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Abstract
As a kind of typical wind-sensitive structure, transmission towers have attracted fast-growing attention in the field
of their wind-induced dynamic response. Nevertheless, their dynamic response considering effects of semi-rigid
connected joints and semi-rigid-constrained stability behaviors has not been investigated. To this end, based on the
experimental and numerical study, this paper proposes a fitting formula for the stability coefficient of steel tubemem-
bers with semi-rigid behaviors in transmission towers to determine the dynamic stress response. Then, the stiffness,
mass, and damping matrices of steel-tube transmission towers (STTTs) with semi-rigid behaviors are determined to
construct their stochastic dynamic finite element model. Subsequently, the integral form of the generalized density
evolution equation is solved via a family of Dirac’s sequences to conduct the stochastic stress response analysis for
STTTs considering effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors, and their dy-
namic reliability is evaluated by further introducing the extreme-value distribution method. Finally, an engineering
example of an existing STTT is given, and the results indicate that the semi-rigid connected joints and semi-rigid-
constrained stability behaviors would significantly affect the stochastic stress response and dynamic reliability of
STTTs. Accordingly, taking into account semi-rigid connected joints and semi-rigid-constrained stability behaviors
may be more applicable for analysis and design of STTTs.
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INTRODUCTION
With the fast-growing demand for power supply in modern society, there is a huge need for building steel
towers for transmitting electric power. Thus, it is quite crucial for transmission towers to reliably perform
uninterrupted operation without any failure, among which steel-tube transmission towers (STTTs) have been
widely constructed due to the same sectional performances in all directions and small windward areas. As a
type of high-rise structure, the main load acting on transmission towers is a time-variant wind load owing to
natural turbulence and gustiness in the wind. Therefore, it is essential to investigate the wind-induced dynamic
response of transmission towers.

In the last two decades, some studies on the dynamic response of transmission towers under wind excitations
have been comprehensively investigated. Savory et al. conducted a dynamic analysis of a latticed transmission
tower under high-intensity wind loads [1]. Okamura et al. conducted a wind tunnel test to describe the wind
characteristics in mountainous areas and carried out the response analysis of a transmission tower on the basis
of the examinations [2]. Battista et al. studied the dynamic behavior of transmission line towers under wind
loads and proposed a rational procedure for stability assessment in the design stage [3]. Yang and Hong carried
out the nonlinear inelastic response analysis of a transmission tower-line system under downburst wind [4].
Moreover, Zhang and Xie studied the dynamic response of a transmission tower-line system, including the
stress and displacement under strong wind loads [5]. Shen et al. and Li et al. studied the effect of conductor and
insulator breakages on the dynamic response of transmission tower-line systems, respectively [6,7]. Additionally,
some studies [8–14] focused on the determination of dynamic characteristics (e.g., modal parameters) of tower
structures, and other research efforts [15,16] aimed to conduct the size and shape optimization andwind-induced
vibration control for guyed structures. Furthermore, owing to the uncertainties associated with wind loads,
materials, and dimensions, structural responses of transmission towers would exhibit random characteristics.
Liu et al. proposed a dimension-reduced probabilistic approach to consider the stochastic wind fields for
wind-induced dynamic response analysis of transmission towers, and the results indicated that the stochastic
dynamic response of transmission towers induced by stochastic wind loads exhibited time-variant and random
characteristics [17]; however, they did not consider the uncertainty of structures. The aforementioned studies
mainly focus on the deterministic wind-induced dynamic response of transmission towers instead of their
stochastic dynamic response. Therefore, it is necessary to comprehensively conduct the stochastic dynamic
response analysis of transmission towers.

It is noted that latticed transmission towers have two specific features: (1) the joint is made using more than
one bolt to form semi-rigid connections [18]; (2) the stability behavior of compressionmembers in transmission
towers would be influenced by the semi-rigid boundary constraint [19]. Accordingly, the semi-rigid connected
joints and semi-rigid-constrained stability behaviors would affect the stochastic dynamic response (especially
the stress ofmembers) of transmission towers, which could further influence the dynamic reliability evaluation.
Regretfully, to the best of the author’s knowledge, there is a lack of relevant work on the structural stochastic
response analysis and reliability evaluation of STTTs considering effects of semi-rigid connected joints and
semi-rigid-constrained stability behaviors.

In response to this gap, this paper conducts the stochastic stress response analysis and dynamic reliability
evaluation of STTTs, with a particular focus on considering the impact of semi-rigid connected joints and
semi-rigid-constrained stability behaviors. The contributions of this paper are drawn below. (1) Based on the
experimental and numerical study, a fitting formula for the stability coefficient of steel tubemembers with semi-
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rigid behaviors (STMs-SRB) in transmission towers is proposed to determine the dynamic stress response; (2)
By solving the integral form of the generalized density evolution equation (GDEE) [20] via a family of Dirac’s
sequences and further introducing the extreme-value distribution approach [20], a method of stochastic stress
response analysis and dynamic reliability evaluation is developed for STTTs considering the influence of semi-
rigid connected joints and semi-rigid-constrained stability behaviors. The remaining content of this work
is organized as follows. At first, a fitting formula for the stability coefficient of STMs-SRB is proposed to
calculate their dynamic stress. Secondly, the stochastic stress analysis and reliability evaluation for STTTs
considering effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors is introduced.
Then, an engineering example is given to investigate the effects of semi-rigid connected joints and semi-rigid-
constrained stability behaviors on the stochastic stress response and dynamic reliability of transmission towers.
Finally, Section 5 presents a summary of the key conclusions.

DYNAMIC STRESS RESPONSE OF STMS-SRB IN TRANSMISSION TOWERS CONSIDERING EF-
FECT OF STABILITY BEHAVIORS
Brief review of semi-rigid connected joints in STTTs
In STTTs, tube-gusset K-joints are specially designed to connect main chords and branch tubes, as illustrated
in Figure 1. In detail, the K-joint consists of the main chord, branch tubes, C-type inserted plates, annular
plates, gusset plates, and bolts for connecting gusset and C-type inserted plates. Therefore, this kind of K-joint
is actually a semi-rigid connected joint, and its rotational stiffness 𝑘 is an important parameter to determine its
semi-rigid behaviors. Via determining the scope of common-used dimensions for the semi-rigid connected
joints, a scope of rotational stiffness is obtained as [39.71, 333.06] (unit: kN·m/rad) [21].

Fitting formula for stability coefficient of STMs-SRB
Since the joint of STTTs is determined as a semi-rigid connection, the steel tube connected by this joint can be
regarded as a member with semi-rigid behaviors. In our previous work [19], the experimental investigation and
the numerical analysis have been conducted to study the stability behavior of STMs-SRB, and their comparison
shows that the numerical analysis results fit well with the experimental results, as shown in Figure 2.

In order to assess the bearing capacity of STMs-SRB by a fitting formula of the stability coefficient, the para-
metric numerical analysis is conducted in this paper by adopting the verified FE model of STMs-SRB, and
the numerical analysis results could be further as a sample set to fit the stability coefficient of STMs-SRB. The
varying parameters of the parametric numerical analysis include the rotational stiffness and the slenderness ra-
tio, in which the rotational stiffness is taken as 50.99 kN·m/rad kN·m/rad, 102.32kN·m/rad, 201.34kN·m/rad,
and 333.06kN·m/rad among the certain range of rotational stiffness, respectively, and the slenderness ratio is
taken from 50 to 200. Through the parametric numerical analysis, a number of samples for the stability bearing
capacity of STMs-SRB are obtained. Then, the stability coefficient of STMs-SRB under axial compression is
defined as

𝜑 =
𝐹𝑠
𝐴 𝑓𝑦

(1)

where 𝜑 denotes the stability coefficient of STMs-SRB; 𝐴 denotes the area of cross-sections of STMs-SRB; 𝑓𝑦 is
the yield strength of steel materials; 𝐹𝑠 denotes the stability bearing capacity of STMs-SRB.Thereby, a number
of samples for the stability coefficient of STMs-SRB are obtained. Finally, the fitting formula can be fitted for
the stability coefficient of STMs-SRB based on these samples.

Combined with the least squares fitting method and the quadratic polynomial regression, the fitting formula
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Table 1. Fitting results of 𝛼1, 𝛼2, and 𝛼3

Rotational stiffness (kN·m/rad) 𝛼1 𝛼2 𝛼3

50.99 11.2097 -3.8505 1.3778
102.32 9.2400 -3.0463 1.2905
201.34 7.1850 -2.3429 1.2288
333.06 5.7896 -1.9502 1.2063

Figure 1. K-joint and steel tube member with semi-rigid behaviors.

for the stability coefficient 𝜑 of STMs-SRB is expressed as

𝜑 =
Φ −

√
Φ2 − 4𝜆̄2

2𝜆̄2 (2)

Φ = 𝛼1𝜆̄
2 + 𝛼2𝜆̄ + 𝛼3 (3)

𝜆̄ =
𝜆

𝜋

√
𝑓𝑦

𝐸
(4)

where 𝜆 denotes the slenderness ratio; 𝐸 is the elastic modulus, 𝛼1, 𝛼2, and 𝛼3 are the coefficients that are fitted
by samples of the stability coefficient of STMs-SRB. The fitting results are shown in Table 1.

The comparison of the stability coefficient between fitting and numerical results is shown in Figure 3A. It can
be observed that the fitting results are in good agreement with the numerical results, and themaximum relative
error is 2.8%. In addition, within the range of rotational stiffness, the stability coefficient can be obtained by
the linear interpolation. The prediction of the stability coefficient by the proposed fitting formula is shown in
Figure 3B, and themaximum relative error is 2.2%, indicating that the proposed fitting formula has satisfactory
accuracy in predicting the stability coefficient of STMs-SRB.

In STTTs, there are two typical kinds of steel-tube members, namely, the tension-bending and compression-
bending members. Tension-bending members that are subjected to the bending moment and axial tension
force always exhibit strength failure. Regarding compression-bending members that are subjected to the bend-
ing moment and axial compression force, their failure is controlled by their stability behavior. However, in
the dynamic analysis, it is slightly impracticable to concentrate on the time-efficiency and mature method for

http://dx.doi.org/10.20517/dpr.2023.33


Tang et al. Dis Prev Res 2023;2:22 I http://dx.doi.org/10.20517/dpr.2023.33 Page 5 of 25

Figure 2. Comparison of experimental investigation and numerical analysis for stability behaviors of STMs-SRB.

Figure 3. Accuracy validation of proposed fitting formula. (A) Comparison of fitting and numerical results; (B) Prediction by proposed
fitting formula.

estimating the buckling point for all tower members at all-time steps. Thus, the critical strength approach
suggested by design specifications is adopted to determine the dynamic stress of members [5]; i.e., the dynamic
stress of steel-tube members is calculated via their stability coefficient.

For compression-bending members, their dynamic stress could be calculated by [22]

𝜎𝑐 (𝑡) =
𝑁 (𝑡)
𝜑𝐴

+
𝜉𝑧 (𝑡)𝜉𝑦 (𝑡)𝑀 (𝑡)

𝛾m𝑊𝑠

(
1 − 0.8𝑁 (𝑡)

𝑁 ′
E

) (5)
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where 𝜎𝑐 (𝑡) denotes the dynamic stress of compression-bending members; 𝑁 (𝑡) denotes the dynamic axial
compression force; 𝜑 denotes the stability coefficient, which is calculated by the proposed fitting formula for
the stability coefficient of STMs-SRB, i.e., Equations (2)-(4);𝑊𝑠 denotes the cross-sectionmodulus; 𝛾m denotes
the plastic development coefficient of cross-sections; 𝑁′

E = 𝜋2𝐸𝐴/(1.1𝜆2); 𝑀 (𝑡), 𝜉𝑧 (𝑡) and 𝜉𝑦 (𝑡) are expressed
as

𝑀 (𝑡) = max
(√
𝑀𝑧𝑖 (𝑡)2 + 𝑀𝑦𝑖 (𝑡)2,

√
𝑀𝑧 𝑗 (𝑡)2 + 𝑀𝑦 𝑗 (𝑡)2

)
(6)


𝜉𝑧 (𝑡) = 1 − 0.35

√
𝑁 (𝑡)
𝑁E

+ 0.35
√
𝑁 (𝑡)
𝑁E

𝑀2𝑧 (𝑡)
𝑀1𝑧 (𝑡)

𝜉𝑦 (𝑡) = 1 − 0.35
√
𝑁 (𝑡)
𝑁E

+ 0.35
√
𝑁 (𝑡)
𝑁E

𝑀2𝑦 (𝑡)
𝑀1𝑦 (𝑡)

(7)

where 𝑀𝑦 𝑗 and 𝑀𝑦𝑖 denote the bending moment around the 𝑦-axis at nodes 𝑗 and 𝑖, respectively; 𝑀𝑧 𝑗 and 𝑀𝑧𝑖

denote the bending moment around the 𝑧-axis at nodes 𝑗 and 𝑖, respectively; 𝜆 denotes the slenderness ratio;
𝑁E = 𝜋2𝐸𝐴/𝜆2; 𝑀1𝑧 (𝑡), 𝑀2𝑧 (𝑡), 𝑀1𝑦 (𝑡), and 𝑀2𝑦 (𝑡) are expressed as

{
𝑀1𝑧 (𝑡) = max

(
|𝑀𝑧𝑖 (𝑡) | ,

��𝑀𝑧 𝑗 (𝑡)
��) , 𝑀2𝑧 (𝑡) = min

(
|𝑀𝑧𝑖 (𝑡) | ,

��𝑀𝑧 𝑗 (𝑡)
��)

𝑀1𝑦 (𝑡) = max
(��𝑀𝑦𝑖 (𝑡)

�� , ��𝑀𝑦 𝑗 (𝑡)
��) , 𝑀2𝑦 (𝑡) = min

(��𝑀𝑦𝑖 (𝑡)
�� , ��𝑀𝑦 𝑗 (𝑡)

��) (8)

Regarding tension-bending members, due to their failure controlled by their strength, their dynamic stress
𝜎𝑡 (𝑡) can be determined by Equation (5) as long as let 𝜑 = 1. Meanwhile, the dynamic axial compression force
needs to be replaced with the dynamic axial tension force.

STOCHASTIC STRESS RESPONSE ANALYSIS AND DYNAMIC RELIABILITY EVALUATION FOR
STTTSCONSIDERINGEFFECTSOFSEMI-RIGIDCONNECTEDJOINTSANDSEMI-RIGID-CONSTRAINED
STABILITY BEHAVIORS
In this section, the stochastic dynamic FE model of STTTs with semi-rigid behaviors (STTTs-SRB) is con-
structed first. Then, by introducing the proposed fitting formula for the stability coefficient of STMs-SRB, the
sample set of the stochastic stress response of STTTs considering effects of semi-rigid connected joints and
semi-rigid-constrained stability behaviors is determined. Afterward, by solving the integral form of GDEE,
the evolution process of the probability density function (PDF) of the stochastic stress response is obtained.
Finally, on the basis of the extreme-value distribution method, the dynamic reliability of STTTs considering
effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors is evaluated.

Stochastic dynamic FE model of STTTs-SRB under stochastic wind excitations
A transmission tower can be considered as an integrated structural system. Assume that𝚯 = [𝚯𝑠,𝚯𝑤]T repre-
sents a random vector including stochastic structural parameter vector𝚯𝑠 (namely, materials and dimensions)
and stochastic load parameter vector 𝚯𝑤 (namely, wind loads). Thus, the randomness of the system is only
presented by 𝚯. Without loss of generality, the stochastic dynamic FE model of STTTs-SRB under stochastic
wind excitations could be given as the following matrix forms.

M (𝚯𝑠) ¥𝜹(𝑡) + C (𝚯𝑠) ¤𝜹(𝑡) + K (𝚯𝑠) 𝜹(𝑡) = F (𝚯𝑤 , 𝑡) (9)
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where ¥𝜹(𝑡), ¤𝜹(𝑡), and 𝜹(𝑡) are the vector of acceleration, velocity, and displacement of nodes, respectively;
K (𝚯𝑠), M (𝚯𝑠), and C (𝚯𝑠) are the stochastic stiffness, mass, and damping matrices of STTTs-SRB, respec-
tively, which are determined in the following subsections; F(𝚯𝑤 , 𝑡) is the external stochastic wind load vector
and is calculated as [23]

F (𝚯𝑤 , 𝑡) = 0.5𝜌𝑎 [𝑣̄(ℎ) + 𝒗 (𝚯𝑤 , 𝑡)]2 𝜇𝑠𝐴𝑠 (10)

where 𝑣̄(ℎ) is themeanwind speed at the tower height of ℎ; 𝒗 (𝚯𝑤 , 𝑡) is the stochastic vector of fluctuating wind
speeds, which is simulated and determined by the dimension-reduced probabilistic simulation approach [17];
𝜇𝑠 is the drag coefficient of transmission towers; 𝜌𝑎 is the air density; 𝐴𝑠 is the projected area of transmission
towers.

Stiffness matrix of STTTs-SRB
The main work for the derivation of the stiffness matrix of STTTs-SRB is to determine the element stiffness
matrix of STMs-SRB. Thus, in this subsection, the first step is to determine the element stiffness matrix of
STMs-SRB. Then, the global stiffness matrix of STTTs-SRB is assembled by all element stiffness matrices of
STMs-SRB.

The element of STMs-SRB is shown in Figure 1, the length of which is 𝑙. To describe the semi-rigid behavior,
each end of the steel tube member would have an extra zero-length spring, for which only bending rotations
are allowed. The element stiffness matrix of STMs-SRB is expressed as [23]

K𝑒 =

[
K𝑒

11 K𝑒
12

K𝑒
21 K𝑒

22

]
(11)

where

K𝑒
11 =



𝐸𝐴
𝑙 0 0 0 0 0
0 12 𝑖𝑧

𝑙2
𝑆𝑧1 0 0 0 6 𝑖𝑧𝑙 𝑆𝑧2

0 0 12 𝑖𝑦
𝑙2
𝑆𝑦1 0 −6 𝑖𝑦𝑙 𝑆𝑦2 0

0 0 0 𝐺𝐽
𝑙 0 0

0 0 −6 𝑖𝑦𝑙 𝑆𝑦2 0 4𝑖𝑦𝑆𝑦4 0
0 6 𝑖𝑧𝑙 𝑆𝑧2 0 0 0 4𝑖𝑧𝑆𝑧4


(12)

K𝑒
12 = K𝑒

21
T =



− 𝐸𝐴
𝑙 0 0 0 0 0

0 −12 𝑖𝑧
𝑙2
𝑆𝑧1 0 0 0 6 𝑖𝑧𝑙 𝑆𝑧3

0 0 −12 𝑖𝑦
𝑙2
𝑆𝑦1 0 −6 𝑖𝑦𝑙 𝑆𝑦3 0

0 0 0 −𝐺𝐽
𝑙 0 0

0 0 6 𝑖𝑦𝑙 𝑆𝑦2 0 2𝑖𝑦𝑆𝑦5 0
0 −6 𝑖𝑧𝑙 𝑆𝑧2 0 0 0 2𝑖𝑧𝑆𝑧5


(13)
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K𝑒
22 =



𝐸𝐴
𝑙 0 0 0 0 0
0 12 𝑖𝑧

𝑙2
𝑆𝑧1 0 0 0 −6 𝑖𝑧𝑙 𝑆𝑧3

0 0 12 𝑖𝑦
𝑙2
𝑆𝑦1 0 6 𝑖𝑦𝑙 𝑆𝑦3 0

0 0 0 𝐺𝐽
𝑙 0 0

0 0 6 𝑖𝑦𝑙 𝑆𝑦3 0 4𝑖𝑦𝑆𝑦6 0
0 −6 𝑖𝑧𝑙 𝑆𝑧3 0 0 0 4𝑖𝑧𝑆𝑧6


(14)

In Equations (12)-(14), we have 𝑆𝑧1 =
(
𝑠𝑧𝑖 + 𝑠𝑧 𝑗 + 2𝑠𝑧𝑖𝑠𝑧 𝑗

)
/𝑠𝑧𝑖 𝑗 ; 𝑆𝑧2 = 2𝑠𝑧𝑖

(
1 + 𝑠𝑧 𝑗

)
/𝑠𝑧𝑖 𝑗 ; 𝑆𝑧3 = 2𝑠𝑧 𝑗 (1 + 𝑠𝑧𝑖) /𝑠𝑧𝑖 𝑗 ;

𝑆𝑧4 = 𝑠𝑧𝑖
(
3 + 𝑠𝑧 𝑗

)
/𝑠𝑧𝑖 𝑗 ; 𝑆𝑧5 = 4𝑠𝑧𝑖𝑠𝑧 𝑗/𝑠𝑧𝑖 𝑗 ; 𝑆𝑧6 = 𝑠𝑧 𝑗 (3 + 𝑠𝑧𝑖) /𝑠𝑧𝑖 𝑗 ; 𝑠𝑧𝑖 𝑗 = 3+ 𝑠𝑧𝑖 + 𝑠𝑧 𝑗 − 𝑠𝑧𝑖𝑠𝑧 𝑗 ; 𝑠𝑧𝑖 = 1/(1+4𝑖𝑧/𝑘𝑖);

𝑠𝑧 𝑗 = 1/(1 + 4𝑖𝑧/𝑘 𝑗 ); 𝑖𝑧 = 𝐸𝐼𝑧/𝑙. 𝑆𝑦𝑛 (𝑛 = 1, 2, ..., 5, 6) could be determined in the same way once 𝑧 of
𝑆𝑧𝑛 (𝑛 = 1, 2, ..., 5, 6) is replaced with 𝑦.

Mass matrix of STTTs-SRB
As a type of boundary condition, the semi-rigid connection will influence the consistent mass matrix of ele-
ments because the consistent mass matrix is derived by the shape function of deformations of elements, and
the shape function is related to the boundary condition. The consistent mass matrix of STMs-SRB is derived,
which can properly reflect their distributed mass. It is expressed as

M𝑒 = 𝜌𝐴𝑙

[
M𝑒

11 M𝑒
12

M𝑒
21 M𝑒

22

]
(15)

where M𝑒 is the consistent element mass matrix of STMs-SRB, and its detailed derivation can be found in
Appendix A; 𝜌 is the density of steel materials; the components of M𝑒 are given as

M𝑒
11 =



1
3 0 0 0 0 0
0 𝐻𝑧1 0 0 0 𝐻𝑧2
0 0 𝐻𝑦1 0 −𝐻𝑦2 0
0 0 0 𝐽

3𝐴 0 0
0 0 −𝐻𝑦2 0 𝐻𝑦5 0
0 𝐻𝑧2 0 0 0 𝐻𝑧5


(16)

M𝑒
12 = M𝑒 T

21 =



1
6 0 0 0 0 0
0 𝐻𝑧3 0 0 0 −𝐻𝑧4
0 0 𝐻𝑦3 0 𝐻𝑦4 0
0 0 0 𝐽

3𝐴 0 0
0 0 −𝐻𝑦6 0 −𝐻𝑦7 0
0 𝐻𝑧6 0 0 0 −𝐻𝑧7


(17)

M𝑒
22 =



1
3 0 0 0 0 0
0 𝐻𝑧8 0 0 0 −𝐻𝑧9
0 0 𝐻𝑦8 0 𝐻𝑦9 0
0 0 0 𝐽

3𝐴 0 0
0 0 𝐻𝑦9 0 𝐻𝑦10 0
0 −𝐻𝑧9 0 0 0 𝐻𝑧10


(18)
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where 𝐻𝑧𝑛 and 𝐻𝑦𝑛 (𝑛 = 1, 2, ..., 9, 10) can refer to Appendix B.

Rayleigh damping matrix of STTTs-SRB
The global damping matrix can be defined as the Rayleigh damping matrix, a combination of the global mass
and stiffness matrices, and it is expressed as

C = 𝛼𝑀M + 𝛽𝐾K (19)

where C is the global damping matrix of STTTs-SRB; 𝛼𝑀 and 𝛽𝐾 are the proportional damping coefficients
of the mass and stiffness, respectively; K and M denote the global stiffness and mass matrices of STTTs-SRB,
respectively, and they are assembled by the corresponding element matrices via the transformation matrix [23].
If both modes are assumed to have the same damping ratio, the aforementioned damping coefficients are given
as

𝛼𝑀 = 𝜉
2𝜔1𝜔2

𝜔1 + 𝜔2
, 𝛽𝐾 = 𝜉

2
𝜔1 + 𝜔2

(20)

where𝜔1 and𝜔2 denote the angular frequencies of the first and secondmodes of the structural system, respec-
tively; 𝜉 denotes the damping ratio.

In this paper, the Newmark’s method [24] is adopted to solve all samples of stochastic FE equations in the time
domain. The Newmark’s method will be an unconditionally stable numerical approach if its parameters are
appropriately taken. By solving all samples of stochastic FE equations, the corresponding samples of stochastic
internal force of STMs-SRB could be determined, and then, the sample set of the stochastic stress response
of STMs-SRB can be generated by Equations (5-8). Once the sample set is obtained, the GDEE can be used
to conduct the stochastic dynamic response analysis and the reliability evaluation, which are exhibited in the
following subsections.

Stochastic stress response analysis of STTTs considering effects of semi-rigid connected joints and
semi-rigid-constrained stability behaviors
According to the principle of probability conservation [25], the GDEE for the concerned response 𝐻 (𝚯, 𝑡) (e.g.,
the dynamic stress of STMs-SRB 𝜎(𝚯, 𝑡) of STTTs-SRB can be expressed in the differential form [20,26] or the
integral form [27–30] as

𝜕𝑝𝐻𝚯(𝐻,𝚯, 𝑡)
𝜕𝑡

+ ¤𝐻 (𝚯, 𝑡) · 𝜕𝑝𝐻𝚯(𝐻,𝚯, 𝑡)
𝜕𝐻

= 0 (21)

𝑝𝐻 (𝐻, 𝑡) =
∫ ∞

−∞
. . .

∫ ∞

−∞
𝛿[𝐻 − 𝑔(𝚯, 𝑡)]𝑝𝚯(𝚯)d𝚯 (22)

where 𝑝𝐻𝚯(𝐻,𝚯, 𝑡) is the joint PDF of 𝐻 and 𝚯; ¤𝐻 (𝚯, 𝑡) is the derivative of 𝐻 (𝚯, 𝑡) with respect to time;
𝑝𝐻 (𝐻, 𝑡) is the PDF of 𝐻 (𝚯, 𝑡); 𝑝𝚯(𝚯) is the PDF of the random vector; 𝛿(·) denotes the Dirac delta function;
𝑔(·) denotes a monotone function of mapping such that 𝚯 = 𝑔−1(𝐻, 𝑡) holds true in stochastic dynamic
systems.
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Actually, the integral form of the GDEE is equivalent to the differential form of the GDEE in the sense of
probability conservation, and the former can deduce the latter [30]. However, it is worth noting that solving
the GDEE in the differential form needs the derivative of responses. In this paper, we are concerned about the
stress of members, while the derivative of the stress of members may not be easily obtained. Accordingly, due
to no need for the derivative of responses, solving the GDEE in the integral form might be a more appropriate
way for this paper.

Generally, the analytical solution of the GDEE is hard to obtain owing to the complex behavior of dynamic
response and the complexity ofmapping. To this end, two techniques are introduced in theGDEE: (1) partition
of input probability space; (2) smoothing of Dirac delta function. Based on the Voronoi cell-based partition
technique and GF-discrepancy-based point selection strategy [31], the former can reduce the numerical error
by generating representative points and assigned probabilities that represent the probability space. The latter
aims to improve the integral accuracy by smoothing the integrand, e.g., the Gaussian function. By employing
a family of Dirac’s sequences [27–29] based on the normal distribution, Equation (22) can be further presented
as

𝑝𝐻 (𝐻, 𝑡) ≈
∫
Ω𝚯
𝛿[𝐻 − 𝑔(𝚯, 𝑡)]𝑝𝚯(𝚯)d𝚯

≈
𝑛𝑟 𝑝𝑡∑
𝑞=1

1
√

2𝜋𝜎𝑑
exp

[
−
[
𝐻 − 𝑔

(
𝜽𝑞 , 𝑡

) ]2

2𝜎2
𝑑

]
· 𝑃𝑞

(23)

where ΩΘ is the probability space of𝚯; 𝑛𝑟 𝑝𝑡 is the number of representative points; 𝜎𝑑 denotes the smoothing
parameter of the Dirac delta function; 𝜽𝑞 denotes the 𝑞-th representative point in the input probability space;
𝑃𝑞 is the assigned probability of the 𝑞-th representative point, which is given as

𝑃𝑞 =
∫
Ω𝑞

𝑝𝚯(𝚯)d𝚯, 𝑞 = 1, . . . , 𝑛𝑟 𝑝𝑡 (24)

whereΩ𝑞 denotes the probability space of the 𝑞-th representative point andmeets requirements ofΩ𝑞∩Ω𝑝 = ∅,
∀𝑝 ≠ 𝑞, and ∪𝑛𝑟 𝑝𝑡𝑞=1 Ω𝑞 = ΩΘ.

Dynamic reliability evaluation of STTTs considering effects of semi-rigid connected joints and semi-
rigid-constrained stability behaviors
Based on the extreme-value distribution method [20], once the critical dynamic response exceeds the safety
limit at a time instant, the structure will be considered to have failed. Therefore, the key stochastic dynamic
response at each discrete time instant can compose a series system in the time domain [0, 𝑇].

In transmission towers, the stress response of members can be constructed as an extreme-value variable. Fur-
ther, the performance function of the extreme-value variable can be constructed as

𝑍𝑒𝑥𝑡 = min
𝑡∈[0,𝑇]

{
min

𝑖=1,2,...,𝑛1

[
𝑓𝑦 − 𝜎𝑖 (𝚯, 𝑡)

]}
(25)

where 𝑍𝑒𝑥𝑡 is the performance function of the extreme-value variable. The dynamic reliability of STTTs con-
sidering effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors can be evaluated
by the failure probability and reliability index below
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Figure 4. Flowchart of stochastic stress response analysis and dynamic reliability evaluation.

𝑃 𝑓 = Pr (𝑍𝑒𝑥𝑡 ≤ 0) =
∫ 0

−∞
𝑝𝑍𝑒𝑥𝑡 (𝑧𝑒𝑥𝑡) d𝑧𝑒𝑥𝑡 (26)

𝛽 = −Φ−1 (𝑃 𝑓 ) (27)

where 𝑃 𝑓 denotes the failure probability; Pr(·) denotes the probability of the random event in the bracket; 𝛽
denotes the reliability index;Φ−1(·) denotes the inverse cumulative density function (CDF) of standard normal
distributions.

Implementation procedure
In general, the flowchart of the stochastic stress response analysis and dynamic reliability evaluation of STTTs
considering effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors is shown in
Figure 4, and the corresponding implementation procedure can be summarized as follows.

Step 1: Take the random variables of STTTs-SRB (namely, semi-rigid connections, wind loads, dimensions,
and materials).

Step 2: Determine the representative point set and obtain its corresponding assigned probability by the GF-
discrepancy-based point selection strategy. Step 3: Simulate the stochastic wind loads of STTTs based on the
dimension-reduced probabilistic simulation approach.
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Figure 5. Simulation areas and points of wind loads.

Step 4: Determine the structural characteristics of STTTs-SRB, including the stiffness, mass, and damping
matrices, to construct their stochastic dynamic FE model.

Step 5: Carry out the deterministic dynamic response analysis at each representative point and obtain the
sample set of the stochastic stress response.

Step 6: Carry out the stochastic dynamic response analysis by solving the GDEE via a family of Dirac’s se-
quences.

Step 7: Obtain the PDF evolution process of the stochastic stress response of STTTs considering effects of
semi-rigid connected joints and semi-rigid-constrained stability behaviors.

Step 8: Evaluate the dynamic reliability of STTTs considering effects of semi-rigid connected joints and semi-
rigid-constrained stability behaviors based on the extreme-value distribution method.

ENGINEERING EXAMPLE
Description of the transmission tower
An STTT is adopted to assess its wind-induced dynamic stress. Because of unpredictable computational cost
involved in such a complex and huge structural form, it is quite time-consuming to calculate the wind speed
for all nodes of transmission towers. Accordingly, for simplification, transmission towers are often properly
divided into a number of simulation areas along the tower height, and each simulation area is represented by
a point to calculate the wind speed [23,32]. By adopting this way, the employed transmission tower is simplified
as nine appropriate simulation points to calculate the wind speed, as illustrated in Figure 5. Some design
parameters of the tower and lines are listed in Table 2. It is assumed that the wind direction is perpendicular
to the transverse plane, and the span of the employed tower is taken as 500 m.

By determining the stiffness, mass, and dampingmatrices of the STTT and thewind load vector, its dynamic FE
model is established. For better properties of efficiency and fitting actual engineering practice, the gusset plates
and bolts of joints are not established in the FE model [14,17,32], and the semi-rigid connections are adopted to
represent the joints [23]. It is assumed that the elastic modulus, the Poisson’s ratio, and the density of steel
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Table 2. Design parameters of the employed tower and lines

Design parameters Type or value

Tower
Height (m) 103.6
Steel grade Q355
Design wind speed (m/s) 25

Conductor wire
Outer diameter (mm) 33.6
Weight (kg/m) 2.06

Ground wire
Outer diameter (mm) 15.75
Weight (kg/m) 0.99

Table 3. Statistical property of basic random variables

Basic random variables Symbol Distribution Mean COV

Outer diameter 𝐷 Normal 𝐷𝑛𝑚𝑙× 1.00 0.05 [33]

Thickness 𝑡𝑠 Normal 𝑡𝑠,𝑛𝑚𝑙× 1.00 0.05 [33]

Damping ratio 𝜉 Normal 0.02 0.4 [34]

Elastic modulus 𝐸 Lognormal 2.06 × 105 (MPa) 0.03 [33]

Poisson ratio 𝜈0 Lognormal 0.3 0.03 [33]

Yield strength 𝑓𝑦 Lognormal 387 (MPa) 0.07 [33]

Elementary random variables for wind speed
Θ1 Uniform 𝜋 1/30.5 [17]

Θ2 Uniform 𝜋 1/30.5 [17]

Semi-rigid connection 𝑘 Uniform 175 (kN·m/rad) 5 × 30.5/21 [23]

COV is the coefficient of variation; 𝑡𝑠,𝑛𝑚𝑙 is the nominal value of thicknesses of steel tube members; 𝐷𝑛𝑚𝑙 is the nominal value of outer
diameters of steel tube members.

material are taken as 206 GPa, 0.3, and 7,850 kg/m3, respectively. Moreover, the damping ratio of the tower
structure is considered to be 0.02 [5]. It is worth pointing out that the nonlinearity barely affects the structural
dynamic response of STTTs-SRB at the design wind speed according to the pre-analysis. However, there
are iterations in the nonlinear analysis at all-time steps, and thus, the nonlinear analysis is much more time-
consuming than the linear analysis. Therefore, the linear analysis is conducted in this paper.

Determination of random variables
Some basic random variables are selected, and their statistical properties are listed in Table 3. Referring to
the probabilistic model code [33], the probability distribution of the elastic modulus, Poisson ratio, and yield
strength is taken as the lognormal distribution, and the probability distribution of the thickness and outer
diameter of steel tube members is taken as the normal distribution. Meanwhile, the probability distribution
of the damping ratio is also taken as the normal distribution [34]. In addition, the fluctuating wind speed is
simulated as a stochastic process by taking two independent random variables (Θ1 and Θ2) that both follow
the uniformdistribution in the interval of [0, 2𝜋] [17]. Moreover, the rotational stiffness of semi-rigid connected
joints is taken as the uniform distribution [23]. The rationality of the aforementioned assumption of probability
distributions of the randomvariables has been proven in the previous studies [17,19,23] on the stochastic response
analysis and reliability evaluation of transmission towers. As for the representative point set, the sample size
of the point set is taken as 500.

Results of stochastic stress response and dynamic reliability
Generally, the maximum response of structures is the key and concerned response. Accordingly, in this practi-
cal example, themaximummember stress in transmission towers is selected to illustrate the results of stochastic
stress responses of the STTT considering effects of semi-rigid connected joints and semi-rigid-constrained sta-
bility behaviors. The location of the maximum member stress in the transmission tower is shown in Figure 6.
Figure 7 shows the PDF evolution process of the maximum member stress of the STTT considering effects
of semi-rigid connected joints and semi-rigid-constrained stability behaviors within the time interval from
100 s to 500 s. It can be clearly seen that the evolution process of the PDF surface and contour with the time-
variant peak is noticeably non-smooth, which indicates that the stress of members induced by the random
variables presents strongly stochastic and time-variant characteristics. Correspondingly, Figure 8 shows the
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Figure 6. Location of the maximummember stress in the transmission tower.

Figure 7. PDF evolution process of maximum member stress within the time interval [100 s-500 s]. (A) The PDF surface; (B) The PDF
contour.

Figure 8. Time histories of the mean and STD of maximummember stress. (A) The mean; (B) The STD.

time histories of the mean and standard deviation (STD) of maximummember stress. Similar to Figure 7, the
time histories of the mean and STD of maximummember stress are time-variant, in which its mean fluctuates
around 100 MPa and STD fluctuates around 40 MPa.
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Table 4. Comparisons of mean and STD of time-history curves with different connections and stability coefficients (unit: MPa)

Rigid connection Semi-rigid connection Pinned connection

Mean 72.7135 86.3197 101.1282
STD 23.9091 29.3765 35.7644
Maximum value 258.8285 86.3197 297.2877

In terms of the dynamic reliability, the reliability index of the STTT considering effects of semi-rigid connected
joints and semi-rigid-constrained stability behaviors is calculated as 4.1039 according to the established per-
formance function of extreme-value variables.

Comparisons of analysis results of transmission towers with different connections and stability coef-
ficients
In order to study the effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors on
the structural dynamic response and dynamic reliability of transmission towers, the stochastic stress response
analyses and reliability evaluations of transmission towers considering pinned and rigid connected joints are
also conducted, respectively. It is noted that once the pinned or rigid connected joint is adopted for the trans-
mission tower, the corresponding stability coefficient would change with it. Therefore, in the following subsec-
tions, when the different (semi-rigid, rigid, and pinned) connections are adopted, the corresponding stability
coefficients are calculated by members with distinct (semi-rigid, rigid, and pinned) connections, respectively.

A sample of stochastic stress response with different connections and stability coefficients
To investigate the effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors on the
value of structural responses of transmission towers, the comparisons of a sample of maximummember stress
with various connections and stability coefficients are shown in Figure 9. Generally, the variation trend of
samples of maximum member stress with rigid and pinned connected joints is basically consistent with that
with semi-rigid connected joints. The sample of maximum member stress with semi-rigid connected joints is
between that with rigid and pinned connected joints. Table 4 shows the statistical parameters of time-history
curves for towers with different connections and stability coefficients, including the mean and STD. Specifi-
cally, the mean and STD of time-history curves for the transmission tower considering semi-rigid connected
joints are both larger than those considering rigid connected joints while are less than those considering pinned
connected joints. This can be explained by the fact that the stress of members is composed of the stress caused
by axial forces and bending moments [i.e., Equation (5)]. Although pinned connected joints ignore bending
moments, the stability coefficient of members with pinned behaviors is the smallest among the three connec-
tion types, leading to the relatively large stress caused by axial forces. On the contrary, rigid connected joints
cause the largest bending moments, but the largest stability coefficient of members with rigid behaviors leads
to the relatively small stress caused by axial forces. Thus, after comprehensively considering the two parts of
the stress, the stress calculated by Equation (5) would present the maximum value for members with pinned
behaviors, while that would present the minimum value for members with rigid behaviors, and that would
present the median value for members with semi-rigid behaviors.

Stochastic stress response of towers with different stability coefficients and connections
Figure 10 compares the PDF curves of maximum member stress for towers with different stability coefficients
and connections at three typical time instants, i.e., 𝑡 = 100 s, 𝑡 = 300 s, and 𝑡 = 500 s. It can be observed that
the PDF shows different curves at various time instants; the complexity of PDF evolutions of the maximum
member stress is further illustrated. Furthermore, the different connection and stability coefficients obviously
affect the PDF curves of themaximummember stress. Figure 11 shows the comparisons of time-history curves
of the mean and STD of PDF for transmission towers with different stability coefficients and connections. It
can be found that the time-history curves of the mean and STD for the transmission tower considering semi-
rigid connected joints are both higher than those considering rigid connected joints while being lower than
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Figure 9. Comparisons of a sample of maximummember stress with different connections and stability coefficients.

Figure 10. Comparison of PDF for the maximum member stress with different stability coefficients and connections at three typical time
instants.

those considering pinned connected joints.

Dynamic reliability of transmission towers with different stability coefficients and connections
The PDF and CDF of the performance function with different stability coefficients and connections are com-
pared in Figure 12. It can be clearly observed that the PDF and CDF curves of the performance function with
pinned connected joints are closest to the failure boundary (i.e., 0 MPa), and those with rigid connected joints
are farthest from the failure boundary. The PDF and CDF of the performance function with semi-rigid con-
nected joints are between those with pinned and rigid connected joints. Furthermore, the dynamic reliability
of transmission towers with different stability coefficients and connections is compared in Table 5. It can be
obtained that the reliability index of the transmission tower considering rigid connected joints is calculated
as 5.3967 and that considering pinned connected joints is calculated as 3.0304. The reliability index of the
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Figure 11. Comparisons of the mean and STD of PDF for maximummember stress with different stability coefficients and connections. (A)
The Mean; (B) The STD.

Table 5. Comparisons of reliability indexes for transmission towers with different stability coefficients and connections

Rigid connection Semi-rigid connection Pinned connection

Reliability index 5.3967 4.1039 3.0304

Figure 12. Comparisons of PDF and CDF of the performance function with different stability coefficients and connections. (A) The PDF; (B)
The CDF.

transmission tower considering semi-rigid connected joints is smaller than that considering rigid connected
joints and is larger than that considering pinned connected joints.

In summary, the semi-rigid connected joints and semi-rigid-constrained stability behaviors would significantly
affect the stochastic stress response and dynamic reliability of STTTs. The time-history curves of the mean
and STD of member stress of STTTs considering semi-rigid connected joints and semi-rigid-constrained sta-
bility behaviors are between those considering rigid and pinned connected joints and corresponding con-
strained stability behaviors. Similarly, the dynamic reliability of STTTs considering semi-rigid connected
joints and semi-rigid-constrained stability behaviors is smaller than that considering rigid connected joints and
rigid-constrained stability behaviors and is larger than that considering pinned connected joints and pinned-
constrained stability behaviors. Thus, it is essential to take into account the semi-rigid behavior for STTTs,
and the adoption of pinned or rigid behavior in the traditional design and analysis may be inappropriate for
these structures.
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CONCLUSIONS AND REMARKS
In this paper, a fitting formula is proposed for the stability coefficient of STMs-SRB in transmission towers
to determine the dynamic stress. Then, the structural characteristics (namely, stiffness, mass, and damping
matrices) of STTTs-SRB are derived to develop its stochastic FE model. Further integrated with the integral
form of GDEE and a family of Dirac’s sequences, the stochastic stress response analysis is conducted for STTTs
considering effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors, and their
dynamic reliability is evaluated on the basis of the extreme-value distribution method. Finally, the effects of
semi-rigid connected joints and semi-rigid-constrained stability behaviors on the stochastic stress response
and dynamic reliability of STTTs are investigated. Some important conclusions and remarks are presented
below.

• The proposed fitting formula has the satisfactory accuracy to determine the stability coefficient of STMs-
SRB, which can be further used to calculate the dynamic stress response of members in STTTs-SRB.

• The time-history curves of themean and STD ofmember stress of STTTs considering semi-rigid connected
joints and semi-rigid-constrained stability behaviors are between those considering rigid and connected
joints and corresponding constrained stability behaviors.

• The dynamic reliability of STTTs considering semi-rigid connected joints and semi-rigid-constrained sta-
bility behaviors is smaller than that considering rigid connected joints and rigid-constrained behaviors and
is larger than that considering pinned connected joints and pinned-constrained stability behaviors.

• It is essential to take into account the semi-rigid behavior for STTTs, and the adoption of pinned or rigid
behavior in the traditional design and analysis may be inappropriate for these specific tower configurations.

Although this paper investigated the stochastic stress response and dynamic reliability of STTTs considering
effects of semi-rigid connected joints and semi-rigid-constrained stability behaviors, there remain some chal-
lenges and limitations. This paper aims to assess the stress-based reliability of transmission towers while other
limit states (e.g., deformation) are not considered. The reliability of STTTs-SRB considering multiple limit
states (strength, stability, and displacement) can be further investigated in future works. In addition, the semi-
rigid connections would deteriorate with the increasing service year due to aging, fatigue, chemical corrosion,
and physical damage, leading to in-service STTTs further deteriorating over time. Therefore, the prediction
model of mechanical properties needs to be established for deteriorating semi-rigid connected joints, and the
time-variant reliability evaluation of STTTs also needs to be conducted. It would be helpful tomake reasonable
maintenance and rehabilitation decisions at an appropriate time for an STTT, which can ensure its satisfactory
performance and minimize maintenance costs during its life cycle.
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APPENDIX A: DERIVATION OF CONSISTENT ELEMENT MASS MATRIX OF STMS-SRB
The shape function of the axial displacement 𝑢, the torsional rotation 𝜃𝑥 , and the deflections of STMs-SRB (𝑣
and 𝑤) can be taken as the linear polynomial and the third-order polynomial, respectively, i.e.,

𝑢 = 𝑎0 + 𝑎1𝑥, 𝜃𝑥 = 𝑒0 + 𝑒1𝑥, 𝑣 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 + 𝑏3𝑥

3, 𝑤 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 (A1)

where 𝑎, 𝑏, 𝑐, and 𝑒 are the undetermined coefficients.

Equation (A1) can be expressed in a matrix form as

𝑢 = H1a, 𝜃𝑥 = H1e, 𝑣 = H2b, 𝑤 = H2c (A2)

where

H1(𝑥) = [1 𝑥] ,H2(𝑥) =
[
1 𝑥 𝑥2 𝑥3]

a = [𝑎0 𝑎1]T , b = [𝑏0 𝑏1 𝑏2 𝑏3]T , e = [𝑒0 𝑒1]T , c = [𝑐0 𝑐1 𝑐2 𝑐3]T (A3)

Additionally, the axial displacement vector 𝜹𝑢 , the deflection and rotation vector in each direction (𝜹𝑣𝑠, 𝜹𝑤𝑠,
and 𝜹𝜃) can be represented as

𝜹𝑢 =
[
𝑢𝑖 𝑢 𝑗

]T
, 𝜹𝜃 =

[
𝜃𝑥𝑖 𝜃𝑥 𝑗

]T

𝜹𝑣𝑠 = 𝜹𝑣 − 𝜶𝑧, 𝜹𝑤𝑠 = 𝜹𝑤 − 𝜶𝑦
(A4)

where

𝜹𝑣 =
[
𝑣𝑖 𝜃𝑧𝑖 𝑣 𝑗 𝜃𝑧 𝑗

]T
, 𝜹𝑤 =

[
𝑤𝑖 𝜃𝑦𝑖 𝑤 𝑗 𝜃𝑦 𝑗

]T

𝜶𝑧 =
[

0 𝛼𝑧𝑖 0 𝛼𝑧 𝑗
]T
,𝜶𝑦 =

[
0 𝛼𝑦𝑖 0 𝛼𝑦 𝑗

]T (A5)

where

𝛼𝑦𝑖 =
𝑀𝑦𝑖

𝑘𝑖
, 𝛼𝑦 𝑗 =

𝑀𝑦 𝑗

𝑘 𝑗
, 𝛼𝑧𝑖 =

𝑀𝑧𝑖

𝑘𝑖
, 𝛼𝑧 𝑗 =

𝑀𝑧 𝑗

𝑘 𝑗
(A6)

where 𝑘 𝑗 and 𝑘𝑖 denote the rotational stiffness of semi-rigid connected joints at nodes 𝑗 and 𝑖, respectively.

Substituting Equations (A1-A3) into Equation (A4) and noting that the bending rotations (𝜃𝑦 and 𝜃𝑧) can be
represented by taking the derivative of the deflections (𝑤 and 𝑣), Equation (A4) could be simplified as

𝜹𝑢 = A1a, 𝜹𝜃 = A1e, 𝜹𝑣𝑠 = A2b − 𝜶𝑧, 𝜹𝑤𝑠 = A2c − 𝜶𝑦 (A7)
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where

A1 =

[
1 0
1 𝑙

]
,A2 =


1 0 0 0
0 1 0 0
1 𝑙 𝑙2 𝑙3

0 1 2𝑙 3𝑙2


(A8)

According to Equation (A7), the undetermined coefficients are described as

a = A−1
1 𝜹𝑢, e = A−1

1 𝜹𝜃 , b = A−1
2 𝜹𝑣 , c = A2

−1𝜹𝑤 (A9)

where A−1
1 and A−1

2 are the inverse matrices of A1 and A2, respectively.

Substituting Equation (A9) into Equation (A4), the deformation of STMs-SRB is expressed by the shape func-
tions and nodal displacement as

𝑢 = H1(𝑥)A−1
1 𝜹𝑢, 𝜃𝑥 = H1(𝑥)A−1

1 𝜹𝜃
𝑣 = H2(𝑥)A−1

2 (𝜹𝑣 − 𝜶𝑧) , 𝑤 = H2(𝑥)A2
−1 (𝜹𝑤 − 𝜶𝑦

)
(A10)

Considering the boundary condition of steel-tube members, the bending moments (𝑀𝑧 and 𝑀𝑦) are given as

𝑀𝑧𝑖 = − 𝐸𝐼𝑧𝑣′′ |𝑥=0 , 𝑀𝑧 𝑗 = − 𝐸𝐼𝑧𝑣′′ |𝑥=𝑙 , 𝑀𝑦𝑖 = − 𝐸𝐼𝑦𝑤′′��
𝑥=0 , 𝑀𝑦 𝑗 = − 𝐸𝐼𝑦𝑤′′��

𝑥=𝑙 (A11)

where 𝐼𝑦 and 𝐼𝑧 are the moment of inertia of sections around the 𝑦-axis and 𝑧-axis, respectively. Substituting
Equation (A10) into Equation (A11), the bending moments (𝑀𝑧 and 𝑀𝑦) are presented by matrix forms as

[
𝑀𝑧𝑖

𝑀𝑧 𝑗

]
=
𝑖𝑧
𝑙

[
6 4𝑙 −6 2𝑙
6 2𝑙 −6 4𝑙

] 
𝑣𝑖

𝜃𝑧𝑖 − 𝛼𝑧𝑖
𝑣 𝑗

𝜃𝑧 𝑗 − 𝛼𝑧 𝑗


,

[
𝑀𝑦𝑡

𝑀𝑦 𝑗

]
=
𝑖𝑦

𝑙

[
6 4𝑙 −6 2𝑙
6 2𝑙 −6 4𝑙

] 
𝑤𝑖

𝜃𝑦𝑡 − 𝛼𝑦𝑡
𝑤 𝑗

𝜃𝑦 𝑗 − 𝛼𝑦 𝑗


(A12)

Integrating Equation (A5) with Equation (A12), the rotations of semi-rigid connections (𝛼𝑦 and 𝛼𝑧) are de-
scribed as
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𝜶𝑧 =


0
𝛼𝑧𝑖
0
𝛼𝑧 𝑗


=


0 0 0 0
𝛾𝑧1𝑖 𝛾𝑧2𝑖 𝛾𝑧3𝑖 𝛾𝑧4𝑖
0 0 0 0
𝛾𝑧1 𝑗 𝛾𝑧2 𝑗 𝛾𝑧3 𝑗 𝛾𝑧4 𝑗



𝑣𝑖
𝜃𝑧𝑖
𝑣 𝑗
𝜃𝑧 𝑗


= R𝑣𝜹𝑣

𝜶𝑦 =


0
𝛼𝑦𝑖
0
𝛼𝑦 𝑗


=


0 0 0 0
𝛾𝑦1𝑖 𝛾𝑦2𝑖 𝛾𝑦3𝑖 𝛾𝑦4𝑖
0 0 0 0
𝛾𝑦1 𝑗 𝛾𝑦2 𝑗 𝛾𝑦3 𝑗 𝛾𝑦4 𝑗



𝑤𝑖
𝜃𝑦𝑖
𝑤 𝑗

𝜃𝑦 𝑗


= R𝑤𝜹𝑤

(A13)

where 𝛾𝑧𝑛𝑖 , 𝛾𝑧𝑛 𝑗 , 𝛾𝑦𝑛𝑖 , and 𝛾𝑦𝑛 𝑗 (𝑛 = 1, 2, 3, 4) can be expressed as

𝛾𝑧1𝑖 =
6𝑖𝑧/𝑘 𝑗 𝑙 (1+2𝑖𝑧/𝑘𝑖)

(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖2𝑧/𝑘𝑖 𝑘 𝑗
, 𝛾𝑧2𝑖 =

4𝑖𝑧/𝑘𝑖 𝑙(1+3𝑖𝑧/𝑘 𝑗)
(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖2𝑧/𝑘𝑖 𝑘 𝑗

𝛾𝑧3𝑖 = −𝛾𝑧1𝑖 , 𝛾𝑧4𝑖 = 2𝑖𝑧/𝑘𝑖 𝑙
(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖2𝑧/𝑘𝑖 𝑘 𝑗

(A14)

𝛾𝑧1 𝑗 =
6𝑖𝑧/𝑘𝑖 𝑙(1+2𝑖𝑧/𝑘 𝑗)

(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑧2/𝑘𝑖 𝑘 𝑗
, 𝛾𝑧2 𝑗 =

2𝑖𝑧/𝑘 𝑗 𝑙
(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑧2/𝑘𝑖 𝑘 𝑗

𝛾𝑧3 𝑗 = −𝛾𝑧1 𝑗 , 𝛾𝑧4 𝑗 = 4𝑖𝑧/𝑘 𝑗 𝑙 (1+3𝑖𝑧/𝑘𝑖)
(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑧2/𝑘𝑖 𝑘 𝑗

(A15)

𝛾𝑦1𝑖 =
6𝑖𝑦/𝑘 𝑗 𝑙(1+2𝑖𝑦/𝑘𝑖)

(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑦2/𝑘𝑖 𝑘 𝑗
, 𝛾𝑦2𝑖 =

4𝑖𝑦/𝑘𝑖 𝑙(1+3𝑖𝑦/𝑘 𝑗)
(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑦2/𝑘𝑖 𝑘 𝑗

𝛾𝑦3𝑖 = −𝛾𝑦1𝑖 , 𝛾𝑦4𝑖 = 2𝑖𝑦/𝑘𝑖 𝑙
(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑦2/𝑘𝑖 𝑘 𝑗

(A16)

𝛾𝑦1 𝑗 =
6𝑖𝑦/𝑘𝑖 𝑙(1+2𝑖𝑦/𝑘 𝑗)

(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑦2/𝑘𝑖 𝑘 𝑗
, 𝛾𝑦2 𝑗 =

2𝑖𝑦/𝑘 𝑗 𝑙
(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑦2/𝑘𝑖 𝑘 𝑗

𝛾𝑦3 𝑗 = −𝛾𝑦1 𝑗 , 𝛾𝑦4 𝑗 =
4𝑖𝑦/𝑘 𝑗 𝑙(1+3𝑖𝑦/𝑘𝑖)

(1+4𝑙/𝑘𝑖)(1+4𝑙/𝑘 𝑗)−4𝑖𝑦2/𝑘𝑖 𝑘 𝑗

(A17)

Then, substituting Equation (A13) into Equation (A10), the deflections of STMs-SRB (𝑤𝑠 and 𝑣𝑠) can be ac-
quired as

𝑣 = H2(𝑥)A2
−1 (𝜹𝑣 − R𝑣𝜹𝑣) = H2(𝑥)A2

−1C𝑣𝜹𝑣
𝑤 = H2(𝑥)A2

−1 (𝜹𝑤 − R𝑤𝜹𝑤) = H2(𝑥)A2
−1C𝑤𝜹𝑤

(A18)

where

C𝑣 = I − R𝑣 ,C𝑤 = I − R𝑤 (A19)

where I is the identity matrix.

Furthermore, Equation (A18) could be expressed by the nodal displacement vector of elements as
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u =


𝑢

𝑣

𝑤

𝜃𝑥


=


H𝑢 (𝑥)
H𝑣 (𝑥)
H𝑤 (𝑥)
H𝜃 (𝑥)


A𝜹𝑒 = N𝜹𝑒 (A20)

where

𝜹𝑒 =
[
𝜹𝑖 𝜹 𝑗

]T

𝜹𝑖 =
[
𝑢𝑖 𝑣𝑖 𝑤𝑖 𝜃𝑥𝑖 𝜃𝑦𝑖 𝜃𝑧𝑖

]T
, 𝜹 𝑗 =

[
𝑢 𝑗 𝑣 𝑗 𝑤 𝑗 𝜃𝑥 𝑗 𝜃𝑦 𝑗 𝜃𝑧 𝑗

]T

H𝑢 (𝑥) =
[

1 0 0 0 0 0 𝑥 0 0 0 0 0
]

H𝑣 (𝑥) =
[

0 1 0 0 0 𝑥 0 𝑥2 0 0 0 𝑥3 ]
H𝑤 (𝑥) =

[
0 0 1 0 𝑥 0 0 0 𝑥2 0 𝑥3 0

]
H𝜃 (𝑥) =

[
0 0 0 1 0 0 0 0 0 𝑥 0 0

]
(A21)

A =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 ℎ𝑦1 0 ℎ𝑦4 0 0 0 ℎ𝑦7 0 ℎ𝑦10 0
0 ℎ𝑧1 0 0 0 ℎ𝑧4 0 ℎ𝑧7 0 0 0 ℎ𝑧10

−1/𝑙 0 0 0 0 0 1/𝑙 0 0 0 0 0
0 ℎ𝑧2 0 0 0 ℎ𝑧5 0 ℎ𝑧8 0 0 0 ℎ𝑧11
0 0 ℎ𝑦2 0 ℎ𝑦5 0 0 0 ℎ𝑦8 0 ℎ𝑦11 0
0 0 0 −1/𝑙 0 0 0 0 0 1/𝑙 0 0
0 0 ℎ𝑦3 0 ℎ𝑦6 0 0 0 ℎ𝑦9 0 ℎ𝑦12 0
0 ℎ𝑧3 0 0 0 ℎ𝑧6 0 ℎ𝑧9 0 0 0 ℎ𝑧12



(A22)

where ℎ𝑧1 = 𝛾𝑧1𝑖; ℎ𝑧2 = −2𝛾𝑧1𝑖/𝑙 − 𝛾𝑧1 𝑗/𝑙 − 3/𝑙2; ℎ𝑧3 = 𝛾𝑧1𝑖/𝑙2 + 𝛾𝑧1 𝑗/𝑙2 + 2/𝑙3; ℎ𝑧4 = 1 − 𝛾𝑧2𝑖;
ℎ𝑧5 = 2 (𝛾𝑧2𝑖 − 1) /𝑙 − 𝛾𝑧2 𝑗/𝑙; ℎ𝑧6 = 𝛾𝑧2 𝑗/𝑙2 − (𝛾𝑧2𝑖 − 1) /𝑙2; ℎ𝑧7 = 𝛾𝑧3𝑖; ℎ𝑧8 = 3/𝑙3 − 𝛾𝑧3 𝑗/𝑙 − 2𝛾𝑧3𝑖/𝑙;
ℎ𝑧9 = 𝛾𝑧3𝑖/𝑙2+𝛾𝑧3 𝑗/𝑙2−2/𝑙3; ℎ𝑧10 = 𝛾𝑧4𝑖; ℎ𝑧11 =

(
𝛾𝑧4 𝑗 − 1

)
/𝑙−2𝛾𝑧4𝑖/𝑙; ℎ𝑧12 = 𝛾𝑧4𝑖/𝑙2−

(
𝛾𝑧4 𝑗 − 1

)
/𝑙2;

ℎ𝑦1 = 𝛾𝑦1𝑖; ℎ𝑦2 = −2𝛾𝑦1𝑖/𝑙 − 𝛾𝑦1 𝑗/𝑙 − 3/𝑙2; ℎ𝑦3 = 𝛾𝑦1𝑖/𝑙2 + 𝛾𝑦1 𝑗/𝑙2 + 2/𝑙3; ℎ𝑦4 = 1 − 𝛾𝑦2𝑖;
ℎ𝑦5 = 2

(
𝛾𝑦2𝑖 − 1

)
/𝑙 − 𝛾𝑦2 𝑗/𝑙; ℎ𝑦6 = 𝛾𝑦2 𝑗/𝑙2 −

(
𝛾𝑦2𝑖 − 1

)
/𝑙2; ℎ𝑦7 = 𝛾𝑦3𝑖; ℎ𝑦8 = 3/𝑙3 − 𝛾𝑦3 𝑗/𝑙 −

2𝛾𝑦3𝑖/𝑙; ℎ𝑦9 = 𝛾𝑦3𝑖/𝑙2 + 𝛾𝑦3 𝑗/𝑙2 − 2/𝑙3; ℎ𝑦10 = 𝛾𝑦4𝑖; ℎ𝑦11 =
(
𝛾𝑦4 𝑗 − 1

)
/𝑙 − 2𝛾𝑦4𝑖/𝑙 ℎ𝑦12 = 𝛾𝑦4𝑖/𝑙2 −(

𝛾𝑦4 𝑗 − 1
)
/𝑙2.

Finally, the consistent mass matrix of STMs-SRB is determined as

M𝑒 =
∫
Ω

𝜌NTNdΩ = 𝜌𝐴

𝑙∫
0

NTNd𝑥 = 𝜌𝐴𝑙
[

M𝑒
11 M𝑒

12
M𝑒

21 M𝑒
22

]
(A23)

APPENDIX B: EXPRESSIONS OF 𝐻𝑧𝑛 AND 𝐻𝑦𝑛
In Equations (17)-(19), we have
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𝐻𝑒
𝑧1 = 1 + 𝑙ℎ𝑧1 + 𝑙2

ℎ𝑧1
2 + 2ℎ𝑧2

3
+ 𝑙3 ℎ𝑧3 + ℎ𝑧1ℎ𝑧2

2
+ 𝑙4 ℎ𝑧2

2 + 2ℎ𝑧1ℎ𝑧3
5

+ 𝑙5 ℎ𝑧2ℎ𝑧3
3

+ 𝑙6 ℎ𝑧3
2

7
(B1)

𝐻𝑧2 = 𝑙 ℎ𝑧4
2 + 𝑙2 ℎ𝑧5+ℎ𝑧1ℎ𝑧4

3 + 𝑙3 ℎ𝑧6+ℎ𝑧1ℎ𝑧5+ℎ𝑧2ℎ𝑧4
4

+𝑙4 ℎ𝑧1ℎ𝑧6+ℎ𝑧2ℎ𝑧5+ℎ𝑧3ℎ𝑧4
5 + 𝑙5 ℎ𝑧2ℎ𝑧6+ℎ𝑧3ℎ𝑧5

6 + 𝑙6 ℎ𝑧3ℎ𝑧6
7

(B2)

𝐻𝑧3 = 𝑙 ℎ𝑧7
2 + 𝑙2 ℎ𝑧8+ℎ𝑧1ℎ𝑧7

3 + 𝑙3 ℎ𝑧9+ℎ𝑧1ℎ𝑧8+ℎ𝑧2ℎ𝑧7
4

+𝑙4 ℎ𝑧1ℎ𝑧9+ℎ𝑧2ℎ𝑧8+ℎ𝑧3ℎ𝑧7
5 + 𝑙5 ℎ𝑧2ℎ𝑧9+ℎ𝑧3ℎ𝑧8

6 + 𝑙6 ℎ𝑧3ℎ𝑧9
7

(B3)

𝐻𝑧4 = 𝑙 ℎ𝑧10
2 + 𝑙2 ℎ𝑧11+ℎ𝑧1ℎ𝑧10

3 + 𝑙3 ℎ𝑧12+ℎ𝑧1ℎ𝑧11+ℎ𝑧2ℎ𝑧10
4

+𝑙4 ℎ𝑧1ℎ𝑧12+ℎ𝑧2ℎ𝑧11+ℎ𝑧3ℎ𝑧10
5 + 𝑙5 ℎ𝑧2ℎ𝑧12+ℎ𝑧3ℎ𝑧11

6 + 𝑙6 ℎ𝑧3ℎ𝑧12
7

(B4)

𝐻𝑧5 = 𝑙2
ℎ𝑧4

2

3
+ 𝑙3 ℎ𝑧4ℎ𝑧5

2
+ 𝑙4

ℎ𝑧5
2 + 2ℎ𝑧4ℎ𝑧6 + 𝑙5 ℎ𝑧5ℎ𝑧6

3 + 𝑙6 ℎ𝑧6
2

7
5

(B5)

𝐻𝑧6 = 𝑙2 ℎ𝑧4ℎ𝑧7
3 + 𝑙3 ℎ𝑧4ℎ𝑧8+ℎ𝑧5ℎ𝑧7

4 + 𝑙4 ℎ𝑧4ℎ𝑧9+ℎ𝑧5ℎ𝑧8+ℎ𝑧6ℎ𝑧7
5

+𝑙5 ℎ𝑧5ℎ𝑧9+ℎ𝑧6ℎ𝑧8
6 + 𝑙6 ℎ𝑧6ℎ𝑧9

7
(B6)

𝐻𝑧7 = 𝑙2 ℎ𝑧4ℎ𝑧10
3 + 𝑙3 ℎ𝑧4ℎ𝑧11+ℎ𝑧5ℎ𝑧10

4 + 𝑙4 ℎ𝑧4ℎ𝑧12+ℎ𝑧5ℎ𝑧11+ℎ𝑧6ℎ𝑧10
5

+𝑙5 ℎ𝑧5ℎ𝑧12+ℎ𝑧6ℎ𝑧11
6 + 𝑙6 ℎ𝑧6ℎ𝑧12

7
(B7)

𝐻𝑧8 = 𝑙2
ℎ𝑧7

2

3
+ 𝑙3 ℎ𝑧7ℎ𝑧8

2
+ 𝑙4 ℎ𝑧8

2 + 2ℎ𝑧7ℎ𝑧9
5

+ 𝑙5 ℎ𝑧8ℎ𝑧9
3

+ 𝑙6 ℎ𝑧9
2

7
(B8)

𝐻𝑧9 = 𝑙2 ℎ𝑧7ℎ𝑧10
3 + 𝑙3 ℎ𝑧7ℎ𝑧11+ℎ𝑧8ℎ𝑧10

4 + 𝑙4 ℎ𝑧7ℎ𝑧12+ℎ𝑧8ℎ𝑧11+ℎ𝑧9ℎ𝑧10
5

+𝑙5 ℎ𝑧8ℎ𝑧12+ℎ𝑧9ℎ𝑧11
6 + 𝑙6 ℎ𝑧9ℎ𝑧12

7
(B9)

𝐻𝑧10 = 𝑙2
ℎ𝑧10

2

3
+ 𝑙3 ℎ𝑧10ℎ𝑧11

2
+ 𝑙4 ℎ𝑧11

2 + 2ℎ𝑧10ℎ𝑧12

5
+ 𝑙5 ℎ𝑧11ℎ𝑧12

3
+ 𝑙6 ℎ𝑧12

2

7
(B10)

𝐻𝑦𝑛 (𝑛 = 1, 2, ..., 9, 10) could be determined in the same way once 𝑧 of 𝐻𝑧𝑛 (𝑛 = 1, 2, ..., 9, 10) is replaced with
𝑦; ℎ𝑧𝑛 and ℎ𝑦𝑛 (𝑛 = 1, 2, ..., 9, 12) can refer to Appendix A.
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