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Abstract
Aim: Scale-aware 3D reconstruction of the surgical scene from a monocular endoscope is important for automatic
navigation systems in robot-assisted surgery. However, traditional multi-view stereo methods purely utilize monoc-
ular images, which can recover 3D structures arbitrarily scaled with the real world. Current deep learning-based ap-
proaches rely on large training data for relative depth estimation and further 3D reconstructionwith no scale. Inspired
by recently proposed neural radiance fields (NeRF), we present a novel pipeline, KV-EndoNeRF, which explores limited
multi-modal data (i.e., robot kinematics, and monocular endoscope) for surgical scene reconstruction with absolute
scale.

Methods: We first extract scale information from robot kinematics data and then integrate it into sparse depth re-
covered from structure from motion (SfM). Based on the sparse depth supervision, we adapt a monocular depth
estimation network to the current surgical scene to obtain scene-specific coarse depth. After adjusting the scale of
coarse depth, we use it to guide the optimization of NeRF, resulting in absolute depth estimation. The 3D models of
the tissue surface with real scale are recovered by fusing fine depth maps.

Results: Experimental results on the Stereo Correspondence And Reconstruction of Endoscopic Data (SCARED)
demonstrate that KV-EndoNeRF excels in learning an absolute scale from robot kinematics and achieves 3D recon-
struction with rich details of surface texture and high accuracy, outperforming other existing reconstruction methods.
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Conclusion: Combining multi-modal image data with NeRF-based optimization represents a potential approach to
achieve scale-aware 3D reconstruction of monocular endoscopic scenes.

Keywords: Scale-aware reconstruction, NeRF-based optimization, multi-modal data learning, surgical navigation,
robotic surgery

1. INTRODUCTION
Reconstructing scale-aware 3D structures from monocular endoscopes is a fundamental task for some emerg-
ing surgical robotic systems, such as flexible robots [1–3]. It is also a prerequisite for applications such as multi-
modal image registration and automatic navigation based on real-scale 3Dmodeling of human anatomies [4–6].
However, relying solely on monocular images is insufficient to accurately recover 3D structures with absolute
scale in the surgical scene. Several methods for scene reconstruction from monocular endoscopes have been
explored. Traditional multi-view stereo methods [7] can simultaneously recover 3D point clouds and camera
poses in scenes with rich features. However, these methods cannot directly reconstruct structures with real
scale, requiring manual estimation of the global scale and then optimization of it using “iterative closest point”
registration algorithm (ICP) [8]. Recent deep learning-based methods [8–10] have exploited large numbers of
surgical images with certain requirements, such as static tissue surfaces or ground truth depth labels, to train
convolutional neural networks (CNN) for relative depth estimation and further reconstruction. However,
based on our experiments, these methods only predicted relative depth by large training data and computed
3D reconstruction without an accurate scale.

Surgical robotic systems provide richer information beyond images, such as robot kinematics, which describes
how robotic instruments are mechanically controlled. This kinematics information can enhance the percep-
tion in a multi-modal learning style [11]. Despite much work on recognition-related tasks using robotic infor-
mation [12–14], joint modeling of kinematics and visual data for monocular 3D reconstruction has been rarely
studied to date due to several challenges. First, acquiring large surgical datasets with static scenes for learning-
based methods is difficult. Second, generating accurate ground truth depth labels of real endoscopic images is
hard. Third, for 3D reconstruction, robot kinematics and endoscopic videos represent multi-modal data, and
how to efficiently integrate kinematics data into the images remains underexplored.

Neural radiance fields (NeRF) have emerged as a promising technology [15,16] for quality novel view synthesis
and 3D reconstruction. These methods utilize neural implicit fields to represent continuous scenes. Several
variants of NeRF [17,18] have incorporated sparse 3D points from structure from motion (SfM) techniques to
guide ray termination and optimize the neural implicit field for view synthesis. However, these approaches
have primarily focused on relative depth estimation in natural scenes. In the context of urban environments,
urban radiance fields (URF) [19] have been introduced to apply NeRF-based view synthesis and visual recon-
struction. URF leverages sparse multi-view images along with LiDAR data to reconstruct urban scenes. In the
field of medicine, a recent work called EndoNeRF [20] has presented a pipeline for achieving single-view 3D
reconstruction of dynamic surgical scenes. This methodology specifically addresses the challenges of recon-
structing surgical scenes that involve deformable tissues.

In this paper, we propose a novel approach, KV-EndoNeRF, for reconstructing surgical scenes with an accurate
scale using kinematics and visual data. Our contributions can be summarized as follows: Firstly, we introduce
a NeRF-based pipeline specifically designed for scale-aware reconstruction frommulti-modal data, addressing
the challenging problem of reconstructing 3D scenes with scale from a monocular endoscope. Secondly, we
incorporate scale information extracted from robot kinematics and coarse depth information learned from
SfM into the NeRF optimization process, improving the accuracy of the reconstruction. Finally, we evaluate
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Figure 1. Illustration of our proposed KV-EndoNeRF for scale-aware monocular reconstruction from the robotic endoscope. NeFR: Neural
radiance fields.

our proposed pipeline, KV-EndoNeRF, both qualitatively and quantitatively on the publicly available Stereo
Correspondence And Reconstruction of Endoscopic Data (SCARED) robotic endoscope dataset. The results
demonstrate that KV-EndoNeRF outperforms previous methods, showcasing its ability to achieve 3D recon-
struction with accurate scale in monocular surgical scenes.

2. METHODS
2.1 Overview of NeRF-based scale-aware reconstruction
Considering robot-assisted endoscopy, the goal of our proposed pipeline, KV-EndoNeRF, is to achieve scale-
aware monocular reconstruction from limited multi-modal data (i.e., kinematics, and endoscopic image se-
quences). It requires neither large numbers of endoscopic images for training, nor other imaging modalities,
such as computed tomography (CT) andmagnetic resonance image (MRI), for the ground truth labels. The key
to our pipeline is to effectively incorporate the scale information from robot kinematics into NeRF-represented
surgical scenes for optimization. Following the modeling in NeRF [15], we represent the surgical scene as a neu-
ral radiance field for further volume rendering (Section 2.2). As shown in Figure 1, we first extract the absolute
scale from kinematics and then fuse it into sparse depth produced by SfM. Under sparse supervision, we fine-
tune a monocular depth estimation network to the current endoscopic scene for scene-specific coarse depth
(Section 2.3). After adjusting the scale of coarse depth estimation, we integrate it into the ray marching of
NeRF and optimize the volumetric field to obtain the absolute depth (Section 2.4). Finally, the refined abso-
lute depth maps are fused in a truncated signed distance functions (TSDF)-based volumetric representation
according to the endoscopic trajectory (Section 2.5). This results in a reconstructed 3D model of the surgical
scene with global-scale information.

2.2 Surgical scene representing and rendering by NeRF
NeRF has achieved impressive success in view synthesis by optimizing the neural implicit field. Our pipeline
explores its potential for the optimization of depth estimates. We represent a surgical scene as a neural radiance
field 𝐹𝜃 , which is an 8-layer multilayer perceptron (MLP) with network parameter 𝜃. The field, 𝐹𝜃 : (x, d) →
(c, 𝜎), maps a 3D point x ∈ R3 and a viewing direction d ∈ R3 to an RGB value c (x, d) ∈ R3 and space
occupancy 𝜎 (x) ∈ R. With scene representations, we further adopt the volume rendering [21] in NeRF to
generate rendered images for training. The volume rendering starts with shooting a batch of endoscope rays
into the surgical scene from the endoscope center o along the direction d. Each ray is constructed as r (𝑠) =
o + 𝑠d, where 𝑠 is the ray parameter. We then proceed with ray marching to sample points in the space.
Specifically, we partition each camera ray r (𝑠) into a batch of points {x𝑘 |x𝑘 = r (𝑠𝑘 )}𝑚𝑘=1. Then, the rendered
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color image C and per-view depth value D of a camera ray r (𝑠) can be computed using volume rendering as:

C (r (𝑠)) =
𝑚∑
𝑘=1

𝑤𝑘 · c (x𝑘 , d), D (r (𝑠)) =
𝑚∑
𝑘=1

𝑤𝑘 · 𝑠𝑘 (1)

where 𝑤𝑘 = (1 − exp (−𝜎 (x𝑘 ) △𝑠𝑘 )) exp
(
−∑𝑘−1

𝑙=1 𝜎 (x𝑙) △𝑠𝑙
)
, △𝑠𝑘 = 𝑠𝑘+1 − 𝑠𝑘 .

In this way, the 3D structure of the surgical scene can be encoded as a continuous implicit function, which
enables memory-efficient geometric representation with infinite resolution.

2.3 Coarse depth adaptation and scale recovery with kinematics
Weuse the SfM to reconstruct the surgical scene as a set of 3D pointsX and camera posesT = {T𝑖 ∈ SE (3) |𝑖 =
1 · · · 𝑁} for the input images extracted from the unlabeled endoscopic video. To eliminate extreme outliers in
the sparse reconstruction, point cloud filtering is utilized. For each endoscopic image pair, the rigid transfor-
mation matrix 𝐼T𝑖+1

𝑖 from image 𝑖 to 𝑖 + 1 can be computed by the camera poses T , where the left superscript
{𝐼} denotes the pose described under the image coordinate. As the endoscope is attached to a robot, the cam-
era poses under the robot coordinate system can be calculated from kinematics information, considered as a
reference to recover the absolute scale. Therefore, the relative pose 𝑅T𝑖+1

𝑖 under the robot base {𝑅} is computed.
The absolute scale between the reconstructed structure and the real world can be estimated by:

𝜆 = exp

(
1

𝑁 − 1

𝑁−2∑
𝑖=0

log10

( 𝑅t𝑖+1
𝑖


2𝐼 t𝑖+1

𝑖


2

))
, (2)

where t𝑖 is the translation vector of the camera poseT𝑖 . Althoughwe can compute scale data for each frame, the
noise in the kinematics data and the instability of the poses in T introduce severe noise to each scale. To filter
the scale, we employ a logarithmic moving average with a multiplicative error model. Based on the computed
scale factor, we adjust the sparse 3D structure and camera poses to match the real-world values. Afterward,
the scaled 3D point cloud X′ is projected onto each image plane with the corresponding scaled camera pose
T′
𝑖 . The re-projected 𝑧 values are concatenated as the sparse depth supervision 𝑠D𝑖 , where the region with no

points projected onto is set to zero.

To obtain scene-specific coarse depth from the current endoscopic data, we propose adapting a depth estima-
tion network. This network is fine-tuned using the sparse depth supervision 𝑠D𝑖 . However, due to the scale
ambiguity in the predicted depth map, we utilize the scale-invariant log loss [22] for training the depth network.
The scale-invariant log loss is defined as:

L =

√√√√
1
𝑀

𝑀∑
𝑡=1

𝑒2
𝑡 −

𝛼

𝑀2

(
𝑀∑
𝑡=1

𝑒𝑡

)2

(3)

where 𝑒𝑡 = log 𝑦𝑡 − log 𝑦𝑡 ′, 𝑦𝑡 represents the coarse depth value predicted by the proposed depth network, and
𝑦′𝑡 is the value of the corresponding sparse depth supervision 𝑠D𝑖 . 𝑀 denotes the number of pixels with valid
supervision values, and 𝛼 is a weighting factor.

2.4 NeRF-based optimization for absolute depth
According to Equation (2), we can determine the absolute scale between the reconstruction and real-world
values using the robot kinematics information. To incorporate this calculated scale into dense monocular
reconstruction, we propose guiding the NeRF sampling process with our coarse depth estimation and scale in-
formation. First, we align the scale of the coarse depth map 𝑐D𝑖 based on the depth supervision 𝑠D𝑖 . Moreover,
we compute the confidence map of 𝑐D𝑖 by a geometric consistency check. The depth 𝑐D𝑖 is first projected onto
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all other views using the following equations:

p𝑖→ 𝑗 ,
𝑐D𝑖→ 𝑗 ∼ K ·

(
T 𝑗
𝑖

)′
· 𝑐D𝑖 (p𝑖) · K−1 · h (p𝑖) (4)

𝑐D′
𝑗 =

𝑐D 𝑗
(
p𝑖→ 𝑗

)
(5)

where K represents the endoscope intrinsic matrix, and p denotes a pixel in the image. Subsequently, we
calculate the depth reprojection error between 𝑐D′

𝑗 and
𝑐D𝑖→ 𝑗 . The confidence map E𝑖 for each view is defined

as the average value of the top 𝐾 minimum cross-view depth reprojection errors.

Next, during ray marching, we sample points using a Gaussian distribution guided by the prior from the scaled
coarse depth. Assuming the coarse depth value for a pixel p to be zp = 𝑐D𝑖 (p), we sample the candidates using
the distribution 𝑠𝑘 ∼ N

(
zp, 𝛿

2
p

)
, where 𝛿p = zp · E𝑖 (p). This sampling method ensures that the points are

concentrated around tissue surfaces.

To estimate the absolute depth of endoscopic frames, we can optimize the network parameter 𝜃 by supervising
the rendered color images. To be more specific, the loss function utilized to train the network is defined as
follows:

L (r (𝑠)) = ∥C (r (𝑠)) − I𝑖 (p)∥2
2 (6)

where p represents the location of the pixel that r (𝑠) shoots toward, and I𝑖 corresponds to the input endoscopic
image.

2.5 Volumetric reconstruction on fine depth
To further refine depth accuracy, we use the view synthesis results of NeRF to calculate the per-pixel error for
the predicted structure. If the rendering at a specific pixel does not match the input endoscopic image well, a
high error is assigned to the depth prediction of that pixel. The error map R𝑖 (p) for the pixel p in the 𝑖th view
is expressed as:

R𝑖 (p) = ∥I𝑖 (p) − C (p)∥1 / 255 (7)

The error map is then used to improve the estimated depth by a filter. We apply an off-the-shelf post-filtering
approach [23] to obtain the fine output, which enhances absolute depth estimates, particularly in regions where
the renderings are not accurate.

Afterward, these fine depth maps are fused to create a surface reconstruction. We use TSDF [24] to build a
volumetric representation of the tissue surface. Since the predicted depth maps and the endoscope poses are
scaled to the real world, all data are made scale-aware and -consistent before fusion. The surgical scene is
represented by a discrete voxel grid, and for each of them, a weighted signed distance to the closest surface
is recorded. The TSDF is updated in a straight manner, using sequential averaging for each voxel and the
predicted depth for each pixel in every image. Finally, the whole 3D structure is reconstructed by themarching
cubes method [25] from the volumetric representation.

3. RESULTS
3.1 Dataset and implementation details
We evaluate our scale-aware monocular reconstruction pipeline on the publicly available SCARED dataset [26].
This dataset consists of seven training datasets and two test datasets captured by a da Vinci Xi surgical robot.
Each dataset is collected from a porcine model and contains four or five keyframes. Each keyframe includes a
video with kinematic information about the endoscope. From each dataset, we randomly select one keyframe
and extract a set of 40 to 80 images that cover the entire surgical scene. During the data collection process, the
robot manipulates an endoscope to observe the interior scenes of the porcine abdominal anatomy. A projector
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Figure 2. Four typical examples of the SCARED data. For every row, when the robot manipulates the endoscope to move, diversified views
and corresponding robot kinematics are recorded in sequence. SCARED: Stereo Correspondence And Reconstruction of Endoscopic Data.

is used to calculate high-quality depthmaps for each frame. As a result, the dataset provides endoscopic videos
with ground-truth depth maps and robot kinematics. Typical examples of the SCARED data are illustrated in
Figure 2. In addition, the robot kinematics information is utilized to restore the scale.

In our implementation, we used the network architecture proposed in Mannequin Challenge [27] with pre-
trained weights as the monocular depth network for coarse depth adaptation. Twenty fine-tuning epochs were
used in the surgical scene-specific adaptation. We set 𝐾 = 4 for the geometric consistency check. For the
NeRF-based optimization, we followed the settings in NeRF [15]. Specifically, we sampled 64 points in each
ray and used a batch of 1,024 rays during the training. We added random Gaussian noise with zero mean
and unit variance to the density to regularize the network. Additionally, positional encoding was utilized to
capture high-frequency details. Using Adam optimizer with an initial learning rate of 5e-4, which decayed
exponentially to 5e-5, we trained our NeRF on each surgical scene for 200 𝐾 iterations. All experiments were
conducted on a single RTX 2080 Ti.

3.2 Performance metrics
Table 1 lists the depth evaluation metrics [28] used in our experiments, where 𝑑 and 𝑑∗ denote the estimated
depth value and the corresponding ground truth, respectively, D represents the estimated depth map, and
𝜐 ∈ {1.251, 1.252}. Additionally, since the comparison methods cannot accurately predict depth maps with
an absolute scale frommonocular images, we employ the ground truth median scaling method [29] to scale the
predicted depth. The scaling is performed as follows:

D𝑠𝑑 = D · 𝑠 = D · median(G)
median(D)

(8)

where D𝑠𝑑 denotes the scaled predicted depth, 𝑠 represents the scale information calculated by the median
scaling method, and G is the ground truth depth.
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Table 1. Depth evaluation metrics

Metrics Definition

Abs Rel 1
|D|

∑
𝑑∈D |𝑑∗ − 𝑑 |/𝑑∗

Sq Rel 1
|D|

∑
𝑑∈D |𝑑∗ − 𝑑 |2/𝑑∗

RMSE
√

1
|D|

∑
𝑑∈D |𝑑∗ − 𝑑 |2

RMSE𝑙𝑜𝑔

√
1
|D|

∑
𝑑∈D | log 𝑑∗ − log 𝑑 |2

𝛿 1
|D|

{
𝑑 ∈ D | max( 𝑑∗

𝑑 , 𝑑
𝑑∗ < 𝜐) |

}
× 100%

𝑑 and 𝑑∗ represent the estimated
depth value and the corresponding
ground truth. D corresponds to the
estimated depth map. RMSE: Root
mean square error.

3.3 Evaluation on scale-aware depth estimation
We compare the accuracy of depth estimation using the KV-EndoNeRF method with several other deep
learning-based approaches and the SfM method, specifically COLMAP [7].

• COLMAP [7] is a general-purpose SfM pipeline used for reconstructing 3D point cloud reconstruction from
ordered and unordered image collections. In our study, we apply it to monocular surgical scene reconstruc-
tion. The recovered points are then projected onto each image plane to obtain the sparse depth maps for
evaluation.

• EndoSLAM [30] is an unsupervised relative monocular depth estimation method specifically designed for
gastrointestinal tract organs. It combines residual networks with a spatial attention module to focus on
highly textured tissue regions. We fine-tune the depth model using the SCARED data for comparison.

• AF-SfMLearner [10] is a novel self-supervised network for estimatingmonocular depth in endoscopic scenes.
It is trained on the SCARED datasets, which contain severe brightness fluctuations induced by illumination
variations, non-Lambertian reflections, and inter-reflections.

• DS-NeRF [17] is a general depth-supervised NeRF method that utilizes sparse reconstruction from the SfM
to recover dense 3D structures. We apply DS-NeRF to estimate dense depth maps for each endoscopic
image.

We present the quantitative depth comparison results on SCARED data in Table 2, which rescales the re-
sults using the ground truth median scaling method. In addition to standard depth evaluation metrics, we
calculate the means and standard errors of the rescaling factors to demonstrate the scale-awareness ability.
KV-EndoNeRF achieves the best up-to-scale performance with respect to five metrics and ranks the second
best for the other two metrics. Notably, KV-EndoNeRF also achieves nearly perfect absolute scale estimation.
These quantitative results show that our proposed method effectively extracts absolute scale information from
kinematics and integrates it into NeRF for further depth optimization, resulting in accurate absolute depth
estimation.

Furthermore, we select four representative images from the SCARED dataset for qualitative depth comparison.
As shown in Figure 3, our method with NeRF-based optimization produces depth predictions with sharp
boundaries and fine-grained details, outperforming other approaches in terms of absolute depth estimation.
However, COLMAP could only recover sparse depthmaps without the entire 3D geometry of the tissue surface.
While EndoSLAM and AF-SfMLearner are capable of generating reasonable 3D structures of tissues, they lose
many details in tissues with complex geometries and edges. Lastly, the estimated depth values from DS-NeRF
contain significant noise, which could affect the surgeons’ observations of complicated tissue surfaces.
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Table 2. Quantitative comparisons for scale-aware depth estimation on SCARED

Method Scale
Error ↓ Accuracy ↑

Abs Rel Sq Rel RMSE RMSElog 𝛿 < 1.251 𝛿 < 1.252

COLMAP [7] 4.04 ± 2.24 0.044 ± 0.028 0.391 ± 0.435 4.766 ± 2.506 0.065 ± 0.033 0.979 ± 0.036 0.998 ± 0.006
EndoSLAM [30] 77.77 ± 17.10 0.079 ± 0.047 0.897 ± 1.090 7.160 ± 4.818 0.099 ± 0.052 0.931 ± 0.124 0.997 ± 0.009

AF-SfMLearner [10] 2.12 ± 0.45 0.056 ± 0.028 0.437 ± 0.560 5.103 ± 3.143 0.073 ± 0.034 0.979 ± 0.047 0.999 ± 0.005
DS-NeRF [17] 22.04 ± 9.75 0.049 ± 0.034 0.458 ± 1.012 4.866 ± 3.432 0.070 ± 0.041 0.972 ± 0.067 0.997 ± 0.012

Ours 0.95 ± 0.07 0.048 ± 0.025 0.347 ± 0.351 4.583 ± 2.247 0.066 ± 0.030 0.984 ± 0.029 0.999 ± 0.003

The closer the scale is to 1, the better. The best result is in bold. The second best is underlined. SCARED: Stereo
Correspondence And Reconstruction of Endoscopic Data; RMSE: root mean square error; NeRF: neural radiance
fields.

Figure 3. Qualitative comparisons on SCARED. Our method outperforms COLMAP [7], EndoSLAM [30], AF-SfMLearner [10], and DS-
NeRF [17] in terms of depth quality. A large depth value is encoded with yellow, while a small depth value is encoded with purple. SCARED:
Stereo Correspondence And Reconstruction of Endoscopic Data; NeRF: neural radiance fields.

3.4 Comparison with state-of-the-art methods
We compare our method with state-of-the-art approaches in terms of 3D reconstruction and view synthesis.
Firstly, we quantitatively assess the reconstruction results and compare them with ground truth 3D models
calculated by a structure light camera [26]. Unlike other monocular scene reconstruction methods, we do not
scale the structures during evaluation, thanks to our scale-aware depth estimation. KV-EndoNeRF achieves
high accuracy in 3D reconstruction, with an average rootmean square error (RMSE) error of 1.259±0.257mm
across all data. Figure 4A shows a qualitative comparison of SCARED data. As shown in the figure, the ground
truth models in the third column, represented by gray points, indicate that these tissues have complex surfaces.
The sparse point clouds recovered by COLMAP are presented in the first column of the figure. Due to the
sparsity of the 3D points, it is difficult to observe the geometric structures and the textures of the tissue surfaces.
In comparison, our reconstructed meshes shown in the second column present reasonable structures and rich
details of the surface. Furthermore, we register the reconstruction results with the ground truth structures, and
the registration results show that our 3D reconstruction matches well with the ground truth. In summary, our
method can reconstruct smooth 3D structures from amonocular endoscope with accurate scale, high accuracy,
and rich details of the surface texture. Moreover, in Figure 4B, we observe that the proposed method benefits
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Figure 4. (A) Qualitative reconstruction comparisons on SCARED; (B) Results on view synthesis. Better viewed when zoomed in. More
results are shown in the Supplementary Materials. SCARED: Stereo Correspondence And Reconstruction of Endoscopic Data.

Table 3. Ablation studies on each module of our pipeline using dataset-5/keyframe-4

Coarse Depth NeRF Refinement Scale RMSE 𝛿 < 1.251

✓ 21.83 ± 3.64 2.864 ± 0.452 0.991 ± 0.008
✓ ✓ 0.89 ± 0.05 2.730 ± 0.391 0.993 ± 0.008
✓ ✓ ✓ 0.90 ± 0.04 2.688 ± 0.415 0.995 ± 0.007

The best results are in bold. NeRF: Neural radiance fields; RMSE:
root mean square error.

the view synthesis quality of NeRF. With the coarse depth priors, our method improves the rendering quality
for view synthesis. More 3D point cloud comparison results are illustrated in the Supplementary Materials.

3.5 Ablation studies
We perform ablation studies to validate the effectiveness of the proposed pipeline in estimating fine absolute
depth using robot kinematics and NeRF-based optimization. Results in Table 3 demonstrate that each module
contributes to the final depth quality. Although the coarse depth estimation is not scaled, it provides a relatively
accurate depth basis for the following NeRF-based optimization, as shown in the table. After computing the
scale from kinematics data, we incorporate it into NeRF to optimize depth further. We observe that the NeRF
improves the depth quality and retains the absolute scale information. Additionally, the refinement operation
based on the view synthesis enhances absolute depth estimates, which is beneficial to the final scale-aware
reconstruction.

4. DISCUSSION
Nowadays, robotic surgery has become a valuable tool for surgeons, offering advantages such as improved
precision in positioning and repetitive accuracy. However, despite these benefits, certain challenges persist,
including the absence of 3D anatomical structures and a limited field of view. The accurate representation of
the surgical scene in 3D, with proper scaling, is crucial for ensuring surgical safety and effectively controlling
robotic systems [31]. To address these issues, we propose a novel NeRF-basedmethod that leverages both visual
information and robot kinematics to achieve scale-aware 3D reconstruction of monocular endoscopic scenes.
Notably, our approach does not require labeled data or the use of CT scans for training. By incorporating
robot kinematics as an additional modality, we can extract scale information that bridges the gap between the
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3D reconstruction and the real world. Given the widespread adoption of robotic surgery, it is imperative to
integrate robotic kinematics as a multi-modal data source in the visual reconstruction process.

In Ear-Nose-Thorat (ENT) surgery [6] or colonoscopy [32], surgeons manipulate flexible endoscopes or instru-
ments to observe anatomies or perform specific operations. Considering the narrow space of the surgical site,
it is crucial for the surgeon or the robot to have an accurate understanding of the 3D structures with real-
scale representation of the environment. Therefore, our proposed method can be applied to ENT surgery and
colonoscopy. When a limited number of monocular images are obtained from the endoscope, the NeRF-based
method can reconstruct the 3D geometry of the tissue surface. For the kinematics data, an external tracking
system, such as EM-Tracker and FBG sensors, can be embedded into the surgical robot. In this case, our
proposed 3D reconstruction method seamlessly integrates into current surgical robotic systems.

While some existing methods employ external sensors, such as stereo cameras [33,34], to recover real-scale 3D
structures, their practical implementation is hindered by their high cost. Additionally, in certain scenarios like
ENT surgery and colonoscopy, the limited operating space poses challenges for using stereo cameras. Alterna-
tive approaches involve the use of optical tracking [35] or electromagnetic systems [36] to register the endoscope
with CT/MRI data. However, these devices are typically treated as independent sources of information for
multi-modal data registration. In contrast, our method integrates robotic information into a comprehensive
framework, enabling the reconstruction of scale-aware structures from monocular endoscopes. Moreover,
compared to learning-based monocular reconstruction approaches [37], our proposed NeRF-based method
does not require large amounts of domain-specific training data and can render novel endoscopic views for
surgeons to observe the surgical scenarios. Additionally, while other SLAM-based reconstruction methods [38]

can only recover sparse 3D point clouds without accurate scaling, our framework can obtain dense 3D struc-
tures with an absolute scale to represent tissue surfaces.

However, our method does have some limitations that should be addressed in future work. Firstly, the current
approach relies on two separate processes to extract scale data from robot kinematics and monocular images,
which is complex and time-consuming. To overcome this, we aim to develop an end-to-end learning method
that can efficiently distill information from different modalities. Secondly, the use of the NeRF technique to
represent the 3D geometry requires significant computational resources and training time, making real-time
rendering and reconstruction challenging. To tackle this issue, we plan to investigate more efficient neural rep-
resentations, such as 3D gaussian, which can be integrated into our method to enhance efficiency for real-time
application. Furthermore, while the kinematics information provided by rigid robots is relatively accurate and
has minimal noise, flexible surgical robots can only provide rough and inaccurate kinematics data. Currently,
our framework does not account for errors in robot kinematics during scale recovery. In future work, we
intend to design an optimization module that can jointly utilize the translation and rotation components of
the poses from robot kinematics and visual data. Additionally, we aim to collect more multi-modal data from
different surgical scenes to thoroughly evaluate the performance of our method.

5. CONCLUSION
In this paper, we introduce a novel NeRF-based pipeline that enables scale-aware monocular reconstruction
with limited robotic endoscope data. It neither requires large medical images nor ground truth labels for
network training. We first integrate the scale information extracted from kinematics and learning-based coarse
depth supervised by SfM into the optimization process of NeRF, resulting in absolute depth estimation. Then,
3Dmodels with a real scale of tissue surfaces are reconstructed by fusing refined absolute depth maps. We also
evaluate the pipeline on SCARED data to demonstrate its accuracy and efficiency. In the future, more robotic
endoscope data will be collected to validate our pipeline. The reconstructed scale-aware 3D structures will be
utilized for automatic navigation systems in various robotic surgeries, including ENT surgery.
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