis has reasonably been excluded (FIB-4 < 1.3, NFS < -1.455, or LSM < 8 kPa).

To date, an imaging-free scoring system for accurately quantifying steatosis remains unavailable. The most 
useful index for steatosis assessment, the FLI, is confounded by fibrosis and inflammation, does not 
precisely quantify steatosis and fails to take sex differences into account[125,126]. In contrast, Magnetic 
Resonance Imaging-Proton Density Fat Fraction (MRI-PDFF) is considered to be the most accurate 
modality for quantifying liver fat[127]. However, its widespread application is hindered by cost and availability 
constraints and is, therefore, primarily suitable for clinical trials.

Despite these challenges, recent advancements in ultrasound technology offer a promising alternative for 
quantifying liver fat. Two previous meta-analyses shed light on the effectiveness of ultrasound in this regard. 
The first analysis, conducted by Hernaez et al. in 2011, encompassed 49 studies and demonstrated 
ultrasound's sensitivity of 62% for detecting mild steatosis (≥ 5% hepatic steatosis) and 84.8% for detecting 
moderate to severe steatosis (≥ 30% hepatic steatosis)[128]. Building upon this foundation, an updated 
meta-analysis by Ballestri et al. in 2021, focusing on studies published in the last decade (comprising 12 
studies), revealed improved detection rates for mild steatosis (sensitivity 82%) and consistent results for 
moderate to severe steatosis (sensitivity 85%)[129]. These advancements likely stem from evolving techniques 
and increased operator awareness of hepatic steatosis[129]. Consequently, conventional ultrasound emerges as 
a cost-effective and widely applicable modality for quantifying liver fat.

In summary, liver-related parameters could enhance the discriminatory power of existing risk calculators 
for identifying more patients at high risk of CVD, ideally in a sequential manner, as they can address each 
other's limitations. Additionally, patients identified as at high risk for CVD using this approach could be 
referred for more extensive investigations, such as non-invasive markers of early cardiovascular disease, 
including coronary artery calcium score, carotid intima-media thickness, and arterial stiffness. These 
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markers have clear associations with long-term CVD events[130-134] and could guide clinicians in deciding 
whether to subject patients to more aggressive cardiometabolic risk reduction. However, uncertainties 
persist regarding patient selection for such referrals, as optimal cut-offs for liver-related parameters to 
effectively rule in or rule out CVD risk have not yet been determined, and the cost-effectiveness of such 
referrals has yet to be examined. Until optimal risk calculators and solid evidence are available, individual 
patients' personal histories may better guide clinicians in the decision-making process.

CONCLUSION
Our perspective article suggests that a sequential combination of FIB-4/NFS with imaging modalities for 
quantifying both liver fibrosis and steatosis enhances CVD risk assessments in MASLD [Figure 2]. Patients 
with FIB-4 > 1.3 or NFS > -1.455 should undergo more accurate assessments of fibrosis through TE, MRE, 
or biopsy, aligning with current guidelines for screening advanced fibrosis. Furthermore, among individuals 
classified as at low risk for advanced fibrosis (FIB-4 < 1.3, NFS < -1.455, or TE < 8 kPa), cardiovascular risk 
could be stratified based on the severity of steatosis. However, this proposed approach requires rigorous 
validation. Future studies should focus on the simultaneous use of liver biomarkers and imaging modalities 
with longitudinal designs to evaluate, in a sex-specific manner, the efficacy of the proposed approach and to 
determine optimal thresholds for both fibrosis and steatosis in CVD risk assessments.
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