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Abstract
Radiomics was first introduced by Lambin et al. in 2012, and since then, research in this field has grown rapidly. 
Researchers have shown great interest in developing efficient methods for automatically extracting a large number 
of quantitative features from medical images, aiming to enhance diagnostic accuracy and predictive capability. 
Although there has been a rise in Radiomics studies focusing on intrahepatic cholangiocarcinoma (ICC) in recent 
years, comprehensive reviews are still relatively scarce. This study explores how Radiomics technology can be 
utilized in modeling analyses to predict lymph node metastasis, microvascular invasion, and early recurrence of 
ICC, as well as the application of deep learning in these analyses. This paper provides a brief overview of the 
current state of Radiomics research and offers references for future studies.
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INTRODUCTION
In the past decade, the dramatic increase in computing power and memory has enabled the development 
and implementation of advanced artificial intelligence (AI) technologies for processing radiological images, 
particularly in the area of tumor imaging. Since its introduction in 2012, radiomics has attracted 
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considerable attention[1]. Traditional imaging is limited to capturing basic semantic features and has a 
constrained capability to accurately reflect tumor characteristics. However, radiomics methods can provide 
rich and significant supplementary data. After more than a decade of development, AI-based diagnostic 
tools have been continually improved. In many cases, their diagnostic performance has been proven to 
match or even surpass that of human experts across various types of cancer[2,3]. These successes have 
encouraged the continued use of AI methods for more complex decision-making tasks, such as disease 
prediction, predicting responses to different treatment modalities, identifying treatment-related changes, 
and discovering imaging-based representations of phenotypic (e.g., gender, age, or race) and genotypic 
features associated with prognosis.

Intrahepatic cholangiocarcinoma (ICC) ranks as the second most common type of primary liver cancer[4]. 
Based on different classification methods, the most common type of cholangiocarcinoma is ICC, which is a 
malignant tumor in the epithelial cells of the intrahepatic bile ducts, occurring in small intrahepatic bile 
ducts or bile ducts near the bifurcation of the hepatic duct[5]. Epidemiological studies have shown an 
increase in the incidence and mortality rates of ICC globally in recent years[6]. Due to the absence of specific 
clinical manifestations in the early stages of the disease, most patients are incidentally diagnosed during 
routine physical examinations[7]. A minority of patients who have symptoms present with non-specific 
features, leading to over 70% of patients being diagnosed in the late stages of the disease [American Joint 
Committee on Cancer (AJCC) stage III or IV], resulting in an average 1-year and 5-year survival rate of 
only 30% and 18%, respectively. Due to the increasing incidence of ICC, several studies have focused on 
improving patient diagnosis, prognosis, and treatment[8-11]. The diagnosis of ICC is typically achieved 
through serum markers [CA 19-9, Carcinoembryonic Antigen(CEA)] and imaging examinations. However, 
in atypical cases, differential diagnosis remains challenging, making biopsy the only definitive tool for 
accurate diagnosis[12].

Currently, the most widely used staging system for ICC is the AJCC tumor, lymph node, and metastasis 
(TNM) staging system, which relies on surgical pathology data and is therefore applicable only in a 
postoperative context. Regarding clinical characteristics, imaging manifestations, and treatment approaches, 
ICC stands out as a distinct and habitual malignant tumor, differing from perihilar and distal bile duct 
cancers. Therefore, a special prognostic prediction model is necessary. Many researchers have been able to 
establish models that can objectively and accurately predict the prognosis of ICC patients based on 
preoperative clinical or imaging data such as CA199 levels, tumor volume under computed tomography 
(CT) and magnetic resonance imaging (MRI), the presence of intrahepatic multifocal metastasis, distant 
organ metastasis, and invasion of major blood vessels in the liver. These models demonstrate superior 
discriminative ability and accuracy compared to the 8th edition of the AJCC TNM staging system.

For preoperative tumor staging and the assessment of resectability in ICC, cross-sectional CT and MRI are 
the most commonly utilized imaging techniques. Physicians can leverage this imaging information to refine 
and optimize treatment plans. However, many details in medical imaging data cannot be identified and 
utilized by the naked eye. The full potential of these details in clinical diagnosis and treatment has not been 
fully exploited. Nevertheless, the rapid development of high-throughput methods in recent years makes this 
idea increasingly feasible. High-throughput methods, which can automatically extract numerous 
quantitative imaging features from medical imaging data, have garnered significant interest recently due to 
their potential to enhance predictive and diagnostic performance. In the field of ICC, radiomics has been 
widely applied. When combined with various machine learning techniques, radiomics demonstrates 
excellent predictive capabilities regarding prognosis, recurrence, and survival in ICC patients. This review 
aims to discuss the practical applications of radiomics in the clinical practice of ICC. The included studies 
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mainly address the following topics: prediction of lymph node metastasis (LNM), microvascular invasion, 
early postoperative recurrence, survival, and differentiation of ICC from other diseases.

MATERIALS AND METHODS
To systematically review the application of radiomics in ICC, this study conducted a literature search in 
databases such as PubMed, Embase, and Google Scholar. The search terms included “ICC” combined with 
“radiomics”, “texture analysis”, and “imaging features”. Only studies published before May 30, 2024, were 
included. Duplicate records were first removed, followed by a screening process based on titles and 
abstracts. Non-English full texts, studies unrelated to the research topic, preclinical studies with no 
translational significance, case reports, and editorials were excluded. For studies involving multiple tumor 
types, only those presenting radiomics results specific to ICC were retained. Relevant full-text articles were 
then retrieved and further reviewed.

For quality control of the included studies, we used the Diagnostic Accuracy Study Quality Assessment Tool 
2 (QUADAS-2) for independent evaluation. The assessment covered “patient selection”, “index test”, 
“reference standard”, and “flow and timing”. Each study’s risk of bias and applicability were rated as “high”, 
“low” or “unclear”. Two independent reviewers performed the ratings, with a third reviewer involved in 
resolving disagreements until a consensus was reached. Additionally, to further enhance the credibility of 
the results, we conducted a backward reference search of all included studies’ reference lists to ensure no 
significant studies were missed.

RADIOMICS WORKFLOW
The earliest applications of radiomics can be traced back to a study[13] that demonstrated the correlation 
between patient time to progression in lung cancer, and another study by Segal et al., which derived 28 
imaging features that could reconstruct 78% of the global gene expression profile, revealing cell 
proliferation, liver synthesis function, and patient prognosis[14]. Lambin et al. published a landmark paper 
that formally coined the term “radiomics” thus garnering significant attention for the concept[1].

Image acquisition
High-quality and standardized images are typically obtained through imaging modalities such as MRI, CT, 
positron emission tomography - computed tomography(PET-CT), and ultrasound. In the clinical 
management of nearly all patients with ICC, CT or MRI imaging is routinely performed to acquire 
pertinent diagnostic images. Ensuring the quality and standardization of these images is crucial.

Region of interest segmentation
In most cases, experienced radiologists or radiation oncologists manually delineate the tumors. However, 
there has been development in automatic and semi-automatic segmentation methods, with some automatic 
approaches achieving results comparable to those of manual segmentation by radiologists. In the field of 
medical imaging, a variety of techniques are available for both semi-automatic and fully automatic 
segmentation, each employing tools of different levels of sophistication. Due to the inherently hypovascular 
nature of ICC, the tumor often exhibits distinct contrast with the surrounding normal liver tissue at certain 
stages, making the delineation of its boundaries relatively straightforward. Consequently, the performance 
of automated segmentation methods can even surpass that of manual tumor delineation by experienced 
radiologists. Basic segmentation methods primarily analyze the intensity and contrast within images, with a 
popular method being segmentation based on predefined thresholds. Alternatively, region-based 
segmentation identifies groups of similar and connected voxels using criteria based on uniformity[15]. These 
methods are typically semi-automatic because they require human intervention to set thresholds or validate 
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the uniformity criteria.

Further, some segmentation research incorporates models of uncertainty and algorithms for optimization to 
pinpoint specific areas within an image. Techniques such as statistical pattern recognition, which 
automatically identifies and categorizes patterns in images, c-clustering, which sorts images into distinct 
groups without supervision, and graph-based segmentation, which visualizes images as networks of voxels 
connected by edges optimized through a cost function, are frequently applied in the study of radiomics[16,17].

Extraction and analysis of radiomics features
Multi-phase contrast-enhanced computed tomography (CE-CT) is regarded as the standard imaging 
modality for diagnosing ICC. ICC typically manifests as peripheral arterial phase hyperenhancement 
(APHE), peripheral washout, and delayed central enhancement. Consequently, the arterial phase of CT is 
considered the optimal timing for obtaining imaging data.

Radiomics features are divided into two categories: semantic features and agnostic features[18]. Semantic 
features involve visible characteristics such as the size, shape, location, and degree of necrosis of tumor 
lesions. Although the analysis of these features is relatively easy to implement in clinical practice, they 
typically rely on the diagnostician’s experience, which can lead to variability in assessments both between 
different observers and within the same observer over time. In contrast, agnostic features are quantitative 
descriptors extracted from tissues of interest using mathematical methods and are not included in standard 
radiological reports. Agnostic features utilize advanced mathematical algorithms and are divided into 
morphological and statistical features. Morphological features describe the shape and physical structure of 
the segmented volume. Statistical features are further subdivided into first-order, second-order, and higher-
order features. First-order features focus on the attributes of individual voxels, such as brightness or 
intensity, and include average intensity, maximum and minimum intensity, standard deviation, and 
histogram analysis, revealing the distribution and variation of pixel intensities within the image[19]. Second-
order features, also known as texture features, describe the texture patterns of an image by analyzing the 
spatial relationships between voxels. Commonly used second-order features include the gray-level co-
occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and gray-level size zone matrix 
(GLSZM), which explore the spatial correlations of voxel intensities. Higher-order features employ more 
complex mathematical models and algorithms, such as wavelet transforms or deep learning technologies, to 
analyze the intricate relationships between voxels and extract deeper layers of image data. In ICC, 
morphological and statistical features are crucial for identifying texture patterns and heterogeneity within 
tumors. Features like the GLCM and wavelet transforms are particularly useful in discerning subtle 
differences that may indicate aggressive tumor behavior.

Predictive model building
Radiomics modeling primarily encompasses feature selection, modeling methodologies, and validation[20]. 
This intricate process initiates with the extraction of pertinent quantitative features from a plethora of 
imaging attributes, encompassing aspects such as morphology, texture, and statistical properties. During the 
feature selection phase, sophisticated statistical analyses and advanced machine learning algorithms are 
employed to discern the most diagnostic or prognostic features. Commonly utilized techniques include 
principal component analysis (PCA), least absolute shrinkage and selection operator (LASSO) regression, 
and Random Forests, all of which are vital for mitigating feature redundancy and augmenting model 
efficacy.
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Subsequently, in the modeling methodologies phase, the curated features are leveraged to construct 
predictive or classification models. Frequently employed modeling techniques encompass linear regression, 
logistic regression, support vector machines (SVM), Random Forests, and neural networks. Each technique 
possesses unique merits and specific applications. For instance, linear regression is apt for predicting 
continuous variables, logistic regression is utilized for binary classification challenges, whereas SVMs and 
Random Forests excel in managing high-dimensional data and non-linear problems. Neural networks, 
particularly deep learning models such as Convolutional Neural Networks, are remarkably proficient in 
processing intricate imaging data by autonomously extracting and amalgamating features, thereby 
enhancing model precision.

Finally, during the validation phase, the model’s performance and reliability are meticulously evaluated 
through both internal and external validation. Internal validation commonly adopts methods such as cross-
validation and leave-one-out by partitioning the dataset into multiple subsets, sequentially utilizing one 
subset as the validation set while the remainder as the training set, to comprehensively assess the model’s 
performance across varying subsets. External validation employs an independent dataset to rigorously test 
the model, appraising its generalization capability and practical application value. Common performance 
metrics include accuracy, sensitivity, specificity, and the area under the ROC curve (AUC-ROC).

By adhering to these rigorous steps, radiomics is capable of extracting a copious amount of valuable 
quantitative data from medical images, unveiling potential correlations between imaging features and tumor 
heterogeneity. This capability not only facilitates a more precise assessment of the biological behavior and 
prognosis of tumors but also provides robust support for clinicians in diagnostic and therapeutic decision-
making, thereby propelling the advancement of personalized medicine. By integrating radiomic features 
with clinical, pathological, and genetic data to construct multimodal predictive models, radiomics is 
progressively becoming an indispensable tool for enhancing clinical practice[21-23][Figure 1].

APPLICATIONS OF RADIOMICS IN ICC
Differentiating ICC from other diseases
The preoperative diagnosis of ICC currently relies mainly on imaging studies and CA19-9 levels[7,24]. 
However, conventional imaging often provides limited information, and some patients’ CA19-9 levels 
remain within the normal range, making it challenging to accurately differentiate ICC from other liver 
lesions[25]. Enhanced imaging offers some diagnostic differentiation value, with ICC typically showing 
progressive, centripetal enhancement, which can be distinguished from certain liver lesions. Nevertheless, 
observation of enhanced imaging is subjective, and due to the heterogeneity of ICC, some ICC imaging 
presentations are atypical and can overlap with other lesions, necessitating a precise and objective method 
to overcome these shortcomings. Radiomics, capable of mining and extracting information on intratumoral 
heterogeneity at high throughput, holds promise for differentiating ICC from intrahepatic bile duct 
stones[26], other primary liver cancers[27-33], etc.[34,35].

In one study, Wang et al. delineated tumor region of interest (ROIs) and expanded them to create multiple 
ROI expansion areas (-2, 0, 2, 4, 6, and 8 mm) in MRI images of 87 hepatocellular carcinoma (HCC) 
patients and 75 pathologically confirmed ICC patients, establishing several predictive models[36]. By 
combining convolutional features, the model’s performance was further improved. Compared to the 
standard ROI, expanded areas achieved better predictive performance, with the 6 mm expansion area 
exhibiting the best prediction ability [area under the curve (AUC): 0.84 vs. 0.86 vs. 0.88 vs. 0.90 vs. 0.94 vs. 
0.82]. To differentiate HCC and ICC, Huang et al. developed a deep learning model based on channel and 
spatial attention mechanisms, called CSAM-Net, outperforming traditional radiomics models (RMs) 
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Figure 1. The radiomics workflow.

constructed with logistic regression, LASSO regression, SVM, and random forests (AUC = 0.987 vs. 
0.913)[37]. Another study by Liu et al. indicated that using machine learning to analyze MRI and CT 
radiomics features for differentiating cHCC-ICC from HCC and ICC showed good predictive performance, 
potentially impacting treatment decisions[28]. Additionally, Jiang et al. established a predictive model 
composed of 2 PET and 1 CT radiomics feature, finding that PET and CT radiomics features could 
effectively differentiate HCC and ICC, with an AUC of 0.86; clinical factors did not significantly enhance 
discrimination, with clinical models and combined models of radiomics features and clinical features 
yielding AUCs of 0.56 and 0.80, respectively[38]. These studies demonstrate that radiomics can provide 
molecular-based imaging features and intratumoral heterogeneity information. When combined with 
clinical information, it can effectively differentiate HCC and ICC, suggesting that future radiomics should 
integrate various clinical factors to more effectively distinguish ICC from HCC. Differentiation between 
ICC and CHC is also a significant direction in clinical practice. Zhou et al. developed radiomics features 
based on MRI images, selecting 11 radiomics features and integrating alpha-fetoprotein, background liver 
disease (cirrhosis or chronic hepatitis) to construct a nomogram, showing strong calibration and 
discrimination performance, with training and validation cohort AUCs of 0.945 and 0.897, respectively[39]. 
The radiomics nomogram proved superior to radiomics features and individual clinical models (P < 0.05). 
Xue et al., based on arterial phase CT images of 131 patients with intrahepatic bile duct stones and 
concurrent tumors, extracted four radiomics features, combined with three clinical features (fever, CA 19-9, 
and CEA), establishing a combined model[26]. This model showed the best performance in predicting ICC 
concurrent with intrahepatic bile duct stones, with an AUC of 0.902. Another study by Xue et al. extracted 
radiomics features from arterial and venous phase enhanced CT images, building a model with phase-
specific radiomics scores and two clinical factors (CEA and CA19-9), achieving the best model 
performance, with training and validation group AUCs of 0.864 and 0.843, respectively, surpassing simple 
RMs (training group AUC: 0.809, validation group AUC: 0.790) and clinical variable models (training group 
AUC: 0.801, validation group AUC: 0.830), indicating the combined model can distinguish ICC from 
inflammatory tumors with intrahepatic bile duct stones, improving diagnostic accuracy[40]. Xu et al. utilized 
enhanced CT to extract texture features, identifying 38 eligible texture features[32]. Through five feature 
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selection methods (distance correlation, random forest, LASSO, etc.) and nine feature classification 
methods (linear discriminant analysis, SVM, logistic regression, etc.), 45 predictive models were established 
to differentiate ICC from liver lymphoma. Most models performed well (AUC > 0.85), with the random 
forest linear discriminant analysis showing the best performance among the 45 models (AUC = 0.997), 
suggesting that combining enhanced CT texture features with multiple machine learning models can 
effectively distinguish ICC from liver lymphoma. Xu et al., based on multiparametric MRI images, extracted 
radiomics features using the LASSO algorithm and selected clinical variables (tumor diameter and CEA 
level) and MRI results to construct a clinical model[34]. The final radiomics nomogram model, which 
integrates both the clinical and RMs, demonstrated superior performance in differentiating intrahepatic 
mass-forming cholangiocarcinoma (IMCC) from colorectal liver metastasis (CRLM). The model achieved 
AUCs of 0.94 (95%CI: 0.90-0.97) for the training cohort, 0.93 (95%CI: 0.86-1.00) for the internal validation 
cohort, and 0.92 (95%CI: 0.84-1.00) for the external validation cohort. Table 1 summarizes the models and 
results of the analyzed studies.

Predicting LNM
LNM is significantly associated with poor prognosis in patients with ICC and is a crucial determinant of the 
tumor’s resectability[24,42]. However, current methods for assessing lymph node status offer unstable 
predictive accuracy and limited discriminative capability[43]. As a result, some patients initially deemed 
operable during pre-surgical assessments are later found to have metastasis during surgery, leading to 
abortive operations. Fine-needle aspiration, despite being invasive, has limited effectiveness in detecting 
minor lymph node metastases and carries a risk of tumor spread[44,45]. The data from the papers are 
summarized in Table 2.

Radiomics prediction models built using features extracted from CT or MRI can be used to preoperatively 
predict LNM, thereby enabling clinicians to make better-informed clinical decisions[49,50]. In 2019, Ji et al. 
extracted eight features related to lymph node status from CT images and, together with CA19-9 levels, built 
a combined predictive model[48]. The model, tested on a training set of 103 patients and a validation set of 52 
patients, showed AUCs of 0.8462 and 0.8921, respectively. It categorized LNM into high-risk and low-risk 
groups, revealing significant differences in overall survival (OS) and recurrence-free survival between the 
two groups. However, this study’s patient groups, both for training and validation, were from a single center 
and lacked external validation. In another study from 2019, Xu et al. constructed a SVM model based on 
five selected imaging features from MRI, creating a combined nomogram model with SVM scores, CA19-9 
levels, and MRI characteristics[50]. Compared to the standalone SVM model, the combined nomogram 
demonstrated superior discriminative ability in distinguishing between predicting LNM and non-LNM 
patients (AUC: training set: 0.842 vs. 0.788; validation set: 0.870 vs. 0.787). Zhang et al. integrated radiomics 
features from multiple CT sequences to build a fusion model, which, across three cohorts (training, external 
validation, and internal validation), showed AUC values surpassing those of clinical RMs[45]. The 
constructed nomogram, validated independently, displayed good differentiation and prognostic value. In 
summary, employing radiomics prediction models based on features extracted from CT or MRI holds 
promise for accurately predicting preoperative lymph node status, potentially becoming a valuable tool for 
preoperative assessment and prognostic evaluation in ICC.

Predicting microvascular invasion
Microvascular invasion is an independent risk factor affecting the prognosis of patients undergoing radical 
resection for ICC[42,51], with those experiencing predicting microvascular invasion (MVI) often facing a 
poorer prognosis[52]. However, clinical detection of MVI is primarily conducted through microscopic 
histopathological examination, identifiable only postoperatively. Therefore, building models to predict MVI 
preoperatively, thus offering references for clinicians to adjust surgical methods and extents, has emerged as 
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Table 1. Differentiating ICC from other diseases

Author Years Image Differential diagnosis Number of cases AUC

Wang et al.[36] 2024 MRI HCC-ICC HCC(n = 87) 
ICC(n = 75)

0.96

Liu et al.[30] 2023 MRI HCC-ICC HCC(n = 129) 
ICC(n = 48)

0.977

Xue et al.[40] 2021 CT Inflammatory mass-ICC Training (IM = 66, IMCC = 44) 
Validation (IM = 18, ICC = 17)

0.864

Huang et al.[37] 2023 CT HCC-ICC HCC(n = 395) 
ICC (n = 99)

0.987

Ren et al.[41] 2021 US HCC-ICC Training: 149 
External validation: 38 test: 39

0.936

Xue et al.[26] 2021 CT Intrahepatic lithiasis-ICC Training (IBI = 60, ICC = 36) 
Validation (IBI = 18, ICC = 17)

0.829

Xu et al.[34] 2023 MRI Resectable colorectal liver metastases-ICC Training (CRLM = 69, ICC = 64) 
Internal validation (CRLM = 28, ICC = 29) 
External validation (CRLM = 28, ICC = 23)

0.92

Zhou et al.[39] 2022 MRI CHC-ICC Training (CHC = 45, ICC = 106) 
Validation (CHC = 19, ICC = 46)

0.945

Xu et al.[32] 2021 CT Hepatic lymphoma-ICC HL = 28 
ICC = 101

0.997

Chen et al.[27] 2023 MRI HCC-ICC HCC (n = 83) 
ICC (n = 51)

0.9

Liu et al.[28] 2021 MRI/CT HCC-CHC-ICC HCC (n = 38) 
CHC (n = 24) 
ICC (n = 24)

0.79/0.81/0.71

CT: Computed tomography; MRI: magnetic resonance imaging; ICC: intrahepatic cholangiocarcinoma; HCC: hepatocellular carcinoma; CHC: 
combined hepatocellular carcinoma and cholangiocarcinoma; HL: hepatic lymphoma; CRLM: colorectal liver metastases; IM: inflammatory mass; 
AUC: area under the curve; IBI: intrahepatic bile duct stones.

Table 2. Predicting LNM

Author Year Image 
modality Number of cases Number of 

features
Feature selection and 
modeling method

Model performance (AUC, 
sensitivity, specificity)

Xu et al.[46] 2023 CT Training: 86; External 
validation: 30

6 LASSO; LR Combination model AUC: 0.85, 
Radiomics model: 0.82, Clinical model: 
0.75

Zhang et 
al.[45]

2022 CT ALL: 296 24 mRMR; DT; LR Combination model AUC: 0.98, 
Radiomics model: 0.70, Clinical model: 
0.87

Xu et al.[47] 2019 MRI Training: 106; 
External validation: 
42

5 mRMR; SVM Radiomics model AUC: 0.787, 
Combination model AUC: 0.842

Ji et al.[48] 2019 CT Training: 103; 
External validation: 
52

8 LASSO; LR Combination model AUC: 0.89, Imaging 
model: 0.64, Clinical model: 0.72

LNM: Lymph node metastasis; LR: logistic regression; SVM: support vector machine; mRMR: minimum redundancy maximum relevance; LASSO: 
least absolute shrinkage and selection operator; DT: decision tree; AUC: area under the curve; MRI: magnetic resonance imaging; CT: computed 
tomography.

a hot topic in ICC research recently. The advent and development of radiomics, by enabling the extraction 
of features from the entire tumor and its surrounding areas, have continually improved the accuracy of 
preoperative MVI predictions. Table 3 summarizes the models and results of the analyzed studies.

In recent years, numerous studies utilizing radiomics to predict preoperative MVI have surfaced, trying 
various imaging modalities including ultrasound, CT, MRI, and PET-CT for model construction[38,53-56]. Qian 
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Table 3. Predicting MVI

Author Year Image 
modality

Number of 
cases

Number of 
features

Feature selection 
and modeling 
method

Model performance (AUC, sensitivity, 
specificity)

Ma et al.[56] 2023 MRI Training cohort 
(n = 111) 
Validation 
cohort (n = 49)

- LASSO; LR; SVM Imaging model AUC = 0.885, Radiomics model 
AUC = 0.987, Combination model AUC = 0.995

Qian et al.[57] 2022 MRI Training: 130 
External 
validation: 33; 
test: 24

2600 LASSO; LR/RF/SVM Imaging model AUC = 0.726, Radiomics model 
AUC = 0.950, Combination model AUC = 0.953

Fiz et al.[58] 2023 CT 244 - LASSO; LR Clinical model AUC = 0.75, Clinical + Radiomics 
model (tumor) AUC = 0.82, Clinical + Radiomics 
model (tumor + edge) AUC = 0.82

Jiang et al.[38] 2022 PET/CT Training: 100 
External 
validation: 27

1,815 Hypothetical test; RF Clinical model AUC = 0.67, PET model AUC = 
0.88, CT model AUC = 0.67, PET + CT model AUC 
= 0.75, Clinical + PET + CT model AUC = 0.90

Fiz et al.[35] 2022 PET/CT 74 - Backward 
stepwise/PCA

Clinical model AUC = 0.774, Clinical + Radiomics 
model AUC = 0.871, Tumor-/Margin + clinical + 
Radiomics model AUC = 0.882

Chen et al.[55] 2023 MRI Training: 167 
External 
validation: 68

1,132 LASSO; LR; DT Clinical model AUC = 0.787, Radiomics model 
AUC = 0.806, Clinical + Radiomics model AUC = 
0.874

Zhou et al.[54] 2021 MRI Training: 88 
External 
validation: 38

788 LASSO; LR Radiomics model AUC = 0.873, External validation 
AUC = 0.850

Xiang et al.[53] 2021 CT Training: 110 
Validation: 47

157 Hypothetical test; SVM Imaging model AUC = 0.824, Radiomics model 
AUC = 0.802, Imaging + Radiomics model AUC = 
0.886

MVI: Microvascular invasion; LR: logistic regression; RF: random forest; SVM: support vector machine; LASSO: least absolute shrinkage and 
selection operator; DT: decision tree; AUC: area under the curve; MRI: magnetic resonance imaging; CT: computed tomography.

et al. utilized the LASSO logistic regression to identify the optimal features from MRI images of patients in 
three cohorts (training cohort: n = 130, validation cohort: n = 33, test cohort: n = 24) and developed a 
radiomics model for preoperative MVI prediction[57]. This model showed excellent and consistent predictive 
performance in the training (AUC = 0.950), validation (AUC = 0.883), and test (AUC = 0.812) cohorts. 
Additionally, Qian et al. employed univariate and multivariate analyses to identify independent predictors 
of MVI status: larger tumor size (P = 0.003) and intrahepatic bile duct dilatation (P = 0.002)[57]. These factors 
were combined with the final radiomics model to create an MVI prediction nomogram, which also achieved 
strong predictive results across the training (AUC = 0.953), validation (AUC = 0.861), and test (AUC = 
0.819) cohorts. In 2023, Ma similarly built a predictive model for MVI using MRI features. Unlike Qian 
et al.[57], Ma et al. compared the predictive capabilities of different MRI sequences and VOIs, selecting the 
three most optimal sequences (T1WI-D, T1WI, DWI) and one optimal VOI (including the tumor and a 10 
mm peritumoral area), achieving desirable prediction outcomes (AUCTC = 0.987 and AUCVC = 0.859)[56]. 
The predictive ability further improved when combining tumor size, intrahepatic bile duct dilatation, and a 
multi-sequence fusion of VOI10 mm MRI in a radiomics model: TC (AUC = 0.995, 95%CI: 0.987-1.000) 
and VC (AUC = 0.867, 95%CI: 0.798-0.921). Additionally, Zhou et al. and Chen et al. developed RMs based 
on dynamic contrast-enhanced MRI images, achieving satisfactory results[54,55]. Beyond MRI, other imaging 
modalities also exhibited good predictive capabilities. In 2021, Xiang et al. constructed a portal phase image 
radiomics model with six features extracted from enhanced CT, displaying good predictive power in two 
cohorts (training group: n = 110, AUC = 0.804; validation group: n = 47, AUC = 0.769)[53]. The integration of 
significant clinical factors {satellite nodules [odds ratio (OR)=13.73], arterial hypointensity (OR = 4.31), and 
tumor contour (OR = 4.99)} with radiomics features into a nomogram achieved satisfactory predictive 
results, with AUCs of 0.886 in the training group and 0.80 in the validation group, significantly surpassing 
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the simple radiomics model and the clinical model (training group AUC: 0.822, test group AUC: 0.756). Fiz 
et al. elucidated that preoperative CT portal phase extraction of tumor and peritumoral tissue imaging 
characteristics enhanced the prediction of ICC grading and MVI (clinical data model: AUC = 0.75; clinical 
data model + tumor-VOI: AUC = 0.82; clinical data model + tumor-/edge-VOI: AUC = 0.82), finding that 
combining tumor with peritumoral tissue imaging characteristics could improve predictive power[58]. Jiang 
et al., by extracting features from PET and CT to construct predictive models separately, showed that the 
PET group significantly outperformed the CT group in predicting MVI (PET: AUC = 0.88; CT: AUC = 
0.67)[38]. However, the predictive ability of models combining PET and CT features decreased (PET + CT: 
AUC = 0.75). The best predictive results were achieved with a nomogram combining PET, CT, and clinical 
factors (PET + CT + Clinical: AUC = 0.90). It is evident that preoperative imaging-based prediction of MVI 
holds value, aiding doctors in making clinical decisions related to treatment plans and influencing.

Early recurrence post-surgery
Early recurrence is defined as recurrence within two years post-surgery or within one year postoperatively. 
It is a critical factor affecting overall patient survival[59,60]. Therefore, effectively identifying patients at high 
risk of early recurrence can help clinicians devise targeted treatment plans, thereby enhancing patient 
survival time. While some prediction models based on clinical features exist, their accuracy and applicability 
are limited, leading to an urgent need for new methods to identify ER patients. Medical imaging plays a 
crucial role in the preoperative assessment of ICC[61], making models built on image features for predicting 
ICC’s early recurrence a focus of research[62-66].

In 2018, Liang et al. were the first to use nine features extracted from MRI images to build a radiomics 
model to predict patients with ICC prone to early recurrence[67]. In the training cohort (n = 139) and the 
validation cohort (n = 70), the AUC of radiomics features was 0.82 (95%CI: 0.74-0.88) and 0.77 (95%CI: 
0.65-0.86), respectively. Liang et al. then developed a radiomics nomogram that combined imaging features 
and tumor clinical staging, achieving better predictive capacity with AUCs of 0.90 (95%CI: 0.83-0.94) and 
0.86 (95%CI: 0.76-0.93) across both cohorts[67]. Differing from Liang et al.[67], Xu et al. not only focused on 
the internal structure features of tumors in MRI images but also integrated peritumoral area features (3 and 
5 mm), finding that models combining internal tumor structure and a 5 mm peritumoral area performed 
better than those that only considered internal tumor structure or combined it with a 3 mm peritumoral 
area (AUC: 0.852 vs. 0.835 vs. 0.760)[47].

Beyond MRI, enhanced CT has also been frequently used to construct models predicting postoperative 
recurrence. Studies by Song et al. utilizing CT-constructed radiomics prediction models for early recurrence 
optimized the model’s predictive capacity by integrating clinical features. Song et al.’s combined prediction 
model, incorporating 15 radiomics features and three clinical features (CA19-9 > 1,000 U/ml, vascular 
invasion, and tumor margin), achieved an AUC of 0.974, significantly outperforming standalone RMs 
(AUC = 0.877), clinical feature models (AUC = 0.733), and the AJCC 8th TNM staging system (AUC = 
0.717)[66]. The studies by Bo et al. and Xu et al. also demonstrated that a combined model integrating 
radiomics and clinical features surpassed individual models (AUC: 0.873 vs. 0.872 vs. 0.685, 0.85 vs. 0.82 and 
0.75)[46,68]. Thus, selecting and combining different models appropriately can potentially enhance the new 
model’s predictive capacity. Yang et al. developed three predictive models, composed of clinical factors 
(CA19-9), pathological factors (MVI, tumor differentiation grade), imaging features, and a combination of 
these factors[69]. The composite model, integrating clinical factors (CA19-9), pathological factors (MVI, 
tumor differentiation grade), and imaging features, achieved the best predictive capacity (AUC = 0.876 vs. 
0.823 vs. 0.697). In another study, Zhao et al. established three sets of models for prediction, similarly to 
Yang, but incorporated postoperative immunohistochemical staining of tissue specimens for epidermal 
growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), P53, and Ki67 into 
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the pathological factors[65]. The results, akin to Yang’s et al. study[69], showcased the superiority of the 
composite model, which, compared to standalone radiomics and CRP models, demonstrated enhanced ER 
predictive performance with an AUC, sensitivity, and specificity of 0.949, 0.875, and 0.774, respectively. 
Observing the outcomes of these studies reveals that MRI and CT can effectively predict postoperative 
recurrence, and appropriately adding factors like clinical features, imaging features, postoperative pathology 
results, and immunological factors can significantly improve the predictive ability of the model. Studies are 
listed in Table 4.

OS
The most commonly used staging system for ICC currently is the TNM staging, based on the tumor, lymph 
nodes, and metastasis. Due to tumor heterogeneity, the prognosis of ICC patients varies significantly among 
individuals, making the prediction accuracy somewhat limited[70,71]. In clinical practice and future clinical 
trials, effective prognostic prediction tools, such as radiomics-based predictive models and nomograms, 
have been proposed[35,61,72-74]. This represents a pressing need for formulating treatment strategies.

Deng et al. conducted a radiomics analysis of venous and arterial phase CT images of 82 ICC patients, 
combining radiomics features with clinical factors to establish a composite model[75]. This model included 
the psoas muscle index, radiomics score, intrahepatic bile duct stones, carcinoembryonic antigen, and the 
neutrophil-to-lymphocyte ratio as five indicators. The results showed a C-index of 0.768, with the AUC for 
predicting 1-year and 3-year OS rates being 0.809 and 0.886, respectively, significantly higher than other 
models. Park et al. aimed to develop and validate a preoperative model that could predict postoperative 
outcomes[76]. They constructed three different models using clinical, radiological, and radiomics features, 
with the focus on predicting recurrence-free survival. The clinical-radiological-radiomics model showed the 
best performance, with a training group C-index of 0.75 (0.72-0.79). This assists in assessing the 
postoperative outcomes of ICC patients with tumor formations preoperatively, allowing for the selection of 
the best treatment plan at the initial decision-making stage.

Fiz et al. extracted radiomics features from 18F-FDG PET/CT images and, along with clinical data, 
established clinical models, clinical plus intratumoral RMs, and clinical plus intratumoral and peritumoral 
(5 mm) RMs to predict tumor grading, MVI, OS, and progression-free survival (PFS)[35]. The results 
indicated that adding peritumoral radiomics features could optimize predictions for ICC tumor grading and 
survival rates (AUC = 0.834 vs. 0.783 vs. 0.718), but did not improve MVI predictions (AUC = 0.881 vs. 
0.871 vs. 0.773). Thus, ICC radiomics based on PET can also predict pathological data, allowing for a 
reliable preoperative prognostic assessment. Tang et al. conducted a radiomics analysis of CT images and 
used the LASSO method to select three imaging features[77]. Multivariate Cox analysis identified three 
independent prognostic factors: cirrhosis, CA19-9 levels ≥ 35 U/mL, and tumor size > 5 cm. A nomogram 
combining imaging features and clinical factors was constructed. The radiomics nomogram demonstrated 
significant prognostic value for OS. Tang et al.’s study revealed notable differences in 1-year and 3-year 
survival rates between high-risk and low-risk patients: 30.4% vs. 56.4% and 13.0% vs. 30.6%, respectively (P = 
0.018). Additionally, ultrasound could also be utilized to construct models[77]. Li et al. were the first to 
extract radiomics features from baseline ultrasound (US) and contrast-enhanced ultrasound (CEUS) images 
(four sequences) to build a preoperative model predicting OS in patients with ICC[73]. The nomogram, 
including CA 19-9, gender, ascites, radiomics features, and radiological characteristics, achieved a higher C-
index than the 8th TNM staging system. In another study, Yang et al. used an MRI-based radiomics model 
to predict preoperative survival outcomes[78]. Integrating radiomics features into the TNM staging system 
significantly improved prognostic accuracy (validation set C-index 0.745 vs. 0.649, P = 0.039, NRI improved 
by 39.9%-43.8%, IDI improved by 16.1%-19.4%). In summary, as a method of extracting quantitative and 
high-dimensional features from medical imaging data, radiomics can accurately describe tumor biological 
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Table 4. Predicting early recurrence post-surgery

Author Year Image 
modality

Number of 
cases

Number of 
features

Feature selection & 
modeling method Model performance (AUC, sensitivity, specificity)

Song et al.[66] 2023 CT Training: 160 
Validation: 36 
External 
validation1: 74 
External 
validation2: 61

15 mRMR; GBM Radiomics model AUC = 0.877, Clinical model AUC = 0.733, Combination clinical-radiomics model AUC = 
0.974

Bo et al.[68] 2023 CT Training: 90 
Validation: 37

10 LR; SVM; Neural network; RF; 
XGBoost; LightGBM; Bayes

LR model AUC = 0.87, SVM model AUC = 0.89, Neural network model AUC = 0.89, RF model AUC = 
0.89, XGBoost model AUC = 0.85, LightGBM model AUC = 0.84, Bayes model AUC = 0.88, Clinical model 
AUC = 0.685

Liang et al.[67] 2018 CT Training: 139 
Validation: 70

9 LASSO; LR Radiomics model AUC = 0.82, Radiomics + Clinical stage model AUC = 0.90

Xu et al.[47] 2021 CT Training: 159 
Validation: 50

2268 mRMR; Bootstrap RS (IA) AUC = 0.778, RS (IA and 3 mm PA) AUC = 0.793, RS (IA and 5 mm PA) AUC = 0.804, CFM AUC 
= 0.788, CM (IA) AUC = 0.829, CM (IA and 3 mm PA) AUC = 0.819, CM (IA and 5 mm PA) AUC = 0.825

Yang et al.[69] 2022 CT Training: 87 
Validation: 37

- mRMR; RF; LR Clinical model AUC = 0.697, Radiomics model AUC = 0.823, Clinical + Radiomics model AUC = 0.876

Chen et al.[62] 2023 CT 136 - LR; RF; Neural network; Bayes; 
SVM; XGBoost

LR AUC = 0.7594, RF AUC = 0.8914, Neural network AUC = 0.7386, Bayes AUC = 0.6818, SVM AUC = 
0.7396, XGBoost AUC = 0.8026

Zhu et al.[63] 2021 MRI Training: 125 
Validation: 87

- LASSO; LR Preoperative model AUC = 0.844, Pathological model AUC = 0.741, Combination model AUC = 0.917

Zhao et al.[65] 2019 CT 47 - Hypothetical test; LR Radiomics model AUC = 0.889, Clinical model AUC = 0.798, Combined clinical-radiomics model AUC = 
0.949

LR: Logistic regression; RF: random forest; Bayes: bayesian classifier; SVM: support vector machine; XGBoost: eXtreme Gradient Boosting; mRMR: minimum redundancy maximum relevance; LASSO: least absolute 
shrinkage and selection operator; GBM: gradient boosting machine; AUC: area under the curve; MRI: magnetic resonance imaging; CT: computed tomography.

characteristics, predicting the prognosis of ICC. Studies are listed in Table 5.

FUTURE DIRECTIONS OF RADIOMICS IN ICC
Beyond the applications discussed, the use of radiomics in ICC patients has many potential avenues for expansion, such as predicting pathological features 
typically diagnosed postoperatively, and even certain genotypes[80-87]. In 2017, Rios Velazquez et al. confirmed the association between imaging phenotypes 
captured using radiological features and EGFR-mutated tumors in four independent lung adenocarcinoma cohorts[88]. This association may have clinical 
implications for selecting patients for targeted therapy. The correlation between imaging phenotypes and other molecular subtypes of NSCLC is also being 
further investigated in prospective genotyping analysis cohorts[89].
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Table 5. Survival data: overall survival

Author Years Image Number of cases Feature selection classifier C-index

Silva et al.[79] 2021 CT 78 PCA 0.81

Tang et al.[72] 2021 CT 101 LASSO 0.781

Park et al.[76] 2021 CT 345 LASSO 0.75

Deng et al.[75] 2021 CT 82 Cox + AIC 0.768

Li et al.[73] 2022 US 170 LASSO 0.72

Fiz et al.[35] 2022 PET/CT 74 Correlation/PCA 0.8

Yang et al.[78] 2022 MRI 163 LASSO 0.75

CT: Computed tomography; PCA: principal component analysis; LASSO: least absolute shrinkage and selection operator; MRI: magnetic 
resonance imaging; AIC:akaike information criterion.

Qian et al., for example, utilized a nomogram combining features extracted from MRI images with clinical 
factors to predict Ki-67 expression, achieving promising predictive capability in the test cohort (AUC = 
0.815)[80]. Members of the immune checkpoint pathway, such as Programmed Death Protein 1 (PD-1) and 
its ligand PD-L1, have garnered increasing attention in recent years[90-92]. Currently, immunohistochemistry 
staining on needle biopsies is a common method to assess tumor PD-1/PD-L1 expression. However, the 
heterogeneous expression of these markers often confuses results, limiting the clinical utility of measuring 
PD-1/PD-L1 expression. Molecular imaging can uncover the tumor microenvironment (TME) and allow 
for real-time visualization of target molecule and cell expression using specific radioactive isotopes or 
optical probes. Zhang et al., based on MRI, established a predictive model for PD-1/PD-L1 expression, 
employing Radscores (arterial phase), clinical-radiological factors, and clinical factors both individually and 
combined[93]. The models predicting PD-1 and PD-L1 expression achieved the highest area under the curve 
of 0.897 and 0.890, respectively. MRI radiomics can potentially act as a non-invasive biomarker to evaluate 
PD-1/PD-L1 expression and predict ICC patient prognosis. The research conducted by Zhang et al. has also 
yielded similar results[93].

Apart from PD-1 and PD-L1, various ICIs[94], such as Cytotoxic T-lymphocyte antigen 4 ( CTLA4)[95,96], 
EGFR[87,97], and anaplastic lymphoma kinase (ALK)[98], which have not yet been explored in ICC, have 
potential research value. He et al. constructed a radiomics model predicting CTLA4 expression levels using 
seven radiomics features, with AUCs of 0.769 for the training set and 0.724 for the validation set[95].

To improve the survival rate of ICC patients, a combination of local and systemic treatment strategies is 
usually employed. Multiple treatments may include resection, thermal ablation, radiation therapy, 
transarterial embolization, and systemic therapy[99-101]. The timing and intent of systemic therapy depend on 
the tumor stage and the pathological condition of the specimen. Systemic therapy is often aimed at palliative 
care. However, systemic therapy or chemoradiotherapy can also serve as neoadjuvant therapy to shrink the 
tumor size, allowing for local treatment. Considering the potential adverse reactions from the treatment, 
patient selection and monitoring are crucial for optimal treatment outcomes.

New prognostic variables have led to the development of predictive models for treatment response. Over the 
past decade, studies using advanced analytical techniques like radiomics have significantly expanded and 
achieved promising predictive results in various cancers[102-106]. However, studies on using radiomics to 
predict treatment outcomes in ICC are relatively few. In 2020, Mosconi et al. investigated the link between 
structural features on pre-transarterial radioembolization (pre-TARE) CT and objective response (OR), 
PFS, and OS[107]. The findings showed that post-TARE, there was higher iodine uptake in the arterial phase 
(higher mean histogram value, P < 0.001) and a more uniform distribution (low kurtosis, P = 0.043; GLCM 
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contrast, P = 0.004; GLCM variance, P = 0.005; GLCM homogeneity, P = 0.005; and GLCM correlation, P =
0.030). Good radiomic features were found in 15 out of the 55 patients. In 2023, Ballı et al.[108] conducted a
similar TARE-based study and found that a radiomics model established based on pre-treatment MRI could
accurately predict the radiographic response to Yttrium-90 TARE in ICC patients. Combining radiomics
with clinical features can enhance the predictive power of the model.

In other cancers, radiomics has been widely used to predict treatment response[109,110], especially for
predicting responses to targeted therapy combined with immunotherapy[111,112]. However, current articles on
using radiomics to predict treatment response in ICC are few and all are related to TARE, indicating
significant potential in this field for the future.

When assessing ICC staging and resectability with current imaging methods, some cases are discovered to
be unresectable intraoperatively, referred to as futile resections. The primary cause of futile resections is the
discrepancy between preoperative assessments and intraoperative findings, including peritoneal metastasis,
intrahepatic multifocal metastasis, and extensive tumor infiltration. Chu et al. used enhanced CT imaging to
extract radiomics features and, using postoperative pathology as the gold standard, established clinical
models, RMs, and combined models to predict futile resection in ICC patients[113]. The results showed that
the radiomics model and the combined model predicted ICC futile resection with similar efficacy, both
outperforming the clinical model, with AUCs of 0.838, 0.864, and 0.716 for the training group and 0.804,
0.800, and 0.590 for the validation group, respectively.

Additionally, Cai et al. utilized retrospective data from breast cancer (BC) patients undergoing ultrasound
and tomography synthesis, developing a SVM algorithm to predict pCR status (ypT0 and ypN0) using
preprocessed ultrasound and tumor synthesis radiomics features along with patient and tumor variables,
achieving good results (AUC 0.72-0.81; P = 0.007)[114]. Han et al. also demonstrated superior diagnostic
performance using radiomics methods in predicting preoperative multiplanar reconstruction (MPR) to
neoadjuvant chemotherapy in non-small cell lung cancer[115]. Predicting the effectiveness of systemic
chemotherapy in patients using radiomics has not yet been applied in ICC patients but may become a
potential research focus in the future.

In ICC, Immune cells are vital components of the tumor immune microenvironment[116,117], with a high
density of immune cells associated with improved survival rates and considered to exert local antitumor
activity[118]. Currently, there is no non-invasive method to assess the quantity and distribution of immune
cells in ICC. However, advancements have been made in some cancers using radiomics technology[119-122].
Jeon et al. extracted radiomics features from four phases of dynamic contrast-enhanced MRI and combined
features from all four phases to build RMs for predicting CD8+ T cell infiltration and its spatial structure
represented by immune phenotype[123]. The model showed high performance in both training (AUC =
0.973) and validation cohorts (AUC = 0.985), accurately predicting the BC immune phenotype based on
CD8+ T cell spatial distribution. This method could be used for non-invasive stratification of patients based
on the state of the tumor immune microenvironment. Similar to Jeon et al.’s study[123], Jiang et al. focused
on generating an image-driven biomarker (Rad_score) to predict tumor-infiltrating regulatory T
lymphocytes (Treg) in BC[124]. Jiang et al. extracted 108 radiological features from MRI images, four of which
were used for model construction. The SVM model’s area under the curve (AUCs) for the training and
validation sets were 0.744 (95%CI: 0.622-0.867) and 0.733 (95%CI: 0.535-0.931), respectively[124]. Sun et al.
developed and validated two CT imaging biomarkers [lymph radiomics score (LRS) and marrow radiomics
score (MRS)] to assess the immunohistochemistry (IHC)-derived lymphatic and marrow immune
environments[119]. The non-invasive imaging biomarkers accurately assessed the immune environment and
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provided information for gastric cancer prognosis and immunotherapy.

Currently, most predictive nomograms based on radiomics are formed by combining radiomics features 
with clinical factors or by combining features from different imaging sequences[22,125]. Feng et al., aiming to 
forecast the pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal 
cancer, established a radiopathomics model[126]. The Radiology Pathology Integrated Prediction System 
(aripes) was built on three feature sets related to pathological complete response: radiomics MRI features, 
pathomics nuclear features, and pathomics microenvironment features. The prediction system showed 
AUCs of 0.868 (95%CI: 0.825-0.912) for the training cohort, 0.860 (0.860-0.828-0.892) for validation cohort 
1, and 0.872 (0.810-0.934) for validation cohort 2. Thus, aripes integrates radiomics MRI features, pathomics 
nuclear features, and pathomics microenvironment features, which could also be applied in ICC in the 
future, such as predicting the effectiveness of chemotherapy, postoperative recurrence, etc.

Beyond predicting responses to chemotherapy, radiomics is increasingly applied to the comprehensive 
evaluation of the TME and cancer prognosis. The TME constitutes a highly dynamic and spatially 
heterogeneous multicellular ecosystem, encompassing diverse cell types and molecular components. It plays 
a pivotal role in modulating tumor characteristics, including its plasticity, invasiveness, and metastatic 
potential. Radiomics can elucidate the relationships between TME features and imaging characteristics, 
thereby facilitating predictions of tumor progression. For instance, Yu et al. demonstrated the efficacy of 
MRI radiomics in predicting preoperative axillary LNM, identifying correlations between radiomic features 
and TME characteristics, such as immune cell populations, long-chain non-coding RNAs, and methylation 
sites, thus uncovering potential biological insights[127].

Nevertheless, radiomics has inherent limitations. The highly dynamic and heterogeneous nature of the TME 
poses challenges for single-modal imaging approaches in assessing the TME and predicting cancer 
prognosis. The development of multiomics methodologies, including radiogenomics, radiotranscriptomics, 
and radiopathomics, represents a significant advancement, offering novel strategies for evaluating the TME 
and cancer prognosis. Future research is poised to integrate transcriptomics, proteomics, metabolomics, and 
other multiomics data to achieve a more comprehensive understanding of the TME’s complexity and 
heterogeneity, thus enhancing prognostic accuracy and clinical utility.

DISCUSSION
Recent studies have demonstrated that while radiomics analysis has significant potential in various tumor 
applications, variability in feature extraction and lack of reproducibility remain major limitations[128,129]. 
Future radiomics research can benefit from standardizing imaging protocols related to dose administration, 
consistent acquisition parameters, and using reconstruction kernels with lower noise levels[130].

As radiomics progresses, an increasing number of studies have demonstrated its broad application 
prospects in the early diagnosis, treatment, prognostication, and recurrence assessment of ICC. However, as 
an emerging technology, the application of radiomics to ICC still faces challenges and limitations: (1) Many 
current studies are conducted at single centers with limited sample sizes and lack prospective research. 
Small sample sizes can cause model overfitting and inadequate validation sets when numerous radiomic 
features are extracted, increasing the risk of selection bias. Future studies require larger-scale, multicenter 
prospective research; (2) RMs generally perform better than clinical models, but combining radiomic 
models with clinical indicators to build models will yield reliable results; (3) Tumor image segmentation 
methods can be manual, semi-automatic, or automatic. However, current studies predominantly rely on 
manual segmentation, which is labor-intensive and subject to subjective bias, awaiting the emergence of 
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various automatic segmentation methods; (4) Beyond the method of delineation, the outlines are not 
confined to the tumor itself but can also encompass subregions, such as the peritumoral area, which 
contains valuable information; (5) ICC can be categorized into three distinct morphological subtypes: mass-
forming, periductal infiltrating, and intraductal growth. Among these, the mass-forming subtype is the most 
prevalent. However, the application of radiomics techniques to the study of the periductal infiltrating and 
intraductal growth subtypes remains challenging due to the complexities in capturing their imaging 
characteristics; (6) In the future, there should be active exploration of integrating radiomics with other 
omics, such as pathomics or genomics, to form an omics-integrated predictive system, thereby enhancing 
predictive capabilities.

Although research in ICC radiomics has made some progress in various aspects, there is still a lack of study 
volume. Future research should incorporate multi-phase image features, histopathology, 
immunohistochemical markers, genomics, and metabolomics to advance the realization of personalized 
clinical treatment.

In addressing the challenges currently encountered by radiomics in early diagnosis, treatment, prognosis 
prediction, and recurrence assessment of tumors, we should take appropriate actions. Accurate 
identification and segmentation are essential for selectively collecting radiomic features of tumors. Manual 
and semi-automatic segmentation techniques are labor-intensive and exhibit high inter- and intra-regional 
variability due to factors such as shape, size, poor contrast with adjacent organs, and surrounding 
structures[131]. Studies have demonstrated that automated segmentation methods in pelvic organs, including 
feature detection, edge or intensity-based methods, clustering techniques, shape and/or location priors, 
thresholding, and deformable models, enhance the reproducibility of radiomic studies[132]. Robust machine 
learning techniques for training reliable models have become an essential part of radiomics. These methods 
can learn from data, thereby automating and improving the prediction process, which enhances the 
performance of radiomics-based predictive models. Parmar et al. evaluated the predictive performance and 
stability of 14 feature selection methods and 12 classification methods for NSCLC patients, demonstrating 
the importance of selecting appropriate machine learning methods for each tumor type[133]. However, too 
many features may contain redundant and irrelevant information, leading to overfitting. The number of 
features can be reduced before being used as input for machine learning training. This can be done by 
performing repeat analysis on patients to identify the most reliable/reproducible features and assess 
redundancy[134]. Finally, before being applied in clinical settings, the stability and reproducibility of 
prognostic/predictive models should be evaluated[135]. Many studies have presented findings based on 
relatively small datasets, and internal validation might not be adequate to predict performance on external 
datasets. Therefore, it is necessary to conduct such external validation in large, multicenter environments 
before implementing these predictive models in clinical practice[136].
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