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Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer but is less frequent in adolescents and 
young adults (AYAs) and is rare among older adults. The 5-year survival of ALL is above 90% in children, but 
drops significantly in AYAs, and over half of ALL-related deaths occur in older adults. In addition to diagnosis age, 
the race/ethnicity of patients consistently shows association with ALL incidence and outcomes. Here, we review 
the racial/ethnic disparities in ALL incidence and outcomes, discuss how these vary across the age spectrum, and 
examine the potential causes of these disparities. In the United States, the incidence of ALL is highest in 
Hispanics/Latinos and lowest in Black individuals across all age groups. ALL incidence is rising fastest in 
Hispanics/Latinos, especially in AYAs. In addition, survival is worse in Hispanic/Latino or Black ALL patients 
compared to those who are non-Hispanic White. Different molecular subtypes of ALL show heterogeneities in 
incidence rates and survival outcomes across age groups and race/ethnicity. Several ALL risk variants are 
associated with genetic ancestry, and demonstrate different risk allele frequencies and/or effect sizes across 
populations. Moreover, non-genetic factors including socioeconomic status, access to care, and environmental 
exposures all likely influence the disparities in ALL risk and survival. Further studies are needed to investigate the 
potential joint effects and interactions of genetic and environmental risk factors. Improving survival in 
Hispanic/Latino and Black patients with ALL requires advances in precision medicine approaches, improved access 
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to care, and inclusion of more diverse populations in future clinical trials.

Keywords: Acute lymphoblastic leukemia, disparities, race/ethnicity, genetic variation, socioeconomic status, 
access to care, recruitment to clinical trials, children, adolescents and young adults

INTRODUCTION
Acute lymphoblastic leukemia (ALL) is a hematologic malignancy characterized by impaired differentiation, 
proliferation, and accumulation of B- and T-lineage lymphoid precursor cells in the bone marrow, 
peripheral blood, and other organs[1,2]. In the United States, the age-adjusted incidence rate (AAIR) for ALL 
was estimated to be 1.64 per 100,000 people[3], with approximately 5700 new cases and 1600 deaths projected 
to occur in 2021[4]. The incidence rate (IR) of ALL demonstrates a bimodal age pattern, in which the initial 
peak occurs at age 1-4 years, followed by a decline at age 20-59 years and a modest rise at ages above 60 
years[5]. Indeed, ALL is the most common childhood malignancy, with approximately 2700 incident ALL 
cases diagnosed under age 15 each year in the United States[6].

The causes of ALL are multifactorial, and likely vary based on the molecular subtype and patient age of 
diagnosis[7]. Only a small proportion (< 10%) of ALL cases are attributable to known risk factors with large 
effects[8], namely ionizing radiation and congenital syndromes[9-13], although both common and rare genetic 
variants are now known to contribute to childhood ALL risk[14]. Genome-wide association studies (GWAS) 
of childhood ALL have identified multiple genomic regions harboring common risk alleles for ALL, 
including at: 7p12.2 (IKZF1), 8q24.21, 9p21.3 (CDKN2A/B), 10p12.2 (PIP4K2A), 10p12.31 (BMI1), 10p14 
(GATA3), 10q21.2 (ARID5B), 10q26.13 (LHPP), 12q23.1 (ELK3), 14q11.2 (CEBPE), 16p13.3 (USP7), 17q12, 
and 21q22.2 (ERG)[15-32] [Table 1]. In addition, sequencing studies of familial and sporadic ALL have 
discovered rare germline variants in PAX5[33,34], ETV6[35-39], IKZF1[40-42], and TP53[43,44] that are associated with 
disease risk. Non-genetic factors also contribute to ALL risk; for example, there is strong epidemiological 
evidence supporting a role for early life infections and modulation of the developing immune system in 
childhood ALL etiology, which has been reviewed in detail elsewhere[45]. Studies have also reported modest 
associations for childhood ALL risk with several environmental exposures[46], including tobacco smoke[47-49], 
pesticides[50,51], paint[52,53], and air pollution[54-56]. The vast majority of epidemiologic studies for ALL have 
been conducted in children, and very little is known regarding potential differences in ALL etiology across 
age groups.

One factor that consistently shows association with ALL incidence is race/ethnicity. We acknowledge that 
race and ethnicity are dynamic and multifactorial concepts[60], and in this review we use the term 
race/ethnicity to refer to heterogeneous groups of people defined by the USA Office of Management and 
Budget as African Americans/Blacks (hereafter, Blacks); Hispanics/Latinos; American Indians and Alaska 
Natives (AI/ANs); and Asians and Native Hawaiians/other Pacific Islanders (APIs)[61]. Race/ethnicity 
reflects genetic ancestry, and additionally conveys important epidemiologic information as to how social 
determinants such as racism and discrimination, socioeconomic position, and environmental exposures can 
influence disease incidence and mortality[60]. In the United States, the incidence of ALL is highest in 
Hispanics/Latinos and lowest in Blacks, and this is consistent across age groups[5,62-66].

Race/ethnicity is also associated with ALL patient outcomes. Overall, survival of ALL patients has improved 
dramatically in recent decades[3], primarily in children[2,67], which can largely be attributed to improvements 
in combination chemotherapy protocols[2], as well as advances in the understanding of cytogenetics and 
genetics of the disease and, more recently, the development of immunotherapy and targeted therapies[68-70]. 
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Table 1. Genetic variants associated with ALL risk in genome-wide association studies

Gene Region SNP Ref Alt Risk Trait(s) PubMed ID Year First author AF_afr AF_amr AF_nfe P OR (CI)

ARID5B 10q21.2 rs10821936 C T C ALL 19684603 2009 Treviño LR 0.227 0.463 0.302 1.40E-15 1.91 (1.60-2.20)

ARID5B 10q21.2 rs10994982 A G A ALL 19684603 2009 Treviño LR 0.565 0.560 0.467 5.70E-09 1.61 (1.30-1.90)

ARID5B 10q21.2 rs7089424 T G G ALL 19684604 2009 Papaemmanuil E 0.241 0.460 0.304 7.00E-19 1.65 (1.54-1.76)

ARID5B 10q21.2 rs7089424 T G G B-ALL 19684604 2009 Papaemmanuil E 0.241 0.460 0.304 1.41E-19 1.70 (1.58-1.81)

BAK1 6p21.31 rs210143 T C C B-ALL (High-hyperdiploidy) 31767839 2019 Vijayakrishnan J 0.735 0.718 0.724 2.21E-08 1.30 (1.19-1.43)

BMI1 10p12.31 rs4748793 A G A ALL 23512250 2013 Xu H 0.893 0.774 0.787 8.40E-09 1.40 (1.26-1.57)

BMI1 10p12.31 rs11591377 G A G ALL 29923177 2018 de Smith AJ 0.905 0.767 0.793 2.07E-10 1.27 (1.20-1.35)

C5orf56 5q31.1 rs886285 T C T B-ALL (High-hyperdiploidy) 31767839 2019 Vijayakrishnan J 0.647 0.304 0.343 1.56E-08 1.29 (1.18-1.41)

CCDC26 8q24.21 rs28665337 C A,T A B-ALL 29632299 2018 Vijayakrishnan J 0.086 0.097 0.116 4.00E-09 1.34 (1.21-1.47)

CCDC26 8q24.21 rs4617118 A C,G G ALL 29348612 2018 Wiemels JL 0.305 0.117 0.163 3.05E-09 1.27 (1.17-1.38)

CDKN2A 9p21.3 rs3731217 A C,T A ALL 20453839 2010 Sherborne AL 0.902 0.898 0.867 3.01E-11 1.41 (1.28-1.56)

CDKN2A 9p21.3 rs3731249 C T T ALL 26527286 2015 Walsh K 0.004 0.016 0.033 1.69E-13 2.97 (2.22-3.96)

CDKN2B 9p21.3 rs77728904 A C,G C B-ALL 26868379 2016 Hungate EA 0.094 0.059 0.080 3.32E-15 1.72 (1.50-1.97)

CEBPE 14q11.2 rs2239633 G A G B-ALL (ETV6-RUNX1) 22076464 2012 Ellinghaus E 0.787 0.599 0.519 4.00E-10 1.35 (1.22-1.47)

CEBPE 14q11.2 rs4982731 C T C ALL 23512250 2013 Xu H 0.396 0.368 0.278 9.00E-12 1.36 (1.24-1.48)

CPSF2 14q32.12 rs189434316 A T T B-ALL (Normal cytogenetic) 29296818 2017 Clay-Gilmour AI 0.011 0.027 0.066 6.00E-09 3.70 (2.50-6.20)

ELK3 12q23.1 rs4762284 A T T B-ALL 27694927 2017 Vijayakrishnan J 0.449 0.480 0.299 8.00E-09 1.19 (1.12-1.26)

ERG 21q22.2 rs2836365 A G G B-ALL 30510082 2019 Qian M 0.197 0.360 0.329 3.76E-08 1.56 (1.33-1.83)

ERG 21q22.2 rs8131436 G C C ALL 31296947 2019 de Smith AJ 0.196 0.363 0.331 8.76E-09 1.23 (1.16-1.31)

GATA3 10p14 rs3824662 C A,T A B-ALL 23996088 2013 Migliorini G 0.094 0.395 0.172 8.62E-12 1.31 (1.21-1.41)

GATA3 10p14 rs3824662 C A,T A B-ALL (Ph-like) 24141364 2013 Perez-Andreu V 0.094 0.395 0.172 2.17E-14 3.85 (2.71-5.47)

IGF2BP1 17q21.32 rs10853104 C G,T T B-ALL (ETV6-RUNX1) 31767839 2019 Vijayakrishnan J 0.663 0.420 0.508 1.82E-08 1.33 (1.21-1.47)

IKZF1 7p12.2 rs11978267 A G G ALL 19684603 2009 Treviño LR 0.193 0.241 0.277 8.80E-11 1.69 (1.40-1.90)

IKZF1 7p12.2 rs4132601 T G G ALL 19684604 2009 Papaemmanuil E 0.193 0.242 0.275 1.00E-19 1.69 (1.58-1.81)

IKZF1 7p12.2 rs4132601 T G G B-ALL 19684604 2009 Papaemmanuil E 0.193 0.242 0.275 9.31E-20 1.73 (1.61-1.85)

IKZF3 17q21.1 rs2290400 T C T ALL 29348612 2018 Wiemels JL 0.518 0.619 0.510 2.05E-08 1.18 (1.11-1.25)

LHPP 10q26.13 rs35837782 A G G B-ALL 27694927 2017 Vijayakrishnan J 0.654 0.504 0.631 1.00E-11 1.21 (1.15-1.28)

OR8U8 11q12.1 rs1945213 C G,T C B-ALL (ETV6-RUNX1) 22076464 2012 Ellinghaus E 0.218 0.184 0.285 3.89E-08 1.28 (1.14-1.45)

PIP4K2A 11q12.1 rs10828317 T C T B-ALL 23996088 2013 Migliorini G 0.908 0.835 0.698 2.30E-09 1.23 (1.15-1.32)

PIP4K2A 10p12.2 rs7088318 C A A ALL 23512250 2013 Xu H 0.400 0.751 0.616 1.13E-11 1.40 (1.28-1.53)

PIP4K2A 10p12.2 rs4748812 G A A ALL 29923177 2018 de Smith AJ 0.360 0.742 0.626 1.30E-15 1.31 (1.25-1.38)

RPL6P5 2q22.3 rs17481869 C A A B-ALL (ETV6-RUNX1) 29632299 2018 Vijayakrishnan J 0.020 0.036 0.079 3.20E-08 2.14 (1.64-2.80)



Page 221 Xu et al. J Transl Genet Genom 2021;5:218-39 https://dx.doi.org/10.20517/jtgg.2021.20

SP4 7p15.3 rs2390536 G A A ALL 29348612 2018 Wiemels JL 0.083 0.184 0.368 3.59E-08 1.20 (1.13-1.29)

TLE1 9q21.31 rs76925697 A T A B-ALL 31767839 2019 Vijayakrishnan J 0.964 0.969 0.962 2.11E-08 1.52 (1.31-1.76)

TP63 3q28 rs17505102 G C C B-ALL (ETV6-RUNX1) 22076464 2012 Ellinghaus E 0.053 0.064 0.128 8.94E-09 1.59 (1.33-1.92)

USP7 16p13.2 rs74010351 A C,G G T-ALL 30938820 2019 Qian M 0.178 0.060 0.060 4.51E-08 1.44 (1.27-1.65)

Risk allele frequencies for the 33 ALL-associated SNPs are global frequencies obtained from gnomAD v2.1.1.[57]. Ref, alt, AF_af, AF_amr, and AF_nfe were annotated through ANNOVAR[58]. AF_af, AF_amr, and 
AF_nfe were transformed to indicate the allele frequency of the risk alleles. Other information was extracted from the GWAS Catalog and was confirmed in each publication. Gene: Nearest gene; SNP: single 
nucleotide polymorphism; ref: reference allele; alt: alternative allele; risk: risk allele; AF: allele frequency; afr: African/African American; amr: American Admixed/Latino; nfe: Non-Finnish European; OR: odds ratio; CI: 
95% confidence interval; ALL: acute lymphoblastic leukemia. Two SNPs, rs10821936 and rs10994982, were identified within the same region by the same study and are included in this table as the causal variant is 
unknown[59].

Although in children the overall 5-year survival rate of ALL has risen above 90%[71,72], it remains inferior in later age groups, with 60%-85% in adolescents and 
young adults (AYAs, age range varies by studies, between 15-39 years)[73-76], and under 30% in older adults[77-82]. In addition, ALL patients who are 
Hispanic/Latino or Black show worse outcomes compared to those who are non-Hispanic White (NHW)[83-89].

Here, we review the racial/ethnic disparities in ALL incidence and outcomes, and discuss how these vary across the different age groups of patients: children, 
AYAs, and older adults. We also examine the potential causes of these disparities, including genetic and non-genetic risk factors, and how epidemiologic 
studies across populations are essential to our understanding the causes of ALL.

DISPARITIES IN ALL INCIDENCE ACROSS THE LIFESPAN
ALL incidence initially peaks in the first decade of childhood, ranging from 1-4 years to < 9 years in different studies[5,64-66], declines at age 20-59 years, and rises 
again modestly among older adults aged 60 or above, with the highest second peak among Hispanic/Latino adults[90]. The initial peak of ALL incidence occurs 
earlier for B-cell ALL (B-ALL) at 1-4 years compared to T-cell ALL (T-ALL) at 5-14 years, and with a less prominent peak in the latter[5]. ALL develops more 
often in males than females with an incidence rate ratio (IRR) of 1.29 overall[3], and 2.20 and 1.20 for T-ALL and for B-ALL, respectively[5].

Incidence of ALL is highest in Hispanics/Latinos
Hispanic/Latino children are more likely to be diagnosed with ALL compared to NHW, Black or Asian children in both genders and across all age groups[5]. 
The reported Hispanic/Latino-to-NHW IRR of childhood ALL ranges from 1.25 to 1.65 for all subtypes combined[5,62,64-66], and appears to be more prominent 
for B-ALL (IRR = 1.64), but close to unity for T-ALL (IRR = 0.94)[5]. Moreover, the disparity in ALL IRs between Hispanic/Latino and NHW children increases 
with increased age from < 1 year to 19 years[64]. This disparity in ALL risk corresponds to what has been observed geographically. For instance, Latin American 
countries, including Mexico and Costa Rica, have some of the highest incidences of childhood ALL in the world[91,92]. Meanwhile, the highest incidence of 
childhood ALL in the United States is found in the West United States Census Region, where a high proportion of residents are Hispanics/Latinos[65]. On the 
contrary, compared to NHWs, Black children have lower IRs of nearly all ALL subtypes in all age groups[5,62,64-66], and API children also have lower IRs[93]. 
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Among API regional groups, East Asians have a significantly higher IR of childhood ALL compared to 
Southeast Asians (IRR = 1.59), and Oceanians have the highest IR[93].

Among AYAs aged 15-39 years (age range defined by the National Cancer Institute), the overall ALL AAIR 
was 0.98 (95%CI: 0.96-1.01) per 100,000 during 2000-2016, with the highest incidence being observed in 
Hispanics/Latinos [AAIR = 1.63 (95%CI: 1.56-1.70)], followed by AI/ANs [AAIR = 1.16 (95%CI: 0.86-1.52)], 
NHWs [AAIR = 0.79 (95%CI: 0.76-0.83)], APIs [AAIR = 0.78 (95%CI: 0.70, 0.86)], and Blacks [AAIR = 0.53 
(95%CI: 0.47, 0.59)][66] [Figure 1]. A similar trend has been found in B-ALL specifically, with the highest 
incidence seen in Hispanics/Latinos and the lowest in Blacks[94].

Among older adults, ALL incidence again predominates among Hispanics/Latinos[5]. For those aged 40 or 
older, Hispanics/Latinos had the highest AAIR [AAIR = 1.76 (95%CI: 1.67-1.86)], followed by AI/ANs 
[AAIR = 1.17 (95%CI: 0.87-1.54)], NHWs [AAIR = 0.97 (95%CI: 0.94-1.00)], APIs [AAIR = 0.85 (95%CI: 
0.78-0.93)], and Blacks [AAIR = 0.77 (95%CI: 0.70-0.84)][66] [Figure 1].

Furthermore, Philadelphia chromosome-like (Ph-like) ALL [patients with a similar gene expression pattern 
as those with t(9;22), BCR-ABL1 translocations, i.e., Ph+], a subtype of B-ALL associated with poor 
outcomes[95], is more common in AYAs (19%-27%) and older adults (20%) than in children (10%)[96-99]. In 
addition, patients with Ph-like ALL or with its subtype carrying CRLF2 rearrangement (also associated with 
poor outcomes)[99] are more likely to be Hispanics/Latinos compared to other races/ethnicities (68% in Ph-
like ALL and 85% in Ph-like ALL with CRLF2 rearrangement)[99].

Intriguingly, a higher percentage of residents born in a foreign country at the county level contributes to a 
higher incidence of ALL among both NHWs and Blacks, but was contradictorily associated with a lower 
incidence of ALL among Hispanics/Latinos[66]. For United States-based API children, ALL IRs were similar 
to rates seen in originating countries[93]. The inverse association between percent foreign-born and the 
incidence of ALL in Hispanics/Latinos represents an example of the “Hispanic paradox”[100,101], which refers 
to the observation that foreign-born Hispanics/Latinos have better health outcomes when compared to 
United States-born Hispanics/Latinos.

Incidence of ALL is rising fastest in Hispanics/Latinos
During 1992-2013, the incidence of ALL increased significantly by approximately 2% per year for 
Hispanic/Latino children diagnosed from age 10-14 years (APC = 2.09), and by 3% for those 15-19 years of 
age (APC = 2.67), while no significant increases were observed in NHW, Black, or Asian children in the 
same age groups[64]. In the United States Cancer Statistics database, the IR of ALL in both overall children 
and Hispanic children aged below 20 years increased significantly during 2001-2008, with the largest 
increase being observed in Hispanic/Latino children (APC = 2.5), and which remained stable during 2008-
2014[65].

Despite of the relatively low AAIR of ALL compared to other age groups, AYA had the greatest increase of 
ALL AAIR during 2000-2016 [overall APC = 1.56 (95%CI: 1.03-2.09)][66] [Figure 1]. Hispanics/Latinos had 
significant increase of AAIR across all age groups [APC = 1.18 (95%CI: 0.76-1.60)], with the greatest 
increase found in AYAs [APC = 2.02 (95%CI: 1.17-2.88)][66]. Across all age groups, AYA is the only group in 
which AI/ANs had a significant increase of AAIR [APC = 9.79 (95%CI: 5.65-14.09)][66]. Given the small 
population size of AI/ANs, the substantial interregional differences of incidence rates and misclassification 
of AI/ANs in central registries that were observed in SEER data[102], a note of caution should be offered in 
interpreting rates and trends for the AI/AN population. The AAIR of ALL also increased significantly 
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Figure 1. Disparities in acute lymphoblastic leukemia (ALL) incidence across the lifespan. Data extracted from Tables 1 and 2 from 
Feng et al.[66]. Age-adjusted incidence rate per 100,000 population was derived from the Surveillance, Epidemiology, and End Results 
Registry, version 18. Centers of points and horizontal bars indicate point estimates and 95% confidence intervals. (A) Age-adjusted 
incidence rates of ALL by age group and race/ethnicity, United States, 2000-2016. (B) Annual Percent Change in incidence rates of ALL 
by age group and race/ethnicity, United States, 2000-2016. AI/AN: American Indian and Alaska Native; API: Asian and Pacific Islander; 
Black: African American/Black; NHW: non-Hispanic White; AYAs: adolescents and young adults.

among API AYAs [APC = 1.95 (95%CI: 0.15-3.79)][66]. Among older adults, the incidence of ALL increased 
significantly only among Hispanics/Latinos during 2000-2016[66]. The trend of AAIR remained stable among 
NHWs and Blacks across all age groups over time[66].
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DISPARITIES IN SURVIVAL OF ALL PATIENTS
In this section, we summarize disparities in the overall survival rates of ALL patients, though we do not 
review potential disparities in long-term outcomes, such as treatment-related morbidities, which have been 
described elsewhere[103-106].

Children
Among children, the survival of ALL is lowest in infants (< 1 year), highest in those aged 1-9 years, and 
thereafter, decreases with increased age[5,83]. Girls have better survival than boys overall[83]. Hispanic/Latino 
children have inferior outcomes compared to NHWs[83-87], with a 5%-15% difference in overall survival rate 
being persistently seen in SEER data[84,85,87]. Furthermore, in Hispanics/Latinos, childhood ALL mortality has 
been shown to differ by genetic ancestry[107]. For instance, Hispanic/Latino children in general have a 2.27 
times higher mortality compared to NHW children [mortality rate ratio (MRR) = 2.27 (95%CI: 1.68-3.06)], 
with a MRR of 2.56 (95%CI: 1.93-3.40) in continental Hispanic/Latino children (Mexicans, Central 
Americans, and South Americans) but with a MRR of only 1.23 (95%CI: 0.74-2.03) in Caribbean 
Hispanic/Latino children (Puerto Ricans, Cubans, and Dominicans)[107], suggesting that higher Indigenous 
American ancestry is associated with poorer overall survival.

In Black childhood ALL patients, improvement of 5-year survival lags behind compared to in other 
races/ethnicities[108]. The largest improvements of survival in Blacks occurred at much later diagnosis 
periods (1995-2001 and 2002-2008) compared to those in NHWs and AI/ANs (1988-1994 and 1995-
2001)[84]. Promisingly, SEER data have revealed a decreased inequality in ALL survival between Black and 
NHW children[83,85,109]. From 1992-1995 to 2003-2007, 5-year relative survival rate improved faster in Black 
children (APC = 3.01) than in NHW children (APC = 1.37)[85]. In another study, from 1975-1983 to 2000-
2010, the difference in 5-year cumulative mortality of ALL between Black and NHW children reduced from 
15% to 3%; compared with NHWs, the adjusted hazard ratio (HR) for Blacks dropped from 1.46 (95%CI: 
1.09-1.94) to an insignificant 1.21 (95%CI: 0.74-1.96)[83].

API and AI/ANs also have significantly worse survival of childhood ALL compared to NHWs[83,84], with the 
5-year cumulative ALL mortality being 10% in APIs, and 19% in AI/ANs versus being 8% in NHWs at 2000-
2010[83]. Compared with NHW counterparts, APIs diagnosed at 1-9 years, and AI/ANs diagnosed at 10-19 
years had about twice the ALL mortality HR[83]. Further, in a stratified analysis for Asian subgroups, when 
comparing to NHWs, East Asians in general (i.e., Chinese, Filipino, Korean, Japanese, Vietnamese and 
other Southeast Asians combined) had significant inferior outcomes, with particularly worse survival for 
Vietnamese [relative risk (RR) = 2.44 (95%CI: 1.50-3.97)] and Filipino [RR = 1.64 (95%CI: 1.13-2.38)] 
patients, whereas the inferior outcomes for Koreans, Japanese and other Southeast Asians were non-
significant[84].

AYAs
A “survival cliff” has been observed for ALL in AYA patients at age 17 to 20 years, where the survival rate 
drops considerably during just this 3-year difference in age, and accounts for nearly half of the total survival 
decrease from childhood to older adults[110]. This substantial drop of survival rate partly results from the 
high frequency of the high-risk Ph-like B-ALL subtype among AYAs[95-99]. Based on data obtained from the 
Texas Cancer Registry, among AYA ALL patients, the overall 5-year survival rate was better in females than 
in males, and it has improved over time across all races/ethnicities in both sex groups[88]. However, 
improvement in the survival rate of Black AYA patients lags behind other racial/ethnic groups, similar to 
the pattern seen in Black children. Among AYA patients, survival in Black males diagnosed in 2004-2012 
[66.9% (95%CI: 64.0%-69.6%)] was significantly worse than in NHW [78.2% (95%CI: 77.2%-79.1%)] and in 
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Hispanic/Latino males [71.8% (95%CI: 70.3%-73.3%)] diagnosed back in 1995-2003[88]; Black females 
diagnosed in 2004-2012 [76.9% (95%CI: 75.2%-78.4%)] had a worse survival rate compared to NHW females 
diagnosed in 1995-2003 [83.9% (95%CI: 83.2%-84.2%)][88].

Older adults
Older adult ALL patients have the worst survival across all age groups[77-82]. While approximately 22.5% of 
patients are diagnosed after the age of 55 years, 54.6% of ALL-related deaths occur in patients in this age 
stratum[111]. This is likely related to the elevated prevalence of multiple high-risk subtypes of ALL in older 
adults. First, both Ph+ ALL and Ph-like ALL are very common subtypes of B-ALL among older adults aged 
60 years or above (Ph+ ALL: approximately 50%; Ph-like ALL: 24%-26%)[96-99,112,113]. In addition, older adults 
with Ph-negative B-ALL tend to present with high-risk cytogenetics and complex karyotypes[114,115] 
associated with increased risks of treatment failure and treatment complications[81].

Promisingly, the 1973-2008 SEER data revealed a significant improvement for patients aged over 45 years in 
survival among the overall population, NHWs, and in particular APIs (19.8%), and a large but marginally 
significant improvement for Blacks (11.3%)[89]. However, these improvements were not seen in 
Hispanic/Latino patients. For instance, in 2003 to 2008, the 5-year survival rate of older adult 
Hispanic/Latino ALL patients was only 13.9% compared with 23.6% in NHWs and 17.1% in Blacks[89], 
perhaps due to the high frequency of Ph-like ALL in Hispanic/Latino ALL patients[99]. Similarly, in the 1980-
2011 SEER data, there was a modest improvement of median overall survival rate of ALL among adults aged 
60 years or above[116], partly attributable to advances in novel therapies for Ph+ ALL[117].

FACTORS ASSOCIATED WITH DISPARITIES IN ALL RISK AND OUTCOMES
Differences in ALL tumor biology
Immunophenotype
The World Health Organization (WHO) classifies ALL based first on immunophenotype, and categorizes 
patients into either B-ALL or T-ALL[118], with both comprising multiple subtypes defined by structural 
chromosomal alterations[119]. B-ALL prevalence is higher than T-ALL, accounting for approximately 80% of 
ALL cases in children and 75% in adults in the United States[120]. In childhood ALL, the B-cell 
immunophenotype confers more favorable survival than T-ALL, whereas in adults survival is substantially 
higher for T-ALL than B-ALL[5,114,121,122], likely due to differences in molecular subtypes across age groups. In 
both children and adults, B-ALL appears to have a higher incidence in Hispanics/Latinos compared to other 
races/ethnicities[5]. On the other hand, T-ALL occurs more frequently in Black children, in whom a T-ALL-
related genetic variant in USP7 is overrepresented[30]. Thus, the contribution of immunophenotype to 
disparities in the survival of ALL patients may vary across population groups.

Cytogenetic subtypes
The most common chromosomal alterations in childhood B-ALL are high hyperdiploidy (chromosomal 
number 51-67) and t(12;21)(p13;q22) translocation encoding the ETV6-RUNX1 fusion gene[115,123]. Each 
presents in 25%-30% of children with ALL[119], and is associated with a favorable prognosis[115,124]. However, 
both subtypes are less common in adolescent ALL patients and very rare in adult ALL patients[119]. Among 
ALL cases in the California Childhood Leukemia Study, the prevalence of high hyperdiploidy was similar in 
Hispanics/Latinos and NHWs, at 28.3% and 27.6%, respectively[125], whereas there was a significantly lower 
frequency of ETV6-RUNX1 translocation in Hispanics/Latinos (13%) than in NHWs (24%)[126]. To our 
knowledge, the frequencies of these two subtypes have not been compared across race/ethnicity in AYAs or 
older adults, perhaps due to small numbers.
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The Ph chromosome translocation [t(9;22), i.e., Ph+], which results in the BCR-ABL1 fusion gene[127], is 
infrequent among childhood B-ALL patients (< 5%) but presents in up to half of adult B-ALL cases and 
becomes more prevalent with increased age (22% in patients < 40 years of age, 41% in patients ≥ 40 years 
and nearly 50% in patients aged 60 years or older)[97,112,113]. A higher percent of Ph+ B-ALL has been reported 
in Black AYA/adult patients compared with in NHW and Hispanic/Latino patients[99,128]. A similar pattern 
has been identified in children - compared with Ph-negative ALL patients, Ph+ ALL patients were more 
likely to be Black[129]. Although Ph chromosome has been historically recognized as an adverse prognostic 
factor for ALL, Ph+ ALL now has noninferior or even superior outcomes compared to Ph-negative ALL in 
older adult ALL patients[113,130,131], due to recent advances in novel therapies such as CAR-T cell therapy and 
tyrosine kinase inhibitor therapy[117].

The WHO 2017 revision introduced Ph-like ALL as an additional subgroup for B-ALL[118]. Ph-like B-ALL 
shares a similar gene-expression profile with Ph+ B-ALL, but does not harbor the BCR-ABL1 fusion protein 
expressed from the t(9;22)[118]. Unlike Ph+ ALL that occurs more frequently with increased age, Ph-like ALL 
has the highest incidence in AYAs (19%-28%), a lower frequency in childhood (10%), and is relatively 
common among adults aged 40 or above (20%)[96-99]. Ph-like ALL partly contributes to the AYA “survival 
cliff”[110], and the continuing poor outcomes in older age groups[77-82]. Patients with Ph-like ALL had a 
significantly inferior event-free and disease-free survival, a lower complete remission rate, and an elevated 
level of minimal residual disease at the end of the induction therapy compared to non-Ph-like patients[95]. 
Furthermore, Ph-like ALL likely plays a role in both the high incidence and the inferior survival of ALL in 
Hispanics/Latinos. Ph-like ALL occurs more frequently in Hispanics/Latinos in particular in AYA/adults[99]. 
Indeed, Hispanics/Latinos have been shown to account for up to two-thirds of Ph-like ALL in AYA/adult 
patients[99]. Notably, nearly half of the patients with Ph-like ALL had CRLF2 rearrangements[96]. Both Ph-like 
ALL and its subtype with CRLF2 rearrangements have significantly worse outcomes compared to other 
subtypes[96,98,99,132-134], and are more prevalent among Hispanics/Latinos compared to other racial/ethnic 
groups[132]. In sum, the Ph-like subtype contributes significantly to the poor survival of Hispanic/Latino 
AYA ALL patients.

Genetic variation
Genetic variants contribute to racial/ethnic disparities in ALL incidence
Several ALL risk loci identified by GWAS have been associated with genetic ancestry, and have 
demonstrated differences in risk allele frequency and/or differences in effect size across population 
groups[15-32,135,136] [Figure 2]. For example, an increased number of risk alleles at 5 ALL risk single nucleotide 
polymorphisms (SNPs) rs3731217 (CDKN2A), rs7088318 (PIP4K2A), rs2239633 (CEBPE), rs7089424 
(ARID5B), and rs3824662 (GATA3) was correlated with increased genome-wide Indigenous American 
ancestry in Hispanic/Latino children[137,138]. ARID5B SNP risk allele frequency has also been associated with 
increased local Indigenous American ancestry in Hispanics/Latinos[139]. At the GATA3 risk locus, SNP 
rs3824662 has a markedly higher risk allele frequency in Hispanic/Latino than in European ancestry 
populations, with 39% compared with only 17% frequency in the Genome Aggregation Database (gnomAD) 
v2.1.1. [Table 1 and Figure 3][57]. Further, the GATA3 SNP rs3824662 risk allele has been shown to confer a 
remarkably high risk for Ph-like ALL in both children and AYAs, with an almost 4-fold risk of this 
subtype[21,135], supporting that this risk locus likely contributes significantly to the increased prevalence of 
Ph-like ALL in Hispanic/Latino ALL patients.

In two recent GWAS of ALL conducted in Hispanic/Latino-only discovery studies, a novel ALL risk locus 
was identified at the chromosome 21 gene ERG[29,31]. The effect of this locus on ALL risk was larger in 
Hispanics/Latinos than in NHWs and, in addition, this locus was associated with an increased risk of ALL 
in Hispanic/Latino individuals both with higher genome-wide and higher local Indigenous American 
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Figure 2. Genetic variants associated with ALL risk and outcomes across the genome. PhenoGram plots[140] were constructed for 
genetic variants associated with (A) ALL susceptibility, and/or (B) ALL patient outcomes (i.e., relapse and response to therapy). 
Genetic variants included in the PhenoGrams were identified in the NHGRI-EBI catalog of human genome-wide association studies 
(GWAS Catalog)[141] and included in published GWAS for acute lymphoblastic leukemia (ALL)[15,16,18-20,24-27,32,135,136] or for outcomes of 
ALL[142-150]. We also included some variants described in additional papers included in this review for ALL susceptibility[17,21-23,28-31] and 
ALL patient outcomes[21,139]. For ALL susceptibility (A) we only included variants that passed genome-wide significance levels of P < 5 × 
10-8. For patient outcomes (B), we included variants that passed genome-wide significance levels of P < 5 × 10-8 plus variants in GATA3 
and ARID5B from gene-specific analyses. Lines are plotted on each chromosome corresponding to the base-pair position of each single 
nucleotide polymorphism (SNP). Variants are colored by related phenotypes that have been detected in GWAS (from the “Reported 
trait” column in the GWAS Catalog). Shapes of variants correspond to the genetic ancestry (if any) that has been associated with the 
SNP risk allele. N/A represents no related ancestry has been reported so far.

ancestry[29,31]. Together, risk loci in ARID5B, GATA3, PIP4K2A, CEBPE, and ERG likely account for some of 
the observed differences in ALL incidence between Hispanics/Latinos and non-Hispanic/Latino 
races/ethnicities, which may be partly explained by the Indigenous American ancestry in Hispanics/Latinos. 
Indeed, it has been suggested that the CEBPE, ARID5B, and GATA3 risk SNPs may account for 
approximately 3%, 11%, and 11% increased risk of B-ALL in Hispanics/Latinos vs. NHWs, 
respectively[137,138]. Intriguingly, a recent study found that Indigenous American ancestry increased by ~20% 
on average in Mexican Americans in the United States during the 1940s-1990s, partly attributable to 
assortative mating, shifts in migration pattern and changes in population size[151]. Given the association 
between ALL risk alleles and Indigenous American ancestry, this perhaps suggests that this shift in genetic 
ancestry may contribute to the rising ALL incidence among Hispanics/Latinos, although this warrants 



Page 228Xu et al. J Transl Genet Genom 2021;5:218-39 https://dx.doi.org/10.20517/jtgg.2021.20

Figure 3. Risk allele frequency and effect size of selected single nucleotide polymorphisms (SNPs) associated with acute lymphoblastic 
leukemia (ALL) risk. SNPs (n = 33, Table 1) are grouped by nearest genes in each panel. (A) Percentage higher of risk allele frequency in 
Africans/African-Americans and Latinos/Admixed Americans as compared to in Europeans (non-Finnish). Percentage change 
equation: {{[(Risk allele frequency of Africans/African-Americans or of Latinos/Admixed Americans) / [Risk allele frequency of 
Europeans (non-Finnish)]} - 1} × 100. Horizontal bars are annotated by risk allele and colored by the direction of percentage difference. 
(B) Difference of risk allele frequency in Africans/African-Americans and Latinos/Admixed Americans as compared to in Europeans 
(non-Finnish). (C) Effect size of selected GWAS-identified SNPs associated with ALL risk. Centers of points and horizontal bars indicate 
point estimates and 95% confidence intervals. Points are shaped by study-reported traits. Points and horizontal bars are colored by 
ancestry with the highest risk allele frequency. X axis is on a log-10 scale in order to better present those relatively small effect sizes.

further investigation. Further research is needed to determine whether the ancestry-dependent effects from 
these SNPs are confounded by other genetic or environmental factors, and to discover additional ancestry-
associated risk loci via admixture mapping and larger GWAS of ALL with a more diverse population across 
all age groups.
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Apart from the risk loci described above that are associated with Indigenous American ancestry, a novel risk 
locus for T-ALL was recently identified at the USP7 gene and was found to be overrepresented in children 
of African ancestry. This locus may, therefore, contribute to the higher incidence of T-ALL in Black 
children compared to their counterparts of other races/ethnicities[30].

Finally, we summarized established GWAS-identified SNPs for ALL[15-32] in Table 1, and we observed 
disparities in risk allele frequency and in effect size of these SNPs. In gnomAD (v2.1.1.)[57], the risk allele 
frequency of the Ph-like ALL-related SNP rs3824662 (GATA3) is 130% higher in Latinos/Admixed 
Americans compared to in Europeans; further, SNPs in ARID5B have a 20%-50% higher risk allele 
frequency in Latinos/Admixed Americans compared to Europeans [Figure 3A]. Many of the established 
ALL GWAS SNPs have a higher absolute risk allele frequency in Latinos/Admixed Americans than in 
Europeans [Figure 3B]. In Blacks, risk allele frequency of the T-ALL-related SNP at rs74010351 (USP7) is 
strikingly high, nearly 200% higher than in Europeans, but the absolute difference is only ~10% because of 
the low frequency of this risk allele across all populations [Table 1]; other GWAS SNPs did not show 
consistent differences in risk allele frequency between African and European populations [Figure 3]. The 
strongest risk effect is seen for the GATA3 SNP rs3824662 association with Ph-like ALL, with an effect size 
of nearly 4.0 [Figure 3C].

Genetic variants are associated with racial/ethnic disparities in ALL outcomes
Genetic variation contributes to racial/ethnic disparities not only in ALL susceptibility but also in treatment 
outcomes[139,152] [Figure 2]. Indigenous American ancestry has been associated with an increased risk of 
relapse in Hispanic/Latino ALL patients, which may result from the effects of ancestry-related genetic 
variants on therapy response[153]. For example, in a study conducted in children treated on Children's 
Oncology Group (COG) clinical trials, ARID5B genetic risk alleles that have a higher frequency in 
Hispanic/Latino populations and are associated with increased Indigenous American ancestry were 
associated with both ALL susceptibility and relapse risk[139]. In another example, the GATA3 risk SNP 
rs3824662, associated with Indigenous American ancestry[138] and Ph-like ALL, has been found additionally 
to contribute to the increased risk of relapse in both childhood[21,154] and adult ALL patients[155].

Two variants in TPMT (rs1142345) and NUDT15 (rs116855232) have been discovered by GWAS to be 
strongly associated with thiopurine intolerance during therapy resulting in excessive toxicity in children 
with ALL[142]. The TPMT variant is most prevalent in Blacks and least common in East Asians[142]. The 
NUDT15 variant is most prevalent in East Asians, followed by Hispanics/Latinos, and extremely rare in 
NHWs and Blacks[142]. In a recent sequencing study, 4 additional germline loss-of-function variants were 
identified in NUDT15 that confer a major risk for thiopurine intolerance, and appear to be highly prevalent 
in East Asians, South Asians and Indigenous American populations[156].

Moreover, a study of children with high-risk B-ALL enrolled in COG clinical trials revealed 19 genetic loci 
associated with increased relapse risk, of which 12 were specific to an ancestry group, including 7 SNPs 
specific to Hispanics/Latinos and 3 SNPs specific to Black patients[152]. These loci are associated with 
pharmacokinetic and pharmacodynamic phenotypes (e.g., resistance or rapid clearance of 
chemotherapy)[152]. Further, including ancestry-specific SNPs in multivariate models of relapse risk 
significantly attenuated the increased risk of relapse in Hispanic/Latino and Black patients compared to 
white patients[152].
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Environmental exposures and ALL risk
Genetic variation undoubtedly contributes to the racial/ethnic disparities in ALL risk and outcomes, but 
non-genetic factors also play an important role. In terms of the natural history of the disease, it has been 
proposed that childhood ALL, in particular B-ALL, follows a “two-hit” model of leukemogenesis[45,157], with 
in utero development of a pre-leukemic clone[158,159] that progresses to overt leukemia following postnatal 
acquisition of secondary genetic changes[160]. A lack of microbial infectious exposure perinatally or in 
infancy impacts immune function[161-163], and this in combination with delayed exposure to infections may 
lead to abnormal immune responses that result in secondary somatic events that drive leukemogenesis[45]. 
This is supported by epidemiological evidence, including from studies that have assessed the impact of 
early-life infectious exposure on ALL risk, using proxies such as day-care attendance[164-166], birth 
order[166-168], and timing of birth[168]. Intriguingly, day-care attendance and higher birth order have been 
found to have a protective effect on ALL risk among NHWs supporting the “delayed infection” 
hypothesis[45], but not in Hispanic/Latino children[164-166,168]. On the other hand, Caesarean section and in 
utero CMV infection, found to be risk factors for childhood ALL, conferred a more prominent effect in 
Hispanics/Latinos compared to NHWs[169-171]. As described above, several genetic variants and high-risk 
cytogenetic features are more prevalent in Hispanics/Latinos and are correlated with Indigenous American 
ancestry. More studies are needed to investigate the joint effects of both genetic and environmental risk 
factors and their potential interactions, particularly in Hispanics/Latinos.

Socioeconomic status and ALL risk and survival
Socioeconomic status (SES) also correlates with the racial/ethnic disparities in ALL risk. For example, in a 
recent study, when adjusting for percent foreign-born in areas, neighborhood SES was inversely associated 
with the AAIR of ALL among NHWs and Blacks, but was positively associated with ALL AAIR in 
Hispanics/Latinos across all age groups[66]. This observed racial/ethnic difference in the relationship between 
SES and the risk of ALL was reported to be largely driven by data from California[66], where there was an 
excessive ALL risk in Los Angeles County and a highly diverse population in which Hispanics/Latinos are of 
an elevated Indigenous American ancestry. This contrasts with another study conducted in children without 
adjusting for percent foreign-born, in which they found a higher incidence of ALL among lower SES 
populations for Hispanics/Latinos, but among higher SES populations for other races/ethnicities[172]. One 
potential reason that leads to this difference is that the former study additionally controlled for percent 
foreign-born, which is a crucial indicator of the “Hispanic paradox”[100,101], and represents a variety of 
potential underlying risk factors that may differ by individual and racial/ethnic group.

On the other hand, low SES is consistently associated with poor outcomes in ALL patients. Living in high 
poverty areas has been associated with high rates of relapse in childhood ALL patients[173]. Children with 
ALL in the United States residing in neighborhoods with the highest poverty rate have been found to have 
an almost 2-fold increase in mortality compared with those in neighborhoods with the lowest poverty rate 
[HR = 1.8 (95%CI: 1.41-2.30)], when adjusting for sex, age at diagnosis, race/ethnicity, and treatment era[174]. 
Moreover, the difference in 5-year overall survival comparing NHW children with ALL residing in the 
lowest poverty neighborhoods vs. Black patients residing in the highest poverty neighborhoods can be as 
high as 22%[174]. Furthermore, in SEER data, SES as measured at the neighborhood level significantly 
mediated the association between race/ethnicity and childhood ALL survival, leading to a 44% reduction 
from the total to the direct effect of the Black-NHW survival disparity and 31% reduction of the 
Hispanic/Latino-NHW disparity in survival[175]. The inferior outcomes in high poverty neighborhoods 
might be attributable to multiple elements, including a poor adherence to therapy (e.g., long-term oral 
administration of antimetabolites)[176,177], lack of insurance, and the discontinuous coverage of 
insurance[178-180].
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Access to care
Previous studies have shown that older age was associated with less treatment adherence[80], and that 
compliance with therapy was more problematic for AYAs than for other age groups[181-183]; however, the 
heterogeneity by race/ethnicity has been investigated mostly in childhood ALL patients. Lower exposure to 
mercaptopurine increases the risk of relapse in ALL, and thus the increased risk of relapse in 
Hispanic/Latino children with ALL compared with NHW children with ALL may in part result from a 
lower compliance to oral mercaptopurine therapy[184]. In a 6-month adherence monitoring program of 327 
patients with ALL, Hispanic/Latino children had a significantly lower level of adherence along with lower 
SES compared to NHW children[177]. In another 5-month follow-up study among children with ALL from 
COG, adherence rates for oral 6-mercaptopurine were significantly lower in Blacks (87%) and Asian 
Americans (90%), as compared to NHWs (95%), after adjusting for SES[185]. These suggest that compliance 
to therapy could be explained by factors other than SES. In addition, the type of insurance payer is a 
significant predictor of adherence among ALL patients. It has been found that ALL patients with 
commercial insurance payers had significantly higher levels of adherence compared to those with 
Medicaid[186]. Compared to other age groups, the AYA group is less likely to have insurance, with around 
40% of individuals between 19 and 29 years old being uninsured[187]. Hispanic/Latino and Black adult 
patients with cancer are more likely to be uninsured or Medicaid-insured than NHW adult patients[180]. A 
pediatric cancer study has also demonstrated that Hispanic/Latino patients were less likely to have 
insurance[188]. Notably, despite that Black children with ALL were significantly more likely to have high-risk 
prognostic profiles compared to NHW children, it has been found that with equal access to effective 
antileukemic therapy, Blacks and NHWs had the same high rate of cure[189].

Recruitment to clinical trials
In addition to the elevated incidence of Ph-like ALL in AYA ALL patients[96-99], potential factors that 
contribute to the AYA “survival cliff” also include the transition from pediatric to adult treatment 
regimens[110] and the low recruitment rate of AYA patients into clinical trials[190]. For instance, a drop off in 
clinical trial accruals for ALL has been identified during age 16-24, where the estimated treatment trial 
accrual proportion decreased dramatically from 50% at age 16 to below 10% at age 24 during 2000-2014[190]. 
This pattern strongly suggests that the AYA survival cliff could be in fact largely due to an “accrual cliff”, as 
survival has been found to strongly correlate with trial accrual[190]. Moreover, there was a lack of 
improvement in ALL survival in patients aged 20-29 years since 1989 (APC = 0.33, P = 0.39), corresponding 
to the negligible increase of trial accrual in AYAs during 2000-2015[190]. In addition to AYAs, elderly ALL 
patients are rarely eligible for clinical trials and are underrepresented in trials of new cancer therapy[191,192], 
and the underrepresentation in clinical trials for cancer therapies has been found to underlie the poor 
outcomes of elderly patients[192]. In addition to age disparities, Black AYA cancer patients are less likely to be 
enrolled on a clinical trial compared to NHW AYAs[193], and NHWs continue to comprise the majority of 
participants in these trials[194].

CONCLUSIONS AND FUTURE DIRECTIONS
In this review, we described racial/ethnic disparities in ALL risk and survival; evaluated how these vary 
across the age spectrum; and examined the potential causes of these disparities, including genetic and non-
genetic risk factors. Genetic risk factors certainly play a significant role in contributing to these disparities, 
as several ALL risk loci are associated with genetic ancestry, and have demonstrated different risk allele 
frequencies and/or effect sizes across population groups. In particular, multiple studies have shown that Ph-
like ALL is associated with poor survival in both children and adults, and the risk of Ph-like ALL is 
associated with specific GATA3 risk alleles that occur more frequently in Hispanics/Latinos with elevated 
Indigenous American ancestry. A variety of genomic aberrations have been discovered underlying Ph-like 
ALL and are likely to be drivers of leukemogenesis[195], which offers a great opportunity for precision 



Page 232Xu et al. J Transl Genet Genom 2021;5:218-39 https://dx.doi.org/10.20517/jtgg.2021.20

medicine approaches to use molecule inhibitors targeted at these lesions. Racial/ethnic categories in 
epidemiologic studies also capture, albeit imperfectly, the influence from bias, racial discrimination, culture, 
socioeconomic status, access to care, and environmental factors[60]. In this review, we recognize that these 
non-genetic factors are associated with the disparities in ALL risk and survival. Improving survival in 
Hispanic/Latino and Black patients with ALL will require both improved access to care and inclusion of 
more diverse populations in future clinical trials and genetic studies.
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