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Abstract
This paper studies the issues of region stability of switched two-dimensional linear dissipative Hamiltonian systems.
Such switched systems are composed of two stable subsystems with two different equilibrium points. Since the equi-
libriumpoints of two subsystems are different, and the statematrices of subsystemsmay not commute, it is difficult to
address such switched systems. This paper considers the case that the switching path corresponding to the switched
systems is a switching line passing through the equilibrium points of two different subsystems. A suitable region
containing all the equilibrium points of subsystems is first determined. Based on the concept of region stability of
switched systems with multiple equilibrium points, this paper proposes some sufficient conditions of region stability
and asymptotically region stability for such kind of switched linear dissipative Hamiltonian systems via the maximum
energy function method. The above main results obtained can be applied to some classes of electronic circuits, such
as switching DC/DC converters and AC/DC converters. As an application and illustration, a switching DC circuit
and two numerical examples are carried out to show the effectiveness of the region stability results obtained in this
paper.

Keywords: Switched linear systems, dissipative Hamiltonian systems, switched line, regional stability, asymptotic
regional stability, multiple equilibrium points, maximum energy function method
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1. INTRODUCTION
Hybrid systems are a kind of complex systems owning both continuous-time states and discrete time states.
As an important class of hybrid systems, a switched system is composed of finite/infinite subsystems and a
switching path/signal, which is used to select one subsystem to activate at any instant. Since 1990, it has
been found that switched systems have been widely used in many physical and practical fields, such as power
systems [1], multi-agent technology [2–5], hybrid electric vehicles [6], traffic control systems [7], and so on. Owing
to the structural complexity and extensive application of switched systems, it is of great significance to study
switched systems. In 1999, Liberzon andMorse published a review on the issues of stability analysis of switched
systems [8]. The review summarized that there are three basic problems with the stability of the switched system
as follows. One is the stability of switched systems under any switching paths; Another is the stability of the
system under given switching paths; The third is to determine suitable switching paths such that switched
systems are stable under the determined switching paths. After that, a large number of researchers have paid
increasing attention to the domain of switched systems and proposed plenty of results for switched systems.
Meanwhile, some important methods are developed to analyze the stability of switched systems, such as the
common Lyapunov function method (CLF) [9], the multi-Lyapunov functions method (MLF) [10], the multi-
storage functions method (MSFs) [11], and so on.

Almost all of the above system stability analysis and comprehensive results obtained for switched systems are
based on the same assumption that all subsystems have a common single equilibrium point, i.e., the origin, in
their common state domain [12–16]. However, due to the complexity of the environment and system structures,
for each subsystem of switched systems, there will be one or more equilibria in its state domain. Moreover,
the equilibrium points of each subsystem in many switched systems may not be the same one. Since there is
short of necessary stability analysismethods/techniques, it is indeed a challenge and has a practical significance
to investigate switched systems with multiple equilibria (ME). Although it is more difficult to study switched
systems with ME than switched systems with a common single equilibrium point, many researchers have
presented some stability results in the literature. For example, in the reference [17], several sufficient conditions
of region stability, global asymptotic region stability, and region instability are proposed for switched linear
time-invariant systems under arbitrary periodical/quasi-periodical switching paths with respect to a region.
The corresponding region contains all the multiple equilibrium points of such kind of switched linear systems
with ME. The results of the boundedness and practical stability are obtained for switched systems with ME in
the literature [18] by studying the robustness to external disturbances of such switched systems.

As an effective method, the Hamiltonian function method has been widely used to study nonlinear systems.
Such a method should be based on system energy control and system stability analysis. In practice, a gen-
eral affine nonlinear system can be converted into a port-controlled Hamiltonian (PCH) system based on the
Hamiltonian realization method [19]. The PCH systems can be accepted as a form of unified mathematical
structures for various physical systems, such as electric power systems and mechanical systems. The Hamil-
tonian function of such a PCH system has an explicitly physical significance and has often been used as the
total energy of physical systems. It is then often selected as an appropriate Lyapunov function. Based on the
above advantages of Hamiltonian systems, researchers obtain lots of results of Hamiltonian systems, such as
the results of trajectory tracking control [20,21],H∞ control [22], etc.

Recently, as an important kind of switched systems, switched Hamiltonian systems (SHSs) have also been
studied. This may be because such kind of switched systems can be used to model many practical systems
composed of finite difference modes. In fact, studying the SHS may induce to provide an effective method
for analyzing such a class of switched systems. However, compared to the existing vast results of switched
systemswith subsystems not being the formation ofHamiltonian systems, there are only a few results presented
for SHSs in the open literature. Except for the literature [23] studying the stability issues of switched linear
Hamiltonian systems, some other studies [24,25] analyze the issues of system stability, system stabilization, and
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Figure 1. The framework of the article.

H∞ control of the switched PCH systems and propose some corresponding results for such type of switched
systems.

It should be pointed out that all the aforementioned results obtained for switched PCH systems are also based
on the assumption that all subsystems must have a common single equilibrium point–the origin of the system
state space. To the best knowledge of the authors, there are fewer results reported for SHSs with ME in the
open literature, including the following one. The literature [26] tries to model a power system with a series of
faults in the form of switched impulsive Hamiltonian systems (SIHSs) with ME and proposes some necessary
and sufficient conditions of RS and ARS for the power system with respect to the region via the maximum
energy function method, which was first introduced in the literature [15]. It is especially witnessed that there
do not exist any results of switched linear Hamiltonian systems with ME in the literature. Therefore, studying
switched linear Hamiltonian systems with multiple equilibrium points not only enriches the theoretical results
of system analysis and system control of switched systems but also has important practical significance.

This paper studies the region stability issues of switched linear PCH systems with multiple equilibrium points.
Due to the complexity involved in studying such a switched system composed of subsystems having multiple
equilibrium points and non-commutative subsystems’ state matrices, we exclusively consider three specific
cases of the switched linear Hamiltonian system. One is the case that there are only two subsystems. Another
is the case that each subsystem has only a unique equilibrium point, and the equilibrium points of the two
subsystems are different. The third is the case that the involved switching path is the straight line passing
through the equilibrium points of the two subsystems. To address these cases, we utilize the concepts of region
stability and asymptotic region stability of switched systems withmultiple equilibrium points. Furthermore, by
means of themaximum energymethod, we propose themain contributions of this paper as follows: (1) several
sufficient conditions of the region stability and asymptotic region stability are given for switched linear PCH
systems with respect to a region containing all multiple equilibrium points under the specific switching path;
(2) an application of switching DC electric circuits and two numerical examples are carried out to illustrate the
effectiveness and practicality of the theoretical results obtained in this paper. Figure 1 shows the framework of
the content of this paper. Compared to the existing region stability results proposed in the literature [17], the
region stability criteria obtained in this paper have the following significant advantages: (1) they are suitable
to the case that any pairs of all the state matrices of subsystems do not commute between each other. However,
for the sufficient conditions of the region stability results given in the literature [17], all the state matrices of
subsystems of switched linear systems with ME are assumed to be commutative matrices; (2) dissimilar to that
of region stability proposed in the literature [17], the sufficient conditions of region stability obtained in this
paper do not require any information on the dwell-times of any subsystems; (3) the sufficient conditions of
region stability presented in this paper are very easy to check whether the given switched linear Hamiltonian
systems with switching lines are (asymptotically) region stable or not.

The rest of this paper is organized as follows. Section 2 gives the system expression of switched linear Hamilto-
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nian systems with multiple equilibrium subsystems, definitions, and other preliminaries, including notations.
Section 3 proposes the main contributions of this paper, i.e., some region stability criteria of switched linear
Hamiltonian systems with multiple equilibrium points. Section 4 illustrates numerical examples and an ap-
plication for switching DC circuits to show the validity of the obtained new results, which is followed by the
conclusion in Section 5.

Notation: R andR+ denote the real number field and the positive real number field, respectively; R𝑙 denotes the
𝑙-dimensional Euclidean space; ‖·‖ denotes the norm in the 𝑙-dimensional Euclidean space R𝑙 ; R𝑙×𝑠 denotes
the set of 𝑙 × 𝑠 real matrices, N denotes the set of natural numbers, N+ denotes the set of positive integers;
𝑑 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖, 𝑑 (𝑥,Ω) = inf𝑦∈Ω ‖𝑥 − 𝑦‖ denote the distances of the two points x and y contained in R𝑙 , the
point 𝑥 ∈ R𝑙 to the compact domainΩ ⊂ R𝑙 , respectively. For a given matrix 𝐽, 𝐽𝑇 is the matrix transpose of 𝐽,
𝐽 = −𝐽𝑇 signifies that 𝐽 is skew-symmetric. For a given matrix 𝑅, 𝑅 > 0 and 𝑅 ⩾ 0 represent that 𝑅 is positive
definite and positive semi-definite, respectively. ∇𝐻 (𝑥) = 𝜕𝐻 (𝑥)

𝜕𝑥 denotes the gradient of the differentiable
function 𝐻 (𝑥). Let 𝜆𝑖 𝑗 (𝐴𝑖) be the eigenvalues of the matrix 𝐴𝑖 ∈ R𝑛×𝑛, where 𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑛, and
𝑁 ∈ N. And 𝜆min(𝐴), 𝜆max(𝐴) represent the smallest and the largest of all the eigenvalues of the positive
definite matrix 𝐴, respectively.

2. PRELIMINARIES
This section gives the preliminaries needed necessarily for studying switched linear PCH systems withmultiple
equilibrium points in the next sections. Section 2.1 introduces the switched systems model considered in this
paper and some preparatory knowledge and notation. Section 2.2 introduces some relevant definitions and a
proposition that will be used in the sequel.

2.1. System description and preliminaries
Consider a switched linear Hamiltonian system with multiple equilibrium subsystems as follows.{

¤𝑥 =
[
𝐽𝜎(𝑡) − 𝑅𝜎(𝑡)

]
∇𝐻𝜎(𝑡) (𝑥),

𝑥 (𝑡0) = 𝑥0,
for all 𝑡 ⩾ 𝑡0, (1)

where 𝑥 = [𝑥1, 𝑥2]𝑇 ∈ D represents the state of the system, and D is the common domain of all the subsystems
of system (1). The map 𝜎(𝑡) : [𝑡0, +∞) → Λ := {1, 2} is a piecewise right continuous constant step function,
which is called to be a switching path or a switching rule. The value of the function 𝜎(t) = 𝑖, where 𝑖 = 1, 2,
means that the subsystem 𝑖 is activated at the time instant 𝑡. The matrices 𝐽𝑖 ∈ R2×2 and 𝑅𝑖 ∈ R2×2 are all
constant matrices. Moreover, 𝐽𝑇𝑖 = −𝐽𝑖 ≠ 0 and 𝑅𝑇

𝑖 = 𝑅𝑖 , 𝑖 = 1, 2. The notation ∇𝐻𝑖 (𝑥) = 𝜕𝐻𝑖 (𝑥)
𝜕𝑥 is the gradient

of the energy function 𝐻𝑖 (𝑥) of subsystem 𝑖. The function 𝐻𝑖 (𝑥), where 𝑖 = 1, 2, satisfies the following two:
(1) they are continuous and differentiable; (2) 𝐻𝑖 (𝑥) > 0 for any 𝑥 ∈ D − {𝑥𝑒1, 𝑥𝑒2}, in which 𝑥𝑒𝑖 satisfying
𝐻𝑖 (𝑥𝑒𝑖) = 0 is a unique equilibrium point of subsystem 𝑖. Moreover, the equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the
two subsystems are different. In fact, system (1) considered in this paper is a switched two-dimensional linear
system only consisting of two subsystems.

Remark 1 Note that due to the special dissipative Hamiltonian structures of subsystems of system (1), i.e., the
matrices 𝐽𝑇𝑖 = −𝐽𝑖 and 𝑅𝑇

𝑖 = 𝑅𝑖 ⩾ 0, if the matrix 𝐽𝑖 ≠ 0, then the directions of trajectories of subsystems of system
(1) are all revolved around the corresponding equilibrium points of subsystems anticlockwise or clockwise.

2.1.1. Switching line
To facilitate the subsequent analysis, the switching path 𝜎(𝑡) of system (1) can be expressed as 𝜎(𝑡) = 𝑖𝑚 ∈
{1, 2}, 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1), 𝑚 = 0,1 · · · , and then we express by 𝑥(𝑡) := 𝑥(𝑡; 𝑡0, 𝑥0, 𝜎) the trajectory of system (1)
under the switching path 𝜎(𝑡) starting from the initial state 𝑥(𝑡0) at the initial time 𝑡0. Express by {𝑥𝑚}+∞𝑚=0 the
switching state sequence and by {𝑡𝑚}+∞𝑚=0 the switching time sequence. Express by

{
𝐻𝑖𝑚 (𝑥𝑚)

}+∞
𝑚=0 the switching
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energy sequence and by {𝑖𝑚}+∞𝑚=0 the switching index sequence, where 𝑥𝑚 = 𝑥(𝑡𝑚), 𝑖𝑚 ≠ 𝑖𝑚+1, ∀𝑚 ∈ N. Express
by 𝑡𝑚𝑙 , ∀𝑙 ∈ N+, the switching time when the 𝑙-th subsystem is switched on.

Throughout this paper, the switching path 𝜎(𝑡) governed system (1) is assumed to satisfy the following four
cases:

A1. Switching phenomena of system (1) only appear on a straight line that passes through the two equilibrium
points of the first subsystem and the second subsystem of system (1). Such a straight line is called a switch-
ing line in this paper and is denoted by 𝑙1.

A2. Any one of all the subsystems cannot be excluded from those activated subsystems as time goes to infinity.

A3. The switching times of the switching path 𝜎(𝑡) is a finite number over any finite time intervals.

A4. The whole state trajectory 𝑥(𝑡) of system (1) is continuous at any switching time instants 𝑡𝑚 , where any
𝑚 ∈ N.

Remark 2 It should be pointed out from Remark 1 that the trajectories of every subsystem of system (1)must pass
through the switching line intercepting the equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the two different subsystems infinite
times as time goes to infinity. Therefore, switching only on such a switching line can ensure that the switching is
infinite as time goes to infinity.

Remark 3 The explanations and motivations of the above four assumptions are addressed as follows. As is well-
known, there aremany event-driven practical/physical dynamical systems that can bemodeled by switched systems
with special switching paths/strategies. Among these switching paths/ strategies caused by event-driven, there is a
kind of switching path–switching lines. This is the motivation for Assumption A1. Since we just consider the final
tendency of the trajectory of system (1) in this paper, it is not necessary to consider those subsystems that are not
activated anymore after a certain finite time. Therefore, all the subsystems of (1) must be often activated as time
goes to infinity, i.e., Assumption A2. The aim of Assumption A3 is to exclude the Zeno phenomena–the chatting,
i.e., infinite switching occurs in any finite time interval. Assumption A4 is used to avoid the jump phenomenon of
the state of system (1).

Moreover, we let 𝑥𝑒1 = [𝑥𝑒1
1 , 𝑥𝑒1

2 ]𝑇 and 𝑥𝑒2 = [𝑥𝑒2
1 , 𝑥𝑒2

2 ]𝑇 be the equilibrium points of the first subsystem and
the second subsystem, respectively. The state or trajectory of system (1) is denoted by 𝑥(𝑡) = [𝑥1, 𝑥2]𝑇 . The
initial state of the system (1) at the initial time 𝑡0 is denoted by 𝑥(𝑡0) = [𝑥0

1, 𝑥
0
2]

𝑇 . Then, for the two equilibrium
points 𝑥𝑒1 and 𝑥𝑒2 of the first and second subsystems, there exists a straight line passing through them. The
straight line is denoted by 𝑙1 in this paper. Without loss of generality, for the straight line 𝑙1, there are two
cases as follows.

(1) If the equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the two subsystems satisfying 𝑥𝑒2
1 > 𝑥𝑒1

1 , then the switching line 𝑙1
can be expressed as

𝑙1 : 𝑥2 =
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑥𝑒2
1 − 𝑥𝑒1

1
𝑥1 +

𝑥𝑒2
1 𝑥𝑒1

2 − 𝑥𝑒2
2 𝑥𝑒1

1

𝑥𝑒2
1 − 𝑥𝑒1

1
= 𝑘𝑥1 + 𝑏, (2)

where the two parameters of 𝑘 and 𝑏 are, respectively, as follows.

𝑘 =
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑥𝑒2
1 − 𝑥𝑒1

1
and 𝑏 =

𝑥𝑒2
1 𝑥𝑒1

2 − 𝑥𝑒2
2 𝑥𝑒1

1

𝑥𝑒2
1 − 𝑥𝑒1

1
. (3)
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(2) If the equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the two subsystems satisfying the following: 𝑥𝑒1
1 = 𝑥𝑒2

1 , i.e., the slope
of the line 𝑘 = ∞, then the switching line 𝑙1 can be expressed

𝑙1 : 𝑥1 = 𝑥𝑒1
1 = 𝑥𝑒2

1 . (4)

Remark 4 Since the switching line 𝑙1 in (2) passes through the equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the two different
subsystems and the two different points are both determined in advance, both the slope 𝑘 and the intercept 𝑏 in
(3) of the straight line 𝑙1 can be easily obtained via the general method of analytic geometry.

Based on the above, we know that the trajectory 𝑥(𝑡) of system (1) under the switching line 𝑙1 passes into
and out of the switching line 𝑙1 as time goes to infinity. This implies that all the switching state sequences
{𝑥𝑚}+∞𝑚=0 are situated in the switching line 𝑙1. Then, all the switching energy sequences

{
𝐻𝑖𝑚 (𝑥𝑚)

}+∞
𝑚=0 and the

switching time sequences {𝑡𝑚}+∞𝑚=0 corresponding to the switching state sequence {𝑥𝑚}+∞𝑚=0 are also related to
the switching line 𝑙1.

2.1.2. The Hamiltonian functions
In this paper, the Hamiltonian functions of the two subsystems of system (1) are assumed to be the following
quadratic forms:

𝐻𝑖 (𝑥) =
1
2
(𝑥 − 𝑥𝑒𝑖)𝑇𝑄𝑖 (𝑥 − 𝑥𝑒𝑖), 𝑖 = 1, 2, (5)

where 𝑄1 and 𝑄2 are two positive definite matrices.

Since the switching states 𝑥𝑚 for any 𝑚 ∈ N are all on the switching line 𝑙1, we know from (5) that all the
switching states satisfy the following formula:

𝐿𝑖 (𝑥1) = 𝑔𝑖 (𝑥1 − 𝑥𝑒𝑖1 )
2, 𝑖 = 1, 2, (6)

where 𝑄𝑖 and 𝑖 = 1, 2 are the same positive definite matrices in (5), and

𝑔𝑖 :=
1
2
[1 𝑘]𝑄𝑖

[
1
𝑘

]
> 0, 𝑖 = 1, 2, (7)

where 𝑘 is defined as in (3).

For the case that 𝑘 = ∞, one knows from the Hamiltonian functions expressed in (5) that all the switching
states 𝑥𝑚 for any 𝑚 ∈ N satisfy the following formula

𝑀𝑖 (𝑥2) = ð𝑖 (𝑥2 − 𝑥𝑒𝑖2 )
2, (8)

where 𝑄𝑖 and 𝑖 = 1, 2 are the same two positive definite matrices in (5), and

ð𝑖 :=
1
2
[0 1]𝑄𝑖

[
0
1

]
> 0. (9)

2.2. Some definitions and propositions
This subsection refers to some definitions and gives a proposition that is needed to analyze the region stability
of system (1) in the next section below.

Definition 1 (The maximum energy function) [15]. The following function 𝐻 (𝑥) is called the maximum energy
function of system (1)

𝐻 (𝑥) := max
{
𝐻1(𝑥), 𝐻2(𝑥)

}
, for all 𝑥 ∈ D (10)

http://dx.doi.org/10.20517/ces.2023.13
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Definition 2 (The maximum switching energy sequence) [15]. The following sequence is known as the maximum
switching energy sequence of the switching path 𝜎(𝑡){

𝐻 (𝑥𝑚)
}+∞
𝑚=0 :=

{
max

{
𝐻1(𝑥𝑚), 𝐻2(𝑥𝑚)

}}+∞
𝑚=0

. (11)

Proposition 1 Consider system (1). The Hamiltonian functions 𝐻1(𝑥) and 𝐻2(𝑥) of the subsystems satisfy the
following formula

1
2
𝜆min(𝑄𝑖)𝑑2(𝑥, 𝑥𝑒𝑖) ⩽ 𝐻𝑖 (𝑥) ⩽

1
2
𝜆max(𝑄𝑖)𝑑2(𝑥, 𝑥𝑒𝑖), ∀𝑥 ∈ D − {𝑥𝑒𝑖}, 𝑖 = 1, 2, (12)

where 𝜆min(𝑄𝑖) and 𝜆max(𝑄𝑖) are the minimum and maximum eigenvalues, respectively, of the matrix 𝑄𝑖 for
𝑖 = 1, 2 .

Proof: Letting
𝑥𝑖 := 𝑥 − 𝑥𝑒𝑖 , 𝑥 ∈ R2, 𝑖 = 1, 2, (13)

We obtain from the Hamiltonian function 𝐻𝑖 (𝑥) of the 𝑖-th subsystem expressed as in (5) that

𝐻𝑖 (𝑥) =
1
2
(𝑥𝑖)𝑇𝑄𝑖𝑥

𝑖 =: 𝐻𝑖 (𝑥𝑖), 𝑖 = 1, 2. (14)

Since every 𝑄𝑖 is a real symmetric positive definite matrix, there is an orthogonal matrix 𝑃𝑖 satisfying

𝑃𝑇
𝑖 𝑃𝑖 = 𝑃𝑖𝑃

𝑇
𝑖 = 𝐸𝑖 , 𝑖 = 1, 2, (15)

where 𝐸𝑖 is an identity matrix, and an orthogonal transformation

𝑥𝑖 = 𝑃𝑖𝑦
𝑖 , 𝑖 = 1, 2, (16)

such that the following two hold.

(A.) By means of the orthogonal matrix 𝑃𝑖 , the positive definite matrix 𝑄𝑖 can be diagonalized into a diagonal
matrix as follows.

𝑃𝑇
𝑖 𝑄𝑖𝑃𝑖 = Λ𝑖 :=

[
𝜆𝑖1 0
0 𝜆𝑖2

]
> 0, (17)

where 𝜆𝑖1 and 𝜆𝑖2 are the two real positive eigenvalues of the positive definite matrix 𝑄𝑖 , where 𝑖 = 1, 2.
(B.) The Hamiltonian function 𝐻𝑖 (𝑥𝑖) in (14) can be transformed by the orthogonal transformation (16) into

the following standard form:

𝐻𝑖 (𝑥𝑖) =
1
2
(𝑦𝑖)𝑇𝑃𝑖

𝑇𝑄𝑖𝑃𝑖𝑦
𝑖 =

1
2
(𝑦𝑖)𝑇Λ𝑖𝑦

𝑖 =: 𝐻𝑖 (𝑦𝑖), 𝑖 = 1, 2, (18)

where 𝑦𝑖 is as follows.

𝑦𝑖 =

[
𝑦1
𝑖

𝑦2
𝑖

]
= 𝑃𝑇

𝑖 𝑥
𝑖 = 𝑃𝑇

𝑖 (𝑥 − 𝑥𝑒𝑖), 𝑖 = 1, 2. (19)

It can be obtained from (13), (19), (16), and (15) that the square norm of the vector 𝑥𝑖 is as follow.

𝑑2(𝑥, 𝑥𝑒𝑖) = ‖𝑥 − 𝑥𝑒𝑖 ‖2 = ‖𝑥𝑖 ‖2 = (𝑥𝑖)𝑇𝑥𝑖 = (𝑃𝑖𝑦
𝑖)𝑇 (𝑃𝑖𝑦

𝑖) = (𝑦𝑖)𝑇 𝑦𝑖 = ‖𝑦𝑖 ‖2, 𝑖 = 1, 2. (20)

We know from (17)-(20) that the following two hold.

𝐻𝑖 (𝑦𝑖) =
1
2
(𝑦𝑖)𝑇Λ𝑖𝑦

𝑖 =
1
2
[
𝜆𝑖1(𝑦1

𝑖 )2 + 𝜆𝑖2(𝑦2
𝑖 )2] ⩾ 1

2
𝜆min(Λ𝑖)‖𝑦𝑖 ‖2 (21)
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and
𝐻𝑖 (𝑦𝑖) =

1
2
(𝑦𝑖)𝑇Λ𝑖𝑦

𝑖 =
1
2
[
𝜆𝑖1(𝑦1

𝑖 )2 + 𝜆𝑖2(𝑦2
𝑖 )2] ⩽ 1

2
𝜆max(Λ𝑖)‖𝑦𝑖 ‖2, (22)

where 𝑖 = 1, 2.

It follows from (14), (18), (21), and (22) that

1
2
𝜆min(Λ𝑖)‖𝑦𝑖 ‖2 ⩽ 𝐻𝑖 (𝑥) ⩽

1
2
𝜆max(Λ𝑖)‖𝑦𝑖 ‖2. (23)

Therefore, we know from (17), (20), and (23) that for any 𝑥 ∈ D − {𝑥𝑒𝑖}, the following holds.

1
2
𝜆min(𝑄𝑖)𝑑2(𝑥, 𝑥𝑒𝑖) ⩽ 𝐻𝑖 (𝑥) ⩽

1
2
𝜆max(𝑄𝑖)𝑑2(𝑥, 𝑥𝑒𝑖), 𝑖 = 1, 2,

which is exact (12). The proof of Proposition 1 is thus completed.

Since every subsystem of system (1) has a unique equilibrium point 𝑥𝑒𝑖 , 𝑖 = 1, 2, and the maximum energy
functions in Definition 1 are continuous everywhere inD; there exists a unique compact region that is defined
as

Ω :=
{
𝑧 ∈ D

��� 𝐻1(𝑧) ⩽ 𝑔1(𝑥𝑒2
1 − 𝑥𝑒1

1 )2
} ⋃ {

𝑧 ∈ D
��� 𝐻2(𝑧) ⩽ 𝑔2(𝑥𝑒1

1 − 𝑥𝑒2
1 )2

}
⊆ D, as 𝑥𝑒1

1 ≠ 𝑥𝑒2
1 . (24)

or

Ψ :=
{
𝑧 ∈ D

���𝐻1(𝑧) ⩽ ð1(𝑥𝑒2
2 − 𝑥𝑒1

2 )2
} ⋃ {

𝑧 ∈ D
���𝐻2(𝑧) ⩽ ð2(𝑥𝑒1

2 − 𝑥𝑒2
2 )2

}
⊆ D, as 𝑥𝑒1

2 ≠ 𝑥𝑒2
2 . (25)

Similar to that of region stability defined in the reference [17], based on the region Ω in (24) or the region Ψ in
(25), we introduce the concept of region stability for system (1) as follows.

Definition 3 [17] Consider system (1) with the regionΩ defined in (24) or Ψ defined in (25) under a special kind
of switching path 𝜎(𝑡), i.e., the switching line 𝑙1 in (2). System (1) under the switching line 𝑙1 in (2) is said to be

• Region stable with respect to the region Ω in (24) or the region Ψ in (25), if for ∀𝜀 > 0, ∃𝛿 := 𝛿(𝜀) > 0 such
that the following formula holds for any 𝑥0,

𝑑 (𝑥0,Ω) < 𝛿 =⇒ 𝑑 (𝑥(𝑡),Ω) < 𝜀, 𝑡 ∈ [𝑡0, +∞) (26)

or
𝑑 (𝑥0,Ψ) < 𝛿 =⇒ 𝑑 (𝑥(𝑡),Ψ) < 𝜀, 𝑡 ∈ [𝑡0, +∞). (27)

• Asymptotically region stable with respect to the region Ω in (24) or the region Ψ in (25), if both (26) or (27)
and the following limit hold

lim
𝑡→+∞

𝑑 (𝑥(𝑡),Ω) = 0 or lim
𝑡→+∞

𝑑 (𝑥(𝑡),Ψ) = 0. (28)

3. REGION STABILITY ANALYSIS
This section will study the stability issue of switched two-dimensional linear Hamiltonian systems with ME.
Based on the concept of region stability defined in Section 2, we propose several sufficient conditions of region
stability and asymptotic region stability for system (1), respectively.
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3.1. Some lemmas
This subsection introduces some lemmas that will be used in the next subsection. Firstly, it can be obtained
from Proposition 1 that the following result holds.

Lemma 1 Consider system (1) under the switching line (2). The Hamiltonian functions 𝐻1(𝑥) and 𝐻2(𝑥) and
the maximum energy function 𝐻 (𝑥) satisfy the following inequation.

1
2
𝛼𝑑2(𝑥,Ω) ⩽ 𝐻𝑖 (𝑥) ⩽ 𝐻 (𝑥) ⩽ 1

2
𝛽𝑑2(𝑥,Ω), ∀𝑥 ∈ D −Ω, 𝑖 = 1, 2, (29)

where 𝛼 = min
{
𝜆min(𝑄1), 𝜆min(𝑄2)

}
, 𝛽 = max

{
𝜆max(𝑄1), 𝜆max(𝑄2)

}
, and the region Ω and the maximum

energy function 𝐻 (𝑥) are defined in (24) and (10), respectively.

Proof: It is easy to see from the maximum energy function defined in (10) of Definition 1 and the equation
(12) in Proposition 1 and Condition (24) that Lemma 1 holds true.

Lemma 2 Consider system (1) under the switching line (2). If 𝑅𝑖 ⩾ 0, then for the trajectory 𝑥(𝑡) ∈ D − Ω,
∀𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1), the two Hamiltonian functions 𝐻1 (𝑥) and 𝐻2 (𝑥) have the same variant trend of the properties
of either monotonous increase or monotonous decrease at all the switching states 𝑥𝑚 , where any 𝑚 ∈ N. That is,
for all the switching states 𝑥𝑚 , 𝑥𝑚+1 ∈ D−Ω, 4𝐻1 := 𝐻1(𝑥𝑚) −𝐻1(𝑥𝑚+1) and 4𝐻2 := 𝐻2(𝑥𝑚) −𝐻2(𝑥𝑚+1) satisfy

sign(4𝐻1) = sign(4𝐻2), (30)

where sign(·) denotes the sign function.

Proof: Since for 𝑥(𝑡) ∈ D−Ω, ∀𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1), all the switching states 𝑥𝑚 are situated in the switching line 𝑙1 in
(2), the following formula holds

𝐻𝑖𝑚 (𝑥𝑚) = 𝐿𝑖𝑚 (𝑥1,𝑚) = 𝑔𝑖𝑚 (𝑥1,𝑚 − 𝑥𝑒𝑖𝑚1 )2, (31)

where 𝑥1,𝑚 and 𝑥𝑒𝑖𝑚1 denote the first elements of the switching state 𝑥𝑚 and the equilibrium point 𝑥𝑒𝑖𝑚 , respec-
tively; And the parameters 𝑔𝑖𝑚 are defined as follows.

𝑔𝑖𝑚 :=
1
2

[
1
𝑘

]𝑇
𝑄𝑖𝑚

[
1
𝑘

]
> 0, 𝑖𝑚 ∈ {1, 2}, 𝑚 ∈ N.

It follows from the fact that the trajectory 𝑥(𝑡) ∈ D−Ω and 𝑅𝑖𝑚 (𝑥) ⩾ 0 that for 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1), 𝑖𝑚 = 1, 2, 𝑚 ∈ N,
the Hamiltonian function 𝐻𝑖𝑚 (𝑥) satisfies

¤𝐻𝑖𝑚 (𝑥) = −(𝑥 − 𝑥𝑒𝑖𝑚)𝑇𝑄𝑖𝑚𝑅𝑖𝑚𝑄𝑖𝑚 (𝑥 − 𝑥𝑒𝑖𝑚) ⩽ 0. (32)

One obtains from (32) that

𝐻𝑖𝑚 (𝑥𝑚+1) ⩽ 𝐻𝑖𝑚 (𝑥𝑚), 𝑖𝑚 = 1, 2, for any 𝑚 ∈ N. (33)

Since the first element 𝑥𝑒𝑖𝑚1 of the equilibrium point 𝑥𝑒𝑖𝑚 is contained in the regionΩ, we know from (24), (29),
(31), and (33) that for any 𝑚 ∈ N, 𝑖𝑚 = 1, 2,

𝐿𝑖𝑚 (𝑥1,𝑚+1) ⩽ 𝐿𝑖𝑚 (𝑥1,𝑚) ⇔ 𝑑 (𝑥1,𝑚 , 𝑥
𝑒𝑖𝑚
1 ) > 𝑑 (𝑥1,𝑚+1, 𝑥

𝑒𝑖𝑚
1 ) ⇔ 𝑑 (𝑥𝑚 ,Ω) > 𝑑 (𝑥𝑚+1,Ω). (34)

It is then obtained from (31) and (34) that for any 𝑖𝑚 ∈ {1, 2},

𝐻𝑖𝑚 (𝑥𝑚+1) ⩽ 𝐻𝑖𝑚 (𝑥𝑚) ⇔ 𝑑 (𝑥𝑚 ,Ω) > 𝑑 (𝑥𝑚+1,Ω). (35)
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One obtains from (31) and (35) that for all 𝑖𝑚 , 𝑖𝑠 ∈ Λ and 𝑖𝑚 ≠ 𝑖𝑠, the following holds.

𝑑 (𝑥𝑚 ,Ω) > 𝑑 (𝑥𝑚+1,Ω) =⇒ 𝐿𝑖𝑠 (𝑥1,𝑚+1) ⩽ 𝐿𝑖𝑠 (𝑥1,𝑚) =⇒ 𝐻𝑖𝑠 (𝑥𝑚+1) ⩽ 𝐻𝑖𝑠 (𝑥𝑚). (36)

From (35) and (36), it follows that
sign(4𝐻1) = sign(4𝐻2), (37)

which is (30). Thus, Lemma 2 holds true.

Lemma 3 [27] Let
𝑎min
𝑛 := min

𝑖∈Λ
(𝑎𝑖𝑛), 𝑛 = 1, 2, . . . . (38)

and
𝑎max
𝑛 := max

𝑖∈Λ
(𝑎𝑖𝑛), 𝑛 = 1, 2, . . . . (39)

If the two infinite sequences
{
𝑎𝑖𝑛

}+∞
𝑛=1 and 𝑖 = 1, 2 are both monotonically decreasing/increasing, then

{
𝑎min
𝑛

}+∞
𝑛=1

and {𝑎max
𝑛 }+∞𝑛=1 are also monotonically decreasing/increasing sequences.

Lemma 4 [26] System (1) under the switching line 𝑙1 in (2) is region stable with respect to the region Ω in (24) if
and only if for any 𝑥0 ∈ D, the following holds:

𝐻𝑖𝑚 (𝑥𝑚) ⩽ 𝐶𝐻 (𝑥0), 𝑖𝑚 ∈ Λ, 𝑚 ∈ N (40)

where the 𝑖𝑚 = 𝜎(𝑡𝑚) ∈ {1, 2}; The parameter 𝐶 is a constant; And 𝐻 (𝑥) is defined as in Definition 1.

Remark 5 Note that the proofs of Lemmas 1-4 are just related to the compact property of the regions of Ω in (24)
and Ψ in (25) containing all the equilibrium points of the subsystems. Therefore, if the regionΩ in (24) is replaced
by the region Ψ in (25), then all Lemmas 1-4 hold too.

3.2. Regional stability results
Based on Definition 3, we obtain from Proposition 1, Lemmas 1-4 that the two main results of this paper are
proposed in series as follows.

For the horizontal and vertical ordinates of the equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the two subsystems, there are
the following two cases: (1) 𝑥𝑒1

1 ≠ 𝑥𝑒2
1 ; (2) 𝑥𝑒1

1 = 𝑥𝑒2
1 and 𝑥𝑒1

2 ≠ 𝑥𝑒2
2 . For the former, we propose the following

region stability result of system (1) under the switching line 𝑙1 in (2) as follows.

Theorem 1 Consider system (1) with the compact region Ω in (24) and the switching line 𝑙1 in (2). For the case
that 𝑥𝑒1

1 ≠ 𝑥𝑒2
1 , system (1) under the switching line 𝑙1 in (2) is

(i) region stable with respect to the region Ω in (24), if 𝐽1 ≠ 0, 𝐽2 ≠ 0, 𝑅1 ⩾ 0, 𝑅2 ⩾ 0, and

𝛽

𝛼
⩾ max

{
1, 4

(
𝑥𝑒2

1 − 𝑥𝑒1
1

𝑣1 − 𝑥𝑒1
1

)2

, 4

(
𝑥𝑒2

1 − 𝑥𝑒1
1

𝑣1 − 𝑥𝑒2
1

)2 }
, (41)

where 𝛼 = min
{
𝜆min(𝑄1), 𝜆min(𝑄2)

}
, 𝛽 = max

{
𝜆max(𝑄1), 𝜆max(𝑄2)

}
, and 𝑣1 is the intersection point of the

two parabolic curves 𝐿1(𝑥1) and 𝐿2(𝑥1) in (6) over the interval (𝑥𝑒1
1 , 𝑥𝑒2

1 ) in the horizontal axis, i.e.,

𝑣1 =


(𝑔1𝑥

𝑒1
1 −𝑔2𝑥

𝑒2
1 )+

√
𝑔1𝑔2(𝑥𝑒1

1 −𝑥𝑒2
1 )2

𝑔1−𝑔2
, as 𝑔1 ≠ 𝑔2.

𝑥𝑒1
1 +𝑥𝑒2

1
2 , as 𝑔1 = 𝑔2,

(42)

where 𝑔1 and 𝑔2 are defined in (7).
(ii) asymptotic region stable with respect to the region Ω, if 𝐽1 ≠ 0, 𝐽2 ≠ 0, 𝑅1 > 0, 𝑅2 > 0, and the condition (41)

are all satisfied.

http://dx.doi.org/10.20517/ces.2023.13


Liu et al. Complex Eng Syst 2023;3:11 I http://dx.doi.org/10.20517/ces.2023.13 Page 11 of 28

Proof: Without loss of generality, we just show that the two Statements (𝑖) and (𝑖𝑖) hold for the case that
𝑥𝑒1

1 < 𝑥𝑒2
1 . As for the case that 𝑥𝑒1

1 > 𝑥𝑒2
1 , it is similar to show that the two Statements also hold true.

For any trajectory 𝑥(𝑡) of system (1) under the switching line 𝑙1 in (2) starting from any initial state 𝑥0 at the
initial time 𝑡0, there are the following three cases that should be considered: (a) The trajectory of the system
𝑥(𝑡) ∈ D−Ω, ∀𝑡 > 𝑡0; (b)The trajectory of the system 𝑥(𝑡), ∀𝑡 > 𝑡0, is always contained inΩ; (c)The trajectory
of the system 𝑥(𝑡), ∀𝑡 > 𝑡0, is neither always contained in D −Ω nor always contained in Ω.

(1) We show the conclusion of Theorem 1 holds for the case that 𝑔1 ≠ 𝑔2.

Firstly, wewill show that the Statement (𝑖) holds for Case (a). Since theHamiltonian functions𝐻1(𝑥) and𝐻2(𝑥)
of the two subsystems are both continuous everywhere in D, the maximum energy function 𝐻 (𝑥) defined in
Definition 1 is also continuous everywhere in D. We obtain from the conditions of 𝑄𝑖 > 0, 𝑅𝑖 ⩾ 0, where
𝑖 = 1, 2, and the ordinary differential equations (ODEs) (1) that for any 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1) and𝑚 ∈ N, the following
holds.

¤𝐻𝑖𝑚 (𝑥) = −(𝑥 − 𝑥𝑒𝑖𝑚)𝑇𝑄𝑖𝑚𝑅𝑖𝑚𝑄𝑖𝑚 (𝑥 − 𝑥𝑒𝑖𝑚) ⩽ 0. (43)

It follows from (43) that

𝐻𝑖𝑚 (𝑥(𝑡𝑚+1)) ⩽ 𝐻𝑖𝑚 (𝑥(𝑡𝑚)), 𝑖𝑚 = 1, 2, for any 𝑚 ∈ N, (44)

which can also be expressed as

𝐻𝑖𝑚 (𝑥𝑚+1) ⩽ 𝐻𝑖𝑚 (𝑥𝑚), 𝑖𝑚 = 1, 2, for any 𝑚 ∈ N. (45)

Since 𝑅𝑖 ⩾ 0 holds for 𝑖 = 1, 2, Lemma 2 holds for system (1). Then one knows from (30) in Lemma 2 and
(45) that for 𝑖𝑠 ≠ 𝑖𝑚 ∈ {1, 2},

𝐻𝑖𝑠 (𝑥𝑚+1) ⩽ 𝐻𝑖𝑠 (𝑥𝑚), for any 𝑚 ∈ N. (46)

It can be obtained from (30) in Lemma 2, (45), and (46) that the two sequences
{
𝐻1(𝑥𝑚)

}+∞
𝑚=0 and

{
𝐻2(𝑥𝑚)

}+∞
𝑚=0

are bothmonotonically decreasing. It then can be obtained fromLemma 3 that the switchingmaximum energy
sequence

{
𝐻 (𝑥𝑚)

}+∞
𝑚=0 is also monotonically decreasing.

Based on the above analysis, one obtains from (10) in Definition 1 and the fact that the trajectory 𝑥(𝑡) ∈ D−Ω,
for all 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1), 𝑖𝑚 = 1, 2, and any 𝑚 ∈ N that

𝐻𝑖𝑚 (𝑥(𝑡𝑚)) ⩽ 𝐻 (𝑥(𝑡𝑚)) ⩽ 𝐻 (𝑥(𝑡0)). (47)

It is easy to see from (47) that
𝐻𝑖𝑚 (𝑥(𝑡𝑚)) ⩽ 𝐻 (𝑥(𝑡0)). (48)

From which and (41), we know that

𝐻𝑖𝑚 (𝑥𝑚) ⩽
𝛽

𝛼
𝐻 (𝑥0), 𝑖𝑚 = 1, 2, for any 𝑚 ∈ N. (49)

It follows from (49) that (40) in Lemma 4 is satisfied for system (1). Then, by Lemma 4, we know that system
(1) under the switching line 𝑙1 in (2) is region stable with respect to the region Ω for Case (a).
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Secondly, wewill show that Statement (𝑖) also holds for case (b). For 𝑔1 and 𝑔2 in (2), there are the following two
relationships: 𝑔1 = 𝑔2 and 𝑔1 ≠ 𝑔2. We first consider the case that 𝑔1 ≠ 𝑔2. In this case, letting 𝐿1(𝑥1) = 𝐿2(𝑥1)
one obtains from (6) that

(𝑔1 − 𝑔2) (𝑥1)2 + (2𝑔2𝑥
𝑒2
1 − 2𝑔1𝑥

𝑒1
1 )𝑥1 + 𝑔1(𝑥𝑒1

1 )2 − 𝑔2(𝑥𝑒2
1 )2 = 0. (50)

From which, it can be known that the discriminant of the roots of the equation (50) is as follows.

4 = 4𝑔1𝑔2(𝑥𝑒1
1 − 𝑥𝑒2

1 )2 > 0, (51)

which means that two curves 𝐿1(𝑥1) and 𝐿2(𝑥1) have two intersection points.

It follows from (51) that the equation (50) has the following two solutions:

𝑣1 =

(
𝑔1𝑥

𝑒1
1 − 𝑔2𝑥

𝑒2
1

)
+

√
𝑔1𝑔2

(
𝑥𝑒1

1 − 𝑥𝑒2
1

)2

𝑔1 − 𝑔2
(52)

and

𝑣2 =

(
𝑔1𝑥

𝑒1
1 − 𝑔2𝑥

𝑒2
1

)
−

√
𝑔1𝑔2

(
𝑥𝑒1

1 − 𝑥𝑒2
1

)2

𝑔1 − 𝑔2
, (53)

where 𝑣1 and 𝑣2 denote the two intersection points of the two curves 𝐿1(𝑥1) and 𝐿2(𝑥1) satisfying 𝑣1 ∈
(𝑥𝑒1

1 , 𝑥𝑒2
1 ) and 𝑣2 ∈ (−∞, 𝑥𝑒1

1 ) ∪ (𝑥𝑒2
1 , +∞), respectively.

Next, we will find the intersection points of the switching line 𝑙1 passing through the boundary of the region
Ω. To do that, we obtain from 𝐿1(𝑥1) = 𝐿1(𝑥𝑒2

1 ) that

(𝑥1)2 − 2𝑥𝑒1
1 𝑥1 − (𝑥𝑒2

1 )2 + 2𝑥𝑒1
1 𝑥𝑒2

1 = 0. (54)

It can be obtained from (54) that the discriminant of the roots of the equation (54) is as follows.

4 = 4(𝑥𝑒1
1 − 𝑥𝑒2

1 )2 > 0. (55)

It then follows from (55) that the solutions of the equation (54) are as follows.

𝑥1 = 𝑥𝑒1
1 ± (𝑥𝑒2

1 − 𝑥𝑒1
1 ). (56)

The two intersection points can be denoted by 𝑝1 = 𝑥𝑒2
1 and 𝑝2 = 2𝑥𝑒1

1 − 𝑥𝑒2
1 .

Similarly, solving 𝐿2(𝑦1) = 𝐿2(𝑥𝑒1
1 ) yields that

𝑦1 = 𝑥𝑒2
1 ± (𝑥𝑒2

1 − 𝑥𝑒1
1 ) (57)

The two intersections are then denoted by 𝑝3 = 𝑥𝑒1
1 and 𝑝4 = 2𝑥𝑒2

1 − 𝑥𝑒1
1 , respectively.

One obtains from (56) and (57) that the switching line 𝑙1 in (2) passes through the largest point and the smallest
point of the boundary of the region Ω. The two maximum and minimum points are, respectively, denoted by

𝑝max = max
𝑖∈[4]

{𝑝𝑖} = 2𝑥𝑒2
1 − 𝑥𝑒1

1 and 𝑝min = min
𝑖∈[4]

{𝑝𝑖} = 2𝑥𝑒1
1 − 𝑥𝑒2

1 . (58)

In the following, we consider the minimum value of the maximum energy function 𝐻 (𝑥) over the region Ω.
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(C1) As 𝑣2 ∈ (−∞, 𝑥𝑒1
1 ), the maximum energy function 𝐻 (𝑥) is as follows.

𝐻 (𝑥) =
{
𝐿2(𝑥1) = 𝑔2(𝑥1 − 𝑥𝑒2

1 )2, as 𝑥1 ∈ (𝑣2, 𝑣1]
𝐿1(𝑥1) = 𝑔1(𝑥1 − 𝑥𝑒1

1 )2, as 𝑥1 ∈ [𝑣1, +∞).
(59)

From (59), one obtains that the 𝐿2(𝑥) is continuous over the interval (𝑣2, 𝑣1] and 𝑑𝐿2 (𝑥1)
𝑑𝑥1

< 0, so the minimum
value of 𝐿2(𝑥1) over the interval (𝑣2, 𝑣1] is 𝐿2(𝑣1).

Similarly, we know from (59) that the 𝐿1(𝑥1) is continuous over the interval (𝑣1, +∞) and 𝑑𝐿1 (𝑥1)
𝑑𝑥1

> 0, so the
minimum value of 𝐿1(𝑥1) over the interval (𝑣1, +∞) is 𝐿1(𝑣1).

It is obvious from (50) and (52) that
𝐿1(𝑣1) = 𝐿2(𝑣1) (60)

From (59) and (60), it shows that the minimum value of 𝐻 (𝑥) under the case (C1) is as follows.

inf
{
𝐻 (𝑥) : 𝑥 = [𝑥1 𝑥2]𝑇 ∈ R2 and 𝑥1 ⩾ 𝑣2

}
= min

{
𝐿1(𝑣1), 𝐿2(𝑣1)

}
= 𝐿1(𝑣1) = 𝐿2(𝑣1), (61)

where 𝑣1 is expressed in (52).

(C2) As 𝑣2 ∈
(
𝑥𝑒2

1 , +∞
)
, the maximum energy function 𝐻 (𝑥) is as follows.

𝐻 (𝑥) =
{
𝐿1(𝑥1) = 𝑔1(𝑥1 − 𝑥𝑒1

1 )2, as 𝑥1 ∈ [𝑣1, 𝑣2]
𝐿2(𝑥1) = 𝑔2(𝑥1 − 𝑥𝑒2

1 )2, as 𝑥1 ∈ (−∞, 𝑣1] .
(62)

It can be obtained from (62) that the 𝐿2(𝑥1) is continuous over the interval (−∞, 𝑣1) and 𝑑𝐿2 (𝑥1)
𝑑𝑥1

< 0. Then,
the minimum value of the maximum energy function 𝐻 (𝑥) = 𝐿2(𝑥1) on the interval (−∞, 𝑣1] is 𝐿2(𝑣1).

Similarly, we know that the 𝐿1(𝑥1) is continuous over the interval [𝑣1, 𝑣2] and 𝑑𝐿1 (𝑥1)
𝑑𝑥1

> 0. Then, theminimum
value of the maximum energy function 𝐻 (𝑥) = 𝐿1(𝑥1) over the interval [𝑣1, 𝑣2] is 𝐿1(𝑣1).

Therefore, it can be obtained from (59) and (60) that the minimum value of the maximum energy function
𝐻 (𝑥) under the case (C2) is as follows.

inf
{
𝐻 (𝑥) : 𝑥 = [𝑥1 𝑥2]𝑇 ∈ R2 and 𝑥1 ⩽ 𝑣2

}
= min

{
𝐿1(𝑣1), 𝐿2(𝑣1)

}
= 𝐿1(𝑣1) = 𝐿2(𝑣1). (63)

Then, one obtains from (61) and (63) that the minimum value of the maximum energy function 𝐻 (𝑥) over the
region Ω is as follows.

min
{
𝐻 (𝑥) : 𝑥 ∈ Ω

}
= 𝐿1(𝑣1) = 𝐿2(𝑣1). (64)

It follows from (41) and the condition that 𝑅1 > 0 and 𝑅2 > 0 that

𝛽

𝛼
𝑔1(𝑣1 − 𝑥𝑒1

1 )2 ⩾ 𝑔1(𝑝max − 𝑥𝑒1
1 )2 (65)

and
𝛽

𝛼
𝑔2(𝑣1 − 𝑥𝑒2

1 )2 ⩾ 𝑔2(𝑝min − 𝑥𝑒2
1 )2, (66)

where 𝑝max and 𝑝min are the same as in (58).

http://dx.doi.org/10.20517/ces.2023.13


Page 14 of 28 Liu et al. Complex Eng Syst 2023;3:11 I http://dx.doi.org/10.20517/ces.2023.13

From (59), (60), (62), (65), and (66), one obtains that

𝛽

𝛼
min

{
𝐻 (𝑥) : 𝑥 ∈ Ω

}
⩾ max

{
𝐿1(𝑝max), 𝐿2(𝑝min)

}
, (67)

where max
{
𝐿1(𝑝max), 𝐿2(𝑝min)

}
denotes the maximum value of 𝐻 (𝑥) over the region Ω.

It is obvious from (64) and (67) that for any switching states 𝑥𝑚 , the following holds.

𝛽

𝛼
𝐻 (𝑥0) ⩾ 𝐻𝑖𝑚 (𝑥𝑚), 𝑖𝑚 = 1, 2, for any 𝑚 ∈ N, (68)

which implies that (40) in Lemma 4 is satisfied. By Lemma 4, we know that for Case (b), system (1) under the
switching line 𝑙1 in (2) is region stable with respect to the region Ω.

Thirdly, we show that Statement (𝑖) also holds for Case (c) as follows. In such case, the trajectory 𝑥(𝑡) of
system (1) is not always in the region D − Ω. For any small enough 𝜀 > 0, there is a time interval sequence{[
𝑡𝑚𝜏 , 𝑡𝑚𝜏+1

]}+∞
𝜏=1, such that the states 𝑥𝑚𝜏 = 𝑥(𝑡𝑚𝜏 ; 𝑡0, 𝑥0, 𝑖𝑚𝜏 ) and 𝑥𝑚𝜏+1 = 𝑥(𝑡𝑚𝜏+1; 𝑡0, 𝑥0, 𝑖𝑚𝜏+1) are all on the

boundary of the set Ω𝜀 :=
{
𝑧 ∈ D : d(𝑧,Ω) ≤ 𝜀

}
. We insert 𝑥𝑚𝜏 and 𝑥𝑚𝜏+1 into the switching state sequence{

𝑥𝑚
}+∞
𝑚=0. Correspondingly, the times 𝑡𝑚𝜏 and 𝑡𝑚𝜏+1 are inserted into the switching time sequence

{
𝑡𝑚

}+∞
m=0, and

the indexes 𝑖𝑚𝜏 and 𝑖𝑚𝜏+1 are all inserted into the switching index sequence
{
𝑖𝑚

}+∞
m=0.

Based on the above statements, we know that there is a time interval
[
𝑡𝑚𝜏 , 𝑡𝑚𝜏+1

]
for 𝑚𝜏 ∈ N, such that for

𝜏 ∈ N, 𝑖𝑚𝜏 , 𝑖𝑚𝜏+1 = 1, 2,
𝑥(𝑡 : 𝑡𝑚𝜏 , 𝑥𝑚𝜏 , 𝑖𝑚𝜏 ) ∈ D − 𝑖𝑛𝑡 (Ω𝜀) ⊂ D −Ω (69)

It is known from (69) that Statement (𝑖) is true for the trajectory of 𝑥(𝑡 : 𝑡𝑚𝜏 , 𝑥𝑚𝜏 , 𝑖𝑚𝜏 ) of system (1) contained
in D − int(Ω𝜀). Thus the proof is similar to that proof of Case (a). On the other hand, it is obvious that as
𝜀 → 0, The state trajectory 𝑥(𝑡) contained in the region Ω𝜀 − Ω will gradually go into the region Ω. Based on
the above, we know that Statement (𝑖) holds too.

Finally, Statement (𝑖𝑖) will be shown under the following two Situations.

(S1) As 𝑣2 ∈ (−∞, 𝑥𝑒1
1 ) and 𝑥(𝑡) ∈ D − Ω, for all 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1) and any 𝑚 ∈ N, the values of the maximum

energy function 𝐻 (𝑥) at the switching states 𝑥𝑚 = [𝑥1, 𝑚 𝑥2, 𝑚]𝑇 ∈ R2 and 𝑚 ∈ N are as follows.

𝐻 (𝑥𝑚) =
{
𝐿2(𝑥1,𝑚) = 𝑔2(𝑥1,𝑚 − 𝑥𝑒2

1 )2, 𝑥1,𝑚 ∈ (𝑣2, 𝑣1]
𝐿1(𝑥1,𝑚) = 𝑔1(𝑥1,𝑚 − 𝑥𝑒1

1 )2, 𝑥1,𝑚 ∈ (−∞, 𝑣2) ∪ (𝑣1, +∞)
(70)

The subsystem 𝑖𝑚 is activating when any 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1) and 𝑥(𝑡) ∈ D − Ω. And it is obvious from Condition
𝑅1 > 0 and 𝑅2 > 0 of Statement (𝑖𝑖) that for any 𝑖𝑚 = 1, 2,

¤𝐻𝑖𝑚 = −(𝑥𝑚 − 𝑥𝑒𝑖𝑚)𝑇𝑄𝑖𝑚𝑅𝑖𝑚𝑄𝑖𝑚 (𝑥𝑚 − 𝑥𝑒𝑖𝑚) < 0, 𝑖𝑚 = 1, 2, 𝑚 ∈ N. (71)

We know from (71) that

𝐻𝑖𝑚 (𝑥(𝑡𝑚+1)) < 𝐻𝑖𝑚 (𝑥(𝑡)) < 𝐻𝑖𝑚 (𝑥(𝑡𝑚)), 𝑖𝑚 = 1, 2, 𝑚 ∈ N. (72)

From Lemma 2, the condition of 𝑅1 > 0 and 𝑅2 > 0, (38), (39), (41), and (43), one can show that the
two sequences of

{
𝐿1(𝑥1,𝑚)

}+∞
𝑚

and
{
𝐿2(𝑥1,𝑚)

}+∞
𝑚

both monotonically decrease over the interval
(
−∞, 𝑥𝑒1

1
)
∪

(𝑥𝑒2
1 , +∞). Then, the switching maximum energy sequence of {𝐻 (𝑥𝑚)}+∞𝑚 also decreases monotonically over

the following time interval:
(
−∞, 𝑥𝑒1

1
)
.
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On the other hand, one obtains from Lemma 2 and (72) that

𝐻 (𝑥(𝑡𝑚+1)) < 𝐻 (𝑥(𝑡)) < 𝐻 (𝑥(𝑡𝑚)), 𝑖𝑚 = 1, 2, 𝑚 ∈ N. (73)

Then, as 𝑚 → ∞ and all the horizontal ordinates 𝑥1,𝑚 of switching states 𝑥𝑚 are contained in the interval
(−∞, 𝑝min) ⊂ (−∞, 𝑥𝑒1

1 ), where 𝑝min and 𝑥𝑒1
1 satisfy 𝑝min ⩽ 𝑥𝑒1

1 ⩽ 𝑣1 ⩽ 𝑥𝑒2
1 . And it follows from (73) that the

following holds true.

lim
𝑚→∞

𝐻 (𝑥(𝑡𝑚)) = lim
𝑚→∞

𝐻 (𝑥(𝑡𝑚+1)) = 𝐿2(𝑝min) = 𝑔2(𝑝min − 𝑥𝑒2
1 )2, (74)

where 𝑝min and 𝑔2 are the same as in (58) and (7), respectively.

By the squeeze theorem, one obtains from (73) and (74) that

lim
𝑡→∞

𝐻 (𝑥(𝑡)) = 𝐿2(𝑝min) = 𝑔2(𝑝min − 𝑥𝑒2
1 )2, (75)

where 𝑝min and 𝑔2 are the same as in (58) and (7), respectively.

As 𝑚 → ∞ and all the horizontal ordinates 𝑥1,𝑚 of switching states 𝑥𝑚 are contained in the interval as follows.
(𝑝max, +∞) ⊂ (𝑥𝑒2

1 , +∞), where 𝑝min ⩽ 𝑥𝑒1
1 ⩽ 𝑣1 ⩽ 𝑥𝑒2

1 ≤ 𝑝max. One knows that

lim
𝑚→∞

𝐻 (𝑥(𝑡𝑚)) = lim
𝑚→∞

𝐻 (𝑥(𝑡𝑚+1) = 𝐿1(𝑝max) = 𝑔1(𝑝max − 𝑥𝑒1
1 )2. (76)

It is obvious from (72) and (76) and the squeeze theorem that

lim
𝑚→∞

𝐻 (𝑥(𝑡)) = 𝐿1(𝑝max) = 𝑔1(𝑝max − 𝑥𝑒1
1 )2, (77)

where 𝑝max and 𝑔1 are the same as in (58) and (7), respectively.

Since 𝐿1(𝑝max) and 𝐿2(𝑝min) are contained in the region Ω, it can be seen from (24), (73), (74), and (76) that

lim
𝑡→+∞

𝑑 (𝑥(𝑡),Ω) = 0. (78)

(S2) As 𝑣2 ∈
(
𝑥𝑒2

1 , +∞
)
and the trajectory 𝑥(𝑡) ∈ D −Ω, for any 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1), 𝑚 ∈ N, the switching maximum

energy sequence 𝐻 (𝑥𝑚) corresponding to switching states 𝑥𝑚 = [𝑥1,𝑚 𝑥2,𝑚]𝑇 ∈ R2 and 𝑚 ∈ N is as follows.

𝐻 (𝑥𝑚) =
{
𝐿2(𝑥1,𝑚) = 𝑔2(𝑥1,𝑚 − 𝑥𝑒2

1 )2, as 𝑥1,𝑚 ∈ (−∞, 𝑣1) ∪ (𝑣2, +∞),
𝐿1(𝑥1,𝑚) = 𝑔1(𝑥1,𝑚 − 𝑥𝑒1

1 )2, as 𝑥1,𝑚 ∈ [𝑣1, 𝑣2], for all 𝑚 ∈ N,
(79)

where the two functions 𝐿1(·) and 𝐿2(·) are defined in (6). 𝑔1 and 𝑔2 are in (7).

Similar to that proof of Situation (S1), one obtains from Lemma 2 and the condition of 𝑅1 > 0 and 𝑅2 > 0, (6),
(38), (39), (73), and (43) that (78) also holds for this Situation. It thus follows from the above considerations
of Situations (S1) and (S2) that Statement (𝑖𝑖) holds for Case (a).

As for Case (b), it is easy to see from the conditions of Statement (𝑖𝑖) that system (1) under the switching line
𝑙1 in (2) is region stable with respect to the region Ω defined in (6). Meanwhile, (28) of Definition 3 follows
from the fact that the system trajectory 𝑥(𝑡) is always contained in the region Ω. Thus, all the conditions of
Definition (3) are satisfied for system (1). Therefore, the correctness of Statement (𝑖𝑖) follows from Definition
(3) for Case (b).
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Finally, we show that Statement (𝑖𝑖) also holds for Case (c) as follows. Similar to that proof of the two cases
(C1) and (C2) of Situation (𝑖), one can show from (69) that Statement (𝑖𝑖) holds true for the case that the whole
trajectory 𝑥(𝑡 : 𝑡𝑚𝑙 , 𝑥𝑚𝑙 , 𝑖𝑚𝑙 ) of system (1) is contained in D − int(Ω𝜀). On the other hand, it is obvious that as
𝜀 → 0, The state trajectory 𝑥(𝑡) contained in the region Ω𝜀 −Ω will gradually converge into the region Ω.

Based on the above, by Definition 3, we obtain from the condition of 𝑅1 > 0 and 𝑅2 > 0, (32), (74), (76), and
(78) that system (1) under the switching line 𝑙1 in (2) is asymptotically region stable with respect to the region
Ω. That is, Statement (𝑖𝑖) holds.

(2) We show the conclusion of Theorem 1 also holds for the case that 𝑔1 = 𝑔2.

In this case, letting 𝐿1(𝑥1) = 𝐿2(𝑥1), together with (6), yields

2(𝑥𝑒2
1 − 𝑥𝑒1

1 )𝑥1 + (𝑥𝑒1
1 )2 − (𝑥𝑒2

1 )2 = 0. (80)

Solving the above equation (80), we obtain its solution denoted by 𝑣1 as follows.

𝑣1 =
𝑥𝑒1

1 + 𝑥𝑒2
1

2
. (81)

It can be obtained from (81) that 𝑝max = 2𝑥𝑒2
1 −𝑥𝑒1

1 and 𝑝min = 2𝑥𝑒1
1 −𝑥𝑒2

1 being the two points on the boundary
of the region Ω. Then, similar to that of the case of 𝑔1 ≠ 𝑔2, it can be shown that Theorem 1 also holds for the
case that 𝑔1 = 𝑔2.

Thus, the proof of Theorem 1 is finished.

For the case that horizontal ordinates of the equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the two subsystems are the same
but their vertical ordinates are different, i.e., 𝑥𝑒1

1 = 𝑥𝑒2
1 and 𝑥𝑒1

2 ≠ 𝑥𝑒2
2 , we present another main result of this

paper as follows.

Theorem 2 Consider system (1) with the compact region Ψ in (25) and the switching line 𝑙1 in (2). For the case
that 𝑥𝑒1

2 ≠ 𝑥𝑒2
2 , system (1) under the switching line 𝑙1 in (2) is

(𝑖) region stable with respect to the region Ψ in (25), if 𝐽1 ≠ 0, 𝐽2 ≠ 0, 𝑅1 ⩾ 0, 𝑅2 ⩾ 0, and

𝛽

𝛼
⩾ max

{
1, 4

(
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑣2 − 𝑥𝑒1
2

)2

, 4

(
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑣2 − 𝑥𝑒2
2

)2 }
, (82)

where 𝛼 = min
{
𝜆min(𝑄1), 𝜆min(𝑄2)

}
, 𝛽 = max

{
𝜆max(𝑄1), 𝜆max(𝑄2)

}
, and 𝑣2 is the intersection point of the

two parabolic curves 𝑀1(𝑥2) and 𝑀2(𝑥2) in (8) over the interval (𝑥𝑒1
2 , 𝑥𝑒2

2 ) in the vertical axis, i.e.,

𝑣2 =


(ð1𝑥𝑒1

2 −ð2𝑥𝑒2
2 )+

√
ð1ð2(𝑥𝑒1

2 −𝑥𝑒2
2 )2

ð1−ð2 , as ð1 ≠ ð2.

𝑥𝑒1
2 +𝑥𝑒2

2
2 , as ð1 = ð2.

(83)

where ð1 and ð2 are defined in (9).
(𝑖𝑖) asymptotic region stable with respect to the region Ω, if 𝐽1 ≠ 0, 𝐽2 ≠ 0, 𝑅1 > 0, 𝑅2 > 0, and the condition (82)

are all satisfied.

Proof: Similar to that proof of Theorem 1, we show from 𝑥𝑒1
2 ≠ 𝑥𝑒2

2 that Theorem 2 also holds via replacing
all the horizontal ordinates 𝑥𝑒1

1 and 𝑥𝑒2
1 of the equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the two subsystems by their

vertical ordinates of 𝑥𝑒1
2 and 𝑥𝑒2

2 during the whole proof of Theorem 1.
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Figure 2. Switching circuit schematic.

4. AN APPLICATION AND TWO NUMERICAL EXAMPLES
In this section, the main results obtained in Section 3 are applied to a switching electric circuit in Subsection
4.1. Two numerical examples are carried out to verify the effectiveness and practicability of Theorems 1 and 2,
respectively, proposed in Section 3.

4.1. An application to a switching DC electric circuit
Consider an ideal switching DC electric circuit, as shown in Figure 2. In which 𝐿, 𝐶, 𝑟1, 𝑟2, 𝐸 , and 𝑉𝐹 denote
the inductor, the capacitor, the two resistors, the DC electric source, and the switch, respectively. For simplicity,
the notations of 𝐿,𝐶, 𝑟1, 𝑟2, and 𝐸 also denote the inductance, the capacitance, the resistances, and the electric
voltage, respectively, of the corresponding circuit elements. The constant parameters of these circuit elements
are chosen as follows. 𝐿 = 10𝑚𝐻, 𝐶 = 200𝑚𝐹, 𝑟1 = 20Ω, 𝑟2 = 60Ω, and 𝐸 = 3𝑉 . For the switch 𝑉𝐹, there
are always the following two actions: the OFF and the ON. Therefore, such an electric circuit is essential to a
switching DC electric circuit. By the famous Kirchhoff’s voltage law and Kirchhoff’s current law, we can model
the electric circuit by a switched linear Hamiltonian system, such as system (1).

To do that, we let 𝑥 = [𝑥1, 𝑥2]𝑇 be the state of the switching DC electric circuit situated in Figure 2. Where the
first element 𝑥1 of the state 𝑥 denotes the electric current 𝑖𝐿 (𝑡) of the inductor 𝐿, and the second element 𝑥2 of
the state 𝑥 denotes the voltage𝑈𝐶 (𝑡) of the capacitor𝐶. Then, the electric circuit is modeled as a switched dissi-
pative linear Hamiltonian system with two subsystems as follows. The following two subsystems are expressed
as {

¤𝑥 = [𝐽𝑖 − 𝑅𝑖]∇𝐻𝑖
(
𝑥 − 𝑥𝑒𝑖

)
,

𝑥(0) = 𝑥0,
for all 𝑡 ⩾ 0, 𝑖 = 1, 2, (84)

where the corresponding matrices of the first and second subsystems are as follows.

𝐽1 =

[
0 −1

1 0

]
, 𝑅1 =

[
0 0

0 0.00083

]
, 𝐽2 =

[
0 −1

1 0

]
, and 𝑅2 =

[
0 0

0 0.0033

]
. (85)

The Hamiltonian functions of the two subsystems are, respectively, listed as follows.

𝐻𝑖 (𝑥) = 0.5
(
𝑥 − 𝑥𝑒𝑖

)
𝑄𝑖

(
𝑥 − 𝑥𝑒𝑖

)𝑇
𝑖 = 1, 2, (86)

in which the matrices 𝑄1 and 𝑄2 are listed in the following:

𝑄1 =

[
5 0

0 100

]
and 𝑄2 =

[
5 0

0 100

]
. (87)

The equilibrium points of the first subsystem and the second subsystem are 𝑥𝑒1 = [0.05 3]𝑇 and 𝑥𝑒2 = [0.2 3]𝑇 ,
respectively. The equilibrium points 𝑥𝑒1 and 𝑥𝑒2 of the two different subsystems are simultaneously passed
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through a switching line 𝑙1 expressed as
𝑙1 : 𝑥2 = 3, (88)

which is a special switching path 𝜎(𝑡) governing the activation of the two subsystems in system (84).

One obtains from (85) and (87) that

[(𝐽1 − 𝑅1)𝑄1] [(𝐽2 − 𝑅2)𝑄2] =
[

−500 33.33

−0.42 −499.97

]
(89)

and

[(𝐽2 − 𝑅2)𝑄2] [(𝐽1 − 𝑅1)𝑄1] =
[

−500 8.33

−1.67 −499.97

]
. (90)

From (89) and (90), it can be seen that although the two subsystems of system (84) are two essential linear
systems, their state matrices (𝐽1 − 𝑅1)𝑄1 and (𝐽2 − 𝑅2)𝑄2 do not commute each other. Therefore, the region
stability of system (84) cannot be verified by the stability criteria given in the reference [17]. Moreover, there are
not any other stability criteria reported in the open literature that can be used to check the stability of system
(84). However, by the main results of this paper, we can check the stability of system (84) as follows.

It can be obtained from (87), (7), (42), and the equilibrium points 𝑥𝑒1 = [0.05 3]𝑇 and 𝑥𝑒2 = [0.2 3]𝑇 of the
two subsystems that

𝛼 = min
{
𝜆(𝑄1), 𝜆(𝑄2)

}
= 5, 𝛽 = max

{
𝜆(𝑄1), 𝜆(𝑄2)

}
= 100 (91)

and

𝑣1 = max
{
1, 4

(
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑣2 − 𝑥𝑒1
2

)2

, 4

(
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑣2 − 𝑥𝑒2
2

)2 }
= 16. (92)

It is obvious from (91) and (92) that (41) of Theorem 1 is satisfied. One knows from (85) that the following
hold: 𝐽1 ≠ 0, 𝐽2 ≠ 0, 𝑅1 ⩾ 0, and 𝑅2 ⩾ 0, which are also satisfied for system (84) under the switching line 𝑙1
in (88). Therefore, all the conditions of Conclusion (𝑖) ofTheorem 1 are satisfied for system (84). ByTheorem
1, we know that system (84) under the switching line 𝑙1 in (88) is region stable with respect to the following
region expressed as

Ω =
{
𝑧 ∈ R2 : 𝐻1(𝑧) ⩽ max

𝑖=1,2

{
𝐻𝑖 (𝑥𝑒2)

}} ⋃ {
𝑧 ∈ R2 : 𝐻2(𝑧) ⩽ max

𝑖=1,2

{
𝐻𝑖 (𝑥𝑒1)

}}
=

{
𝑧 ∈ R2 : 𝐻1(𝑧) ⩽ 0.0563

}} ⋃ {
𝑧 ∈ R2 : 𝐻2(𝑧) ⩽ 0.0563

}}
. (93)

To show the above conclusion, we will simulate system (84) as follows. An initial state is chosen as 𝑥0 =
[0.03 2]𝑇 , which is contained in the exterior of the region Ω in (93). The simulations are carried out and
illustrated in Figures 3-5. Figure 3 denotes the response of switching path 𝜎(𝑡) in relation to the switching line
𝑙1 in (88) with respect to time 𝑡. Figure 4 denotes the trajectory of system (84) under the switching path 𝜎 in
relation to the switching line 𝑙1 starting from the initial state 𝑥0 with respect to time 𝑡. Figure 5 denotes the
trajectory of system (84) under the switching path 𝜎 in relation to the switching line 𝑙1 in the plane R2 starting
from the initial state 𝑥0. It is easy to see from Figure 5 that the trajectory 𝑥(𝑡) of system (84) goes to or into
the region Ω as 𝑡 → +∞. Therefore, the simulations show the effectiveness and practicality of Conclusion (𝑖)
of Theorem 1.
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Figure 3. The response of the switching path 𝜎 in relation to the switching line 𝑙1 with respect to time 𝑡 .

Figure 4. The trajectory of system (84) under the switching path 𝜎 in relation to the switching line 𝑙1 starting from the initial state 𝑥0 with
respect to time 𝑡 .

4.2. Two numerical examples

Example 1 Consider a switched linear Hamiltonian system with two subsystems as follows.{
¤𝑥 = [𝐽𝑖 − 𝑅𝑖]∇𝐻𝑖

(
𝑥
)
,

𝑥(0) = 𝑥0,
for all 𝑡 ⩾ 0, 𝑖 = 1, 2, (94)

governed by a switching path 𝜎(𝑡) : [0, +∞) → {1, 2}, which is also a switching line passing through the two
points, 𝑥𝑒1 = [1 2]𝑇 and 𝑥𝑒2 = [8 16]𝑇 , of the equilibrium points of the first subsystem and the second subsystem,
respectively. That is, the switching line can be expressed as

𝑙1 : 𝑥2 = 2𝑥1. (95)
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Figure 5. The trajectory of system (84) under the switching path 𝜎 in relation to the switching line 𝑙1 in the plane R2 starting from the initial
state 𝑥0.

In system (94), the Hamiltonian functions of the two subsystems are listed as

𝐻𝑖 (𝑥) = 0.5
(
𝑥 − 𝑥𝑒𝑖

)
𝑄𝑖

(
𝑥 − 𝑥𝑒𝑖

)𝑇
𝑖 = 1, 2, (96)

where the matrices 𝑄1 and 𝑄2 are, respectively, listed as the corresponding matrices of the subsystems as follows.

𝑄1 =

[
18 0

0 1

]
and 𝑄2 =

[
15 0

0 1

]
. (97)

The corresponding matrices of the first and second subsystems are as follows.

𝐽1 =

[
0 −8

8 0

]
, 𝑅1 =

[
3 0

0 2

]
, 𝐽2 =

[
0 −12

12 0

]
, and 𝑅2 =

[
4 0

0 1

]
. (98)

We obtain from (97) and (98) that

[(𝐽1 − 𝑅1)𝑄1] [(𝐽2 − 𝑅2)𝑄2] =
[

1800 656

−9000 −1726

]
(99)

and

[(𝐽2 − 𝑅2)𝑄2] [(𝐽1 − 𝑅1)𝑄1] =
[

1512 504

−9864 −1438

]
. (100)

From (99) and (100), it is obvious that although the two subsystems of system (94) are two essential linear
systems, their state matrices (𝐽1 − 𝑅1)𝑄1 and (𝐽2 − 𝑅2)𝑄2 cannot commute. Therefore, the region stability of
system (94) cannot be verified by the stability criteria obtained in the reference [17]. Moreover, there is not any
stability criteria reported in the open literature. However, we can check the stability of system (94) as follows.

According to (7), (97), and (41), we obtain that

𝛼 = min
{
𝜆(𝑄1), 𝜆(𝑄2)

}
= 1, 𝛽 = max

{
𝜆(𝑄1), 𝜆(𝑄2)

}
= 18 (101)
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Figure 6. The trajectory of system (94) under the switching path 𝜎1 in relation to the switching line 𝑙1 in the plane R2 starting from the initial
state 𝑥01.

and

𝑣1 = max
{
1, 4

(
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑣2 − 𝑥𝑒1
2

)2

, 4

(
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑣2 − 𝑥𝑒2
2

)2 }
= 4.3718. (102)

It is obvious from (101) and (102) that (41) of Theorem 1 is satisfied.

It is obvious from (98), (101), and (102) that 𝐽1 ≠ 0, 𝐽2 ≠ 0, 𝑅1 > 0, 𝑅2 > 0, and (41) are all satisfied for system
(94) under the switching line 𝑙1 denoted in (95). That is, all the conditions of Conclusion (𝑖𝑖) of Theorem 1
are satisfied for system (94). By Theorem 1, we know that system (94) under the switching line 𝑙1 in (95) is
asymptotically region stable with respect to the following region:

Ω =
{
𝑧 ∈ R2 : 𝐻1(𝑧) ⩽ max

𝑖=1,2

{
𝐻𝑖 (𝑥𝑒2)

}} ⋃ {
𝑧 ∈ R2 : 𝐻2(𝑧) ⩽ max

𝑖=1,2

{
𝐻𝑖 (𝑥𝑒1)

}}
=

{
𝑧 ∈ R2 : 𝐻1(𝑧) ⩽ 539

}} ⋃ {
𝑧 ∈ R2 : 𝐻2(𝑧) ⩽ 465.5

}}
. (103)

To show the above conclusion by simulations, we choose the following two initial states: 𝑥01 = [−25 50]𝑇 and
𝑥02 = [4 8]𝑇 . It is easy to see that the two initial states 𝑥01 and 𝑥02 are contained in the interior and the exterior
of the regionΩ in (103), respectively. The numerical simulations are then carried out, and the results are shown
in Figures 6-11, which denote the trajectories of system (94) under the switching line 𝑙1 in (95) starting from
the two initial states in the plane R2, the trajectories with respect to time 𝑡, and switching path with respect to
time 𝑡, respectively. It can be seen from Figures 6 and 7 that the trajectory 𝑥(𝑡) of system (94) goes to/into the
region Ω as 𝑡 → +∞. Therefore, these simulations show that the Conclusion (𝑖𝑖) of Theorem 1 is effective and
practical.

Example 2 Consider a switched linear Hamiltonian system with two subsystems as follows.{
¤𝑥 = [𝐽𝑖 − 𝑅𝑖]∇𝐻𝑖

(
𝑥
)
,

𝑥(0) = 𝑥0,
for all 𝑡 ⩾ 0, 𝑖 = 1, 2, (104)

governed by a switching path 𝜎(𝑡) : [0, +∞) → {1, 2}, which is also a switching line passing through the two
points, 𝑥𝑒1 = [2 2]𝑇 and 𝑥𝑒2 = [2 12]𝑇 , of the equilibrium points of the first subsystem and the second subsystem,
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Figure 7. The trajectory of system (94) under the switching path 𝜎2 in relation to the switching line 𝑙1 in the plane R2 starting from the initial
state 𝑥02.

Figure 8. The trajectory of system (94) under the switching path 𝜎1 in relation to the switching line 𝑙1 starting from the initial state 𝑥01 with
respect to time 𝑡 .

respectively. That is, the switching line can be expressed as

𝑙1 : 𝑥1 = 2. (105)

In system (104), the Hamiltonian functions of the two subsystems are listed as

𝐻𝑖 (𝑥) = 0.5
(
𝑥 − 𝑥𝑒𝑖

)
𝑄𝑖

(
𝑥 − 𝑥𝑒𝑖

)𝑇
𝑖 = 1, 2, (106)

where the matrices 𝑄1 and 𝑄2 are, respectively, listed as the corresponding matrices of the subsystems as follows.

𝑄1 =

[
1 0

0 15

]
and 𝑄2 =

[
15 0

0 18

]
. (107)
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Figure 9. The trajectory of system (94) under the switching path 𝜎2 in relation to the switching line 𝑙1 starting from the initial state 𝑥02 with
respect to time 𝑡 .

Figure 10. The response of the switching path 𝜎1 in relation to the switching line 𝑙1 with respect to time 𝑡 .

The corresponding matrices of the first and second subsystems are as follows.

𝐽1 =

[
0 −10

10 0

]
, 𝑅1 =

[
4 0

0 5

]
, 𝐽2 =

[
0 −8

8 0

]
, and 𝑅2 =

[
3 0

0 2

]
. (108)

One obtains from (104), (107), and (108) that the following two:

[(𝐽1 − 𝑅1)𝑄1] [(𝐽2 − 𝑅2)𝑄2] =
[
−17820 5976

−9450 1260

]
(109)

and

[(𝐽2 − 𝑅2)𝑄2] [(𝐽1 − 𝑅1)𝑄1] =
[
−1260 17550

−840 −15300

]
. (110)
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Figure 11. The response of the switching path 𝜎2 in relation to the switching line 𝑙1 with respect to time 𝑡 .

Figure 12. The trajectory of system (104) under the switching path 𝜎3 in relation to the switching line 𝑙1 in the plane R2 starting from the initial
state 𝑥01.

From (109) and (110), it is obvious that although the two subsystems of system (104) are also two linear systems,
their state matrices (𝐽1−𝑅1)𝑄1 and (𝐽2−𝑅2)𝑄2 are not commutative. Therefore, the region stability of system
(104) cannot be verified by the stability criteria obtained in the reference [17]. Moreover, there is not any stability
criteria reported in the open literature. However, we can check the stability of system (104) as follows.

According to (7), (107), and (41), we obtain that

𝛼 = min
{
𝜆(𝑄1), 𝜆(𝑄2)

}
= 1, 𝛽 = max

{
𝜆(𝑄1), 𝜆(𝑄2)

}
= 18, (111)

and

𝑣2 = max
{
1, 4

(
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑣2 − 𝑥𝑒1
2

)2

, 4

(
𝑥𝑒2

2 − 𝑥𝑒1
2

𝑣2 − 𝑥𝑒2
2

)2 }
= 7.2277. (112)
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Figure 13. The trajectory of system (104) under the switching path 𝜎4 in relation to the switching line 𝑙1 in the plane R2 starting from the initial
state 𝑥02.

Figure 14. The trajectory of system (104) under the switching path 𝜎3 in relation to the switching line 𝑙1 starting from the initial state 𝑥01 with
respect to time 𝑡 .

It is obvious from (108), (111), and (112) that 𝐽1 ≠ 0, 𝐽2 ≠ 0, 𝑅1 > 0, 𝑅2 > 0, and (41) are all satisfied for
system (104) under the switching line 𝑙1 denoted in (105). That is, all the conditions of Conclusion (𝑖𝑖) of
Theorem 2 are satisfied for system (104). By Theorem 2, we know that system (104) under the switching line
𝑙1 in (105) is asymptotically region stable with respect to the following region:

Ψ =
{
𝑧 ∈ R2 : 𝐻1(𝑧) ⩽ max

𝑖=1,2

{
𝐻𝑖 (𝑥𝑒2)

}} ⋃ {
𝑧 ∈ R2 : 𝐻2(𝑧) ⩽ max

𝑖=1,2

{
𝐻𝑖 (𝑥𝑒1)

}}
=

{
𝑧 ∈ R2 : 𝐻1(𝑧) ⩽ 750

}} ⋃ {
𝑧 ∈ R2 : 𝐻2(𝑧) ⩽ 980

}}
. (113)

To show the above conclusion by simulations, we choose the following two initial states: 𝑥01 = [−20 50]𝑇
and 𝑥02 = [2 20]𝑇 . It is easy to see that the two initial states 𝑥01 and 𝑥02 are contained in the interior and the
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Figure 15. The trajectory of system (104) under the switching path 𝜎4 in relation to the switching line 𝑙1 starting from the initial state 𝑥02 with
respect to time 𝑡 .

Figure 16. The response of the switching path 𝜎3 in relation to the switching line 𝑙1 with respect to time 𝑡 .

exterior of the region Ψ in (113), respectively. The numerical simulations are then carried out, and the results
are shown in Figures 12-17, which denote the trajectories of system (104) under the switching line 𝑙1 in (105)
starting from the two initial states in the plane R2, the trajectories with respect to time 𝑡, and switching path
with respect to time 𝑡, respectively. It can be seen from Figures 12 and 13 that the trajectories 𝑥(𝑡) of system
(104) goes to/into the region Ω as 𝑡 → +∞. Therefore, these simulations show that the Conclusion (𝑖𝑖) of
Theorem 2 is effective and practical.

5. CONCLUSIONS
We have studied the region stability of two-dimensional switched linear Hamiltonian systems with multiple
equilibrium points. For the case that there are two subsystems and the switching path is a switching line, by
the maximum energy function method, we have proposed some sufficient conditions of region stability and
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Figure 17. The response of the switching path 𝜎4 in relation to the switching line 𝑙1 with respect to time 𝑡 .

asymptotic region stability of such kind of switched systems. The stability criteria given are easily-test. An
application of switching DC electric circuits and two numerical examples have illustrated the effectiveness and
practicality of the two theorems obtained in this paper. The limitations of the stability results obtained in this
paper are the following two: (1) Switched linear Hamiltonian systems with multiple equilibrium points are
two-dimensional. (2) The special switching paths of switching lines. To remove the above limitations, the
investigation of region stability of high-dimensional SHSs withME under arbitrary switching paths will be our
next work.
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