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Abstract
The ocean is a complex system. Ocean temperature is an important physical property of seawater, so studying its 
variation is of great significance. Two kinds of network structures for predicting thermocline time series data are 
proposed in this paper. One is the LSTM-GRU hybrid neural network model, and the other is the temporal 
convolutional network (TCN) model. The two networks have obvious advantages over other models in accuracy, 
stability, and adaptability. Compared with the traditional auto-regressive integrate moving average model, the 
proposed method considers the influence of temperature history, salinity, depth, and other information. The 
experimental results show that TCN performs better in prediction accuracy, while LSTM-GRU can better predict 
abnormal data and has higher robustness.
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1. INTRODUCTION
As global warming continues to intensify, the living environment of humankind is facing increasingly 
severe challenges, and ocean-related research has also received growing attention. The ocean plays an 
important role in regulating global temperature. However, the ocean is an open and complex system. Ocean 
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research always includes seawater, dissolved and suspended substances, organisms, submarine sediments, 
the lithosphere, the atmospheric boundary layer, and estuarine and coastal zones. Seawater temperature is 
an important parameter in ocean research. Affected by the latitude and geographic environment, the ocean 
temperature is highly unstable in time and space. Ocean temperature affects rainfall and seawater 
evaporation around the world and affects sea-air heat exchange[1]. Thus, the study of ocean temperature 
prediction methods can provide more reference data for predicting climate and meteorological changes, 
thereby promoting atmospheric and ocean sciences, expanding the scope and time of natural disaster 
forecasting, and reducing the losses caused by natural disasters to humans as much as possible. The change 
in ocean temperature will affect the abundance of marine species and the production of marine organisms. 
Therefore, predicting ocean temperature is also conducive to fishery production scheduling and promotes 
the fishery economy.

Argo is an international program that uses profiling floats to observe temperature, salinity, currents, and, 
recently, bio-optical properties in the oceans; it has been operational since the early 2000s[2]. The collected 
data are used in climate and oceanographic research. Argo originally planned to put 3000 buoys in 
international waters and establish a global ocean observation network with a density of buoys with an 
average distance between buoys of 3 km × 3 km. There are three main tasks: Argo core, measuring 
temperature, salinity, and pressure above 2000 m; deep Argo, measuring temperature, salinity, and pressure 
above 6000 m; and BGC-Argo, measuring temperature, salinity, pressure, pH, nitrate, chlorophyll, 
backscatter, oxygen content, and irradiance at a water depth of above 2000 m.

The Argo dataset provides the basis for marine research. Researchers use traditional physical models and 
machine learning methods to predict ocean temperature. In previous work, we proposed an SVR-based 
method to predict ocean temperature[3]. We redefined the thermocline by using the information entropy 
method[4,5] and analyze the association of the temperature and salinity data of seawater[6]. Some scholars also 
put forward the long short-term memory (LSTM) network and the gated recurrent unit (GRU), their 
improved algorithm, making a breakthrough in temperature prediction. Based on those studies, we 
continue to discuss the temperature prediction in this paper. We propose two temperature time-series 
prediction methods, and our contributions are as follows:

(1) We propose an LSTM-GRU hybrid neural network model and a model based on Temporal 
Convolutional Networks (TCNs). We compare them with traditional LSTM, GRU, and TCN, and the two 
networks surpassed them in experiments. The explanatory variable score of both exceeded 0.98.

(2) We evaluated the LSTM-GRU model and TCN-based model to predict data with abnormal data inputs. 
In the normal data, the TCN-based model works best. However, it is easy to predict abnormal temperatures 
while inputting insufficient data. The explanatory variable score result of LSTM-GRU can reach 0.85, which 
has high robustness.

This paper is arranged as follows. Section 2 introduces the application of Argo buoys and the current 
research status of ocean temperature prediction. Section 3 gives a detailed introduction to the LSTM model, 
GRU model, TCN, and the model proposed in this paper. Then, in Section 4, a comparison is made among 
several models, and we also evaluate the LSTM-GRU and TCN-based methods with abnormal data. Section 
5 summarizes the work in this paper and looks forward to the future.
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2. PRELIMINARY
2.1 Sea surface temperature predict
Sea surface temperature (SST) is an important factor affecting water vapor exchange and heat flow. 
Therefore, ocean temperature prediction has been considered by many scholars. SST can be divided into 
two categories in the prediction of ocean temperature: one is the numerical model based on physics, and the 
other is the data-driven model based on data analysis. In the traditional method, Xue et al.[7] proposed a 
Markov model to predict the temperature along the tropical Pacific. Based on linear Prediction, 
Landman et al.[8] used the typical variables of sea surface temperature to detect the outliers of monthly mean 
sea surface temperature. Penland and Magorian[9] combined historical data and prediction data and used 
linear inverse modeling technology to predict ocean temperature according to the periodicity of historical 
data, which showed good results in the Atlantic Ocean, Pacific Ocean, and Indian Ocean. Considering that 
the fluctuation of seawater surface temperature is less than that of atmosphere temperature, Johnson et al.[10] 
used the Markov model to predict seawater temperature linearly and randomly.

For deep learning methods, Tangang et al.[11] first proposed a neural network model to predict the seasonal 
ocean temperature anomaly in the tropical Pacific in 1997. Mahonggo and Deo[12] used the method based on 
the differential autoregressive moving average model and different neural network models to predict sea 
surface temperature change along the East African coast. Bhaskaran et al.[13] proposed the neural network 
model to experiment on various ocean datasets and used the nonlinear activation function of multi-layer 
perceptron to solve the nonlinear problem in the data. Zhang and Wang[1] proposed an LSTM neural 
network with a fully connected layer to complete ocean temperature prediction. LSTM layer was used to 
model the time series relationship of ocean data, and the results of the LSTM layer were mapped to the final 
prediction through the fully connected layer[14]. Yang et al.[15] proposed a CFCC-LSTM (combined fully 
connected network and convolution neural network) model, making ocean temperature prediction into 
series prediction problems. They predicted the ocean surface temperature of the Bohai Sea through a 
complete LSTM layer and a convolution layer[15]. The existing methods show that the method based on time 
series data effectively predicts ocean temperature, and the LSTM and its improved algorithm show good 
effect and adaptability in the simulation experiment.

2.2 Auto-regressive integrate moving average model
The marine time series models include the Gaussian, auto-regressive moving average, auto-regressive 
integrate moving average, Markov chain, and hidden Markov models[16].

The auto-regressive integrate moving average (ARIMA) model is one of the most common statistical 
models for time series prediction. ARIMA(p, d, q) is composed of three parts: AR is the auto-regressive 
model, which means that the value of a specific time point at present is equal to the value of several specific 
time points in the past. Integrate (I) calculates the difference between t time and t-1 time in the time series 
called first-order difference series. By calculating the first-order difference sequence, the different sequences 
of other orders can be obtained[17]. Moving average is a regression model derived to compute the regression 
between the value of certain characteristic points and the prediction errors of several past characteristic time 
points. The above three parts constitute the ARIMA(p, d, q) model, where p and q represent the order of the 
auto-regressive model and moving average model, respectively. d is the degree of differencing which is the 
number of times the data have subtracted past values. γi and θi represent the correlation coefficients of the 
auto-regressive model and moving average model. μ is a constant and εi represents the white noise.
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2.3 LSTM, GRU and TCN
LSTM is an artificial recurrent neural network (RNN) architecture[18] used in the field of deep learning. 
Unlike standard feedforward neural networks, LSTM has feedback connections which can process not only 
single data points but also entire sequences of data. GRUs, introduced in 2014 by Cho et al.[19], are a gating 
mechanism similar to LSTM[20]. In 2015, Lea et al.[21] first proposed TCNs for video-based action 
segmentation. The conventional process includes two steps: first, extract low-level features using CNN that 
encode spatial-temporal information. Second, input these feature maps into an RNN classifier that captures 
high-level temporal information. The main disadvantage is that it requires two separate models. TCN 
provides a unified approach to capture both levels of information hierarchically.

3. MARINE TEMPERATURE PREDICTION MODEL BASED ON LSTM-GRU AND TCN 
MODEL
3.1 LSTM and GRU
When predicting time-series data, traditional fully connected neural networks are weak. RNNs can process 
time-series data. The essential characteristics of RNNs are both an internal feedback connection and a 
feedforward connection between the processing units[19]. The LSTM network is a special RNN model whose 
structural design solves long-term dependence issues. The key of LSTM is the cell state to save current 
status and pass it to the next moment. The LSTM model is shown in Figure 1.

The forget gate in LSTM is used to determine which parts of the input information will be forgotten, as 
shown in Figure 1. The forget gate includes a sigmoid neural network layer and a bitwise multiplication 
operation. The forget gate outputs a value between 0 and 1. The higher is the value, the greater is the 
information obtained by the upper layer[22]. The function of the LSTM memory gate is exactly the opposite 
of the forget gate, and it decides which information of the input is retained. The LSTM memory gate 
includes the sigmoid neural network and the tanh neural network layers. The function of the LSTM output 
gate is to determine the content of the output. The output gate only contains the tanh function, and the 
output result will also be sent to the next node as the input[23]. GRU is a variant of LSTM. GRU gets rid of 
the state unit and uses the hidden state to convey information[24]. GRU has only two doors: reset gate and 
update gate. The reset gate obtains the gate control state through the state ht-1 transmitted by the previous 
node and the input of the current node. Furthermore, the two steps of forgetting and remembering will be 
carried out simultaneously in the update gate. That is, only one gate can be used for both forgetting and 
remembering.

3.2 Temporal convolutional network
The TCN was first proposed by Lea et al.[21] in 2016. At that time, they were researching video action 
segmentation. Generally speaking, this conventional process includes two steps: first, use CNN to encode 
spatiotemporal information to calculate low-level features. Second, input these low-level features into a 
decoder to capture high-level temporal information. Figure 2 shows the structure of TCN.

Several structures of the TCN model, e.g., causal convolution, dilated convolutions, and the residual block, 
are image-oriented convolutional neural networks. Causal convolution builds neural networks based on 
statistical equations [Equation (2)]. For the sequence modeling problem, yt is predicted according to x1... xt 
and y1... yt-1 to make yt close to the actual value:
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Figure 1. The LSTM model diagram. LSTM: Long short-term memory.

Figure 2. Structure of TCN. TCN: Temporal convolutional network.

Based on causal convolution, dilated convolutions skip part of the input (the isolated circles in Figure 2) to 
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apply the filter to the larger region. It is equivalent to generating a larger filter from the original filter by 
adding zero. The residual network has a very strong expression ability in computer vision. Introducing 
residual modules into a temporal convolution network can solve the problem of gradient disappearance. 
The shallow network can be easily extended to the deep network by the residual module. Different from the 
RNN structure, TCN can be processed at large scale in parallel. Therefore, the network speed is faster in 
training and verification. At the same time, the gradient dispersion and gradient explosion problems in 
RNN are avoided.

3.3 Model structure
Firstly, we propose a hybrid model based on LSTM and GRU, establishing a TCN network model.

The LSTM unit controls the amount of new memory content added to the memory cell independently from 
the forget gate. The GRU controls the information flow from the previous activation when computing the 
new, candidate activation, but it does not independently control the amount of added candidate activation 
(the control is tied via the update gate). LSTM has a talent in new data, but deep LSTM networks always 
lead to overfitting. GRU concentrates on short old data, and it is at lower risk of overfitting. Thus, we 
combine these advantages and propose a hybrid network.

The LSTM-GRU hybrid neural network constructed in this paper has five layers. The first layer is the LSTM 
neural network layer, which contains 30 hidden neurons; the second to fourth layers are the GRU neural 
network layers, and the numbers of neurons are 24, 6, and 3, respectively; and the fifth layer is a fully 
connected layer.

Referring to the model structure of the residual network, we design the TCN network structure shown in 
Figure 3.

The network includes two improved ResNet units. Each unit of the network contains two branches. The 
first branch contains two convolution layers, and the second branch contains one convolution layer. Each 
convolution layer of the first unit contains 16 kernels, and the second convolution layer contains 32 kernels. 
In the second layer of convolution kernels, we set the dilated parameter to 2.

Moreover, we also add two networks for comparison. The first contains 1 unit with 16 convolution kernels. 
The second contains three units (16, 32, and 64 convolution core), and the dilated number is 1, 2, and 4, 
respectively. We also compare the network with the traditional TCN, and the experimental results are 
shown in Section 4.

4. EXPERIMENTS
4.1 Experimental data
The data used in this article were derived from the “Argo (V3.0)” and include over 2.15 million 
temperature, salinity, and depth profile data obtained from more than 15,000 automatic observation profile 
buoys worldwide from July 1997 to March 2021. The files in the original dataset are stored according to the 
buoy number and contain longitude, latitude, pressure, temperature, and salinity. This paper selects eight 
months of ocean data from April to December 2020 for ocean temperature prediction. After preprocessing, 
there are 94,075 data items. The data in the original dataset are stored according to the buoy number, each 
number corresponds to a unique buoy, and the position of each buoy is uniquely determined. This paper 
only predicts the temperature of the ocean surface. Thus, we only selected the ocean data within 10 m from 
the sea level, organized the extracted effective data, and stored them again according to the buoy number. 
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Figure 3. Structure of the proposed model.

This paper divides 90% of the dataset into the training set and 10% in the validation set. The experiments 
used the following environment: Intel Core i7 7700, 16 GB RAM, RTX 2080TI, Ubuntu 16.04, Python 3.7.4, 
and TensorFlow 1.13.1. The linear normalization method was adopted to normalize the original data. The 
batch size was chosen as 100.

4.2 Model evaluation index
In this paper, explained variance score (EVS) and root mean square error (MSE), commonly used in 
regression models, are selected as the evaluation indicators of the model. The formula for EVS is as follows:

Var is Variance, the square of the standard deviation. ŷ represents the prediction, and y represents the true 
value. The value range of EVS is [0, 1]. The closer it is to 1, the more the independent variable can explain 
the variance change of the dependent variable. The smaller the value is, the worse the effect is. MSE is the 
ratio of the square sum of the deviation between the observed and actual values to the number of samples. 
The formula is as follows:

MSE is a loss function in linear regression. Under the same conditions, the smaller is the value, the higher is 
the accuracy of the prediction model.

4.3 Experimental results
4.3.1 ARIMA model prediction performance analysis
The ARIMA model can only predict ocean temperature for a single buoy. From the time perspective, it can 
only predict ocean temperature and cannot predict ocean temperature in different spaces. When the model 
parameters are the same, the prediction accuracy of the ARIMA model for different buoys is quite different. 
The prediction of the ARIMA model is shown in Figure 4. The red line in the figure represents the true 
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Figure 4. ARIMA model prediction effect diagram. ARIMA: Auto-regressive integrate moving average.

value of the ocean temperature recorded by the buoy, while the blue line represents the predicted 
temperature. The abscissa is the serial number of the selected 80 test points, the ordinate is the temperature, 
and the unit is degrees Celsius.

The prediction effect of the ARIMA model in Figure 4 corresponds to MSE of 0.23, and the model running 
time is about 6 s; the prediction effect of the ARIMA model in Figure 2 corresponds to MSE of 3.81, and the 
model running time is about 1-2 s. We can draw the following conclusions: (1) When the model parameters 
are the same, the accuracy of the ARIMA model for the ocean temperature prediction of different buoys 
varies greatly; and (2) the ARIMA model cannot accurately predict the ocean temperature but can only 
predict its general trend.

4.3.2 Comparative analysis of prediction performance of neural network models
The neural network model can predict the ocean temperature of all buoys at the same time. We compared 
LSTM[14], GRU[25], LSTM-GRU, and TCN. The compared TCN network is presented in[26]. The parameters 
of networks are shown in Table 1.

LSTM, GRU, and LSTM-GRU represent the three RNN networks mentioned in Section 3. TCN-R is the 
TCN network with improved ResNet modules. Moreover, we also label the three traditional TCN casual 
networks as TCN-C and two TCN casual networks with dilated convolution as TCN-C. The number on the 
left is the number of convolution kernels, and the right is the kernel size. The number of brackets is the 
dilated number. The EVS and RMSE of each prediction result are shown in Table 2 and Figure 5. To verify 
the stability of the prediction results of the neural network model, ten prediction experiments were 
performed for each neural network model.

In Table 2, we can see that the EVS of the LSTM-GRU hybrid network is lower than those of LSTM and 
GRU, indicating that the performance of the hybrid network is better than that of a single network. The 
TCN network with RESNET has the lowest error, which is better than the traditional method and the 
traditional TCN method. The error of R3 is close to that of R2, which indicates that increasing RESNET 
units cannot increase the network accuracy. R2 has fewer parameters, which is more suitable for Argo 
temperature prediction. Although R3 has more network parameters than R2, overfitting and gradient 
disappearance occur. Therefore, the more parameters are uncertain, the better the effect will be.
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Table 1. Networks’ structure and parameters

Layers/units
1 2 3 4

Parameters

LSTM 
GRU 
LSTM-GRU 
TCN-R1 
TCN-R2 
TCN-R3 
TCN-C1 
TCN-C2 
TCN-C3 
TCN-D1 
TCN-D2

25 
25 
30 
16 × 3 (1) 
16 × 3 (1) 
16 × 3 (1) 
16 × 3 (1) 
16 × 3 (1) 
16 × 3 (1) 
16 × 3 (2) 
16 × 3 (1)

25 
25 
24 
- 
32 × 3 (2) 
32 × 3 (2) 
- 
32 × 3 (1) 
32 × 3 (1) 
- 
32 × 3 (2)

- 
- 
6 
- 
- 
64 × 3 (4) 
- 
- 
64 × 3 (1) 
- 
-

- 
- 
3 
- 
- 
- 
- 
- 
- 
- 
-

8626 
6476 
9412 
1745 
8049 
32,945 
417 
1617 
3793 
401 
1585

LSTM: Long short-term memory; GRU: gated recurrent unit; TCN: temporal convolutional network.

Table 2. The EVS and MSE of prediction results on the models

Model EVS MSE

LSTM 
GRU 
LSTM-GRU 
TCN-R1 
TCN-R2 
TCN-R3 
TCN-C1 
TCN-C2 
TCN-C3 
TCN-D1 
TCN-D2

0.9564 
0.9743 
0.9811 
0.8978 
0.9879 
0.9878 
0.9797 
0.9642 
0.9661 
0.9573 
0.9631

3.5275 
2.4345 
1.6790 
8.2182 
0.9987 
1.0028 
1.9759 
3.6824 
2.7592 
4.7414 
3.1562

LSTM: Long short-term memory; GRU: gated recurrent unit; TCN: temporal convolutional network; EVS: explained variance score; MSE: mean 
square error.

Figure 5. Predictions of all models. LSTM: Long short-term memory; GRU: gated recurrent unit; TCN: temporal convolutional network.

In Figure 5, the orange and blue lines represent the true and predicted values of ocean temperature, 
respectively. The abscissa is the serial number of the selected 1000 test points, the ordinate is the 
temperature, and the unit is degrees Celsius. Figure 6A-F presents the prediction results of LSTM, GRU, 
LSTM-GRU, TCN-R2, TCN-C1, and TCN-D2, respectively. The prediction curves of LSTM-GRU and 
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Figure 6. Predictions of several models. LSTM: Long short-term memory; GRU: gated recurrent unit; TCN: temporal convolutional 
network.

Table 3. The EVC and MSE in abnormal data of the two models.

EVS MSE

LSTM-GRU 
TCN-R2

0.8514 
0.8247

16.1151 
15.2085

LSTM: Long short-term memory; GRU: gated recurrent unit; TCN: temporal convolutional network; MSE: mean square error; EVS: explained 
variance score.
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Figure 7. The result of abnormal data on LSTM-GRU and TCN-R2. LSTM: Long short-term memory; GRU: gated recurrent unit; TCN: 
temporal convolutional network.

TCN-R2 are the same as the real curves. LSTM may acquire a high value when some peak values occur. 
GRU could predict those peaks, but it always makes small errors. Both LSTM and GRU make mistakes 
around 420 s, but LSTM-GRU does not. LSTM-GRU puts some peak values right and diminishes some 
errors of GRU. TCN-R2 performs best with small errors. TCN-C1 works well before 450 s, but, after 850 s, 
the prediction value is higher than the actual data. TCN-D2 is the worst model, and the prediction value is 
always higher.

Next, we modified two random temperature data into abnormal data to test the robustness of the LSTM-
GRU and TCN-R2. The test results are shown in Figure 7. Furthermore, the EVS and MSE are shown in 
Table 3.

The picture on the left is LSTM-GRU, and the picture on the right is TCN-R2. As shown in Table 3, the 
EVC of LSTM-GRU is higher, but the MSE is higher than TCN-R2. It shows that the trend value of LSTM-
GRU has high accuracy but fluctuates greatly. It can also be confirmed from the results in Figure 7 that 
LSTM-GRU makes unserious mistakes. Moreover, TCN makes fewer mistakes, but it always predicts great 
extremes and wrong trends. However, TCN-R2 can produce extreme outliers of more than 30 °C. 
Therefore, TCN-R2 is not competent in an environment with many invalid sensor data.

5. CONCLUSIONS
In this paper, two kinds of network structures for predicting thermocline time series data are proposed. One 
is the LSTM-GRU hybrid neural network model, and the other is the TCN-based neural network model. 
The two networks have obvious advantages over other models in accuracy, stability, and adaptability. TCN 
has higher prediction accuracy, while LSTM-GRU can better predict abnormal data and has higher 
robustness. For future work, other variables, such as location blocks and atmospheric parameters, can be 
added to the model to better predict ocean temperature and improve the accuracy of ocean temperature 
prediction. This paper only concerns ocean surface temperature. Deep seawater is also a vital topic, and it is 
more practical to predict the temperature of shallow seawater and deep seawater simultaneously. 
Forecasting multiple data in different depths adds one dimension to the data, and this will be another 
challenge as seawater exhibits nonlinear vertical variations.
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